1
|
Contala ML, Krapf P, Steiner FM, Schlick-Steiner BC. Foraging valor linked with aggression: selection against completely abandoning aggression in the high-elevation ant Tetramorium alpestre? INSECT SCIENCE 2024; 31:953-970. [PMID: 37602971 DOI: 10.1111/1744-7917.13263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/29/2023] [Accepted: 07/12/2023] [Indexed: 08/22/2023]
Abstract
Aggression has multiple benefits and is often coupled with other behaviors ("behavioral syndromes"). The level of aggressiveness is influenced by an adaptive benefit-cost ratio suggesting that benefits should outweigh the costs of aggression. Here, we assess if several behaviors are coupled in two behaviorally different populations (aggressive, peaceful) of the high-elevation ant Tetramorium alpestre. For three weeks, we collected colony fragments and analyzed boldness, exploring, foraging, and risk-taking behaviors. We hypothesized that the aggressive population is bolder, more explorative and risk-prone, and forages more food than the peaceful population. To test whether (a) the combination of experiments and parameters used yields a good setup, (b) populations differ behaviorally, and (c) populations display behavioral syndromes, we assessed (a) the frequency of repeatable behaviors of each experiment, (b) the behavioral means among populations, and (c) the behavioral repeatability, respectively. We found that (a) boldness and exploring were most repeatable and represent a good experimental setup, (b) the aggressive population was bolder and more explorative and risk-prone than the peaceful population, (c) boldness and exploring behaviors were highly repeatable in both populations, thus corroborating our hypothesis. The results suggest that boldness, exploring, and risk-taking but not foraging are presumably coupled with aggression and indicate the presence of behavioral syndromes in this ant. Under specific ecological conditions, aggression may be coupled with other behaviors and important for finding food. Aggression is probably adaptive in T. alpestre, possibly indicating that selection favors aggression at least partially, which may counteract the complete loss of intraspecific aggression.
Collapse
Affiliation(s)
- Marie-Luise Contala
- Molecular Ecology Group, Department of Ecology, Universität Innsbruck, Innsbruck, Austria
| | - Patrick Krapf
- Molecular Ecology Group, Department of Ecology, Universität Innsbruck, Innsbruck, Austria
- Organismal & Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| | - Florian M Steiner
- Molecular Ecology Group, Department of Ecology, Universität Innsbruck, Innsbruck, Austria
| | | |
Collapse
|
2
|
Menges V, Späth S, Menzel F. Temporally consistent behavioural variation between wild ant colonies is robust to strong seasonal and thermal variation. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
3
|
Wiernasz DC, Cole BJ. The ontogeny of selection on genetic diversity in harvester ants. Proc Biol Sci 2022; 289:20220496. [PMID: 35673867 PMCID: PMC9174731 DOI: 10.1098/rspb.2022.0496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Selection may favour traits throughout an individual's lifetime or at a particular life stage. In many species of social insects, established colonies that are more genetically diverse outperform less diverse colonies with respect to a variety of traits that contribute to fitness, but whether selection favours high diversity in small colonies is unknown. We tested the hypothesis that selection favours genetically diverse colonies during the juvenile period using a multi-year field experiment with the harvester ant, Pogonomyrmex occidentalis. We used controlled matings to generate colonies that varied in genetic diversity and transplanted them into the field. We monitored their survival for seven (the 2015 cohort, n = 149) and six (the 2016 cohort, n = 157) years. Genetically more diverse colonies had greater survival, resulting in significant viability selection. However, in both cohorts survival was not influenced by genetic diversity until colonies were three years old. We suggest that changes in their internal organization enabled colonies to use the benefits of multiple genotypes, and discuss possible mechanisms that can generate this pattern.
Collapse
Affiliation(s)
- Diane C. Wiernasz
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204-5001, USA
| | - Blaine J. Cole
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204-5001, USA
| |
Collapse
|
4
|
Nova N, Pagliara R, Gordon DM. Individual Variation Does Not Regulate Foraging Response to Humidity in Harvester Ant Colonies. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2021.756204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Differences among groups in collective behavior may arise from responses that all group members share, or instead from differences in the distribution of individuals of particular types. We examined whether the collective regulation of foraging behavior in colonies of the desert red harvester ant (Pogonomyrmex barbatus) depends on individual differences among foragers. Foragers lose water while searching for seeds in hot, dry conditions, so colonies regulate foraging activity in response to humidity. In the summer, foraging activity begins in the early morning when humidity is high, and ends at midday when humidity is low. We investigated whether individual foragers within a colony differ in the decision whether to leave the nest on their next foraging trip as humidity decreases, by tracking the foraging trips of marked individuals. We found that individuals did not differ in response to current humidity. No ants were consistently more likely than others to stop foraging when humidity is low. Each day there is a skewed distribution of trip number: only a few individuals make many trips, but most individuals make few trips. We found that from one day to the next, individual foragers do not show any consistent tendency to make a similar number of trips. These results suggest that the differences among colonies in response to humidity, found in previous work, are due to behavioral responses to current humidity that all workers in a colony share, rather than to the distribution within a colony of foragers that differ in response.
Collapse
|
5
|
Dahan RA, Grove NK, Bollazzi M, Gerstner BP, Rabeling C. Decoupled evolution of mating biology and social structure in Acromyrmex leaf-cutting ants. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-03113-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Abstract
Insect societies vary greatly in their social structure, mating biology, and life history. Polygyny, the presence of multiple reproductive queens in a single colony, and polyandry, multiple mating by females, both increase the genetic variability in colonies of eusocial organisms, resulting in potential reproductive conflicts. The co-occurrence of polygyny and polyandry in a single species is rarely observed across eusocial insects, and these traits have been found to be negatively correlated in ants. Acromyrmex leaf-cutting ants are well-suited for investigating the evolution of complex mating strategies because both polygyny and polyandry co-occur in this genus. We used microsatellite markers and parentage inference in five South American Acromyrmex species to study how different selective pressures influence the evolution of polygyny and polyandry. We show that Acromyrmex species exhibit independent variation in mating biology and social structure, and polygyny and polyandry are not necessarily negatively correlated within genera. One species, Acromyrmex lobicornis, displays a significantly lower mating frequency compared to others, while another species, A. lundii, appears to have reverted to obligate monogyny. These variations appear to have a small impact on average intra-colonial relatedness, although the biological significance of such a small effect size is unclear. All species show significant reproductive skew between patrilines, but there was no significant difference in reproductive skew between any of the sampled species. We find that the evolution of social structure and mating biology appear to follow independent evolutionary trajectories in different species. Finally, we discuss the evolutionary implications that mating biology and social structure have on life history evolution in Acromyrmex leaf-cutting ants.
Significance statement
Many species of eusocial insects have colonies with multiple queens (polygyny), or queens mating with multiple males (polyandry). Both behaviors generate potentially beneficial genetic diversity in ant colonies as well as reproductive conflict. The co-occurrence of both polygyny and polyandry in a single species is only known from few ant species. Leaf-cutting ants have both multi-queen colonies and multiply mated queens, providing a well-suited system for studying the co-evolutionary dynamics between mating behavior and genetic diversity in colonies of eusocial insects. We used microsatellite markers to infer the socio-reproductive behavior in five South American leaf-cutter ant species. We found that variation in genetic diversity in colonies was directly associated with the mating frequencies of queens, but not with the number of queens in a colony. We suggest that multi-queen nesting and mating frequency evolve independently of one another, indicating that behavioral and ecological factors other than genetic diversity contribute to the evolution of complex mating behaviors in leaf-cutting ants.
Collapse
|
6
|
Psalti MN, Gohlke D, Libbrecht R. Experimental increase of worker diversity benefits brood production in ants. BMC Ecol Evol 2021; 21:163. [PMID: 34461829 PMCID: PMC8404329 DOI: 10.1186/s12862-021-01890-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/18/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The reproductive division of labor of eusocial insects, whereby one or several queens monopolize reproduction, evolved in a context of high genetic relatedness. However, many extant eusocial species have developed strategies that decrease genetic relatedness in their colonies, suggesting some benefits of the increased diversity. Multiple studies support this hypothesis by showing positive correlations between genetic diversity and colony fitness, as well as finding effects of experimental manipulations of diversity on colony performance. However, alternative explanations could account for most of these reports, and the benefits of diversity on performance in eusocial insects still await validation. In this study, we experimentally increased worker diversity in small colonies of the ant Lasius niger while controlling for typical confounding factors. RESULTS We found that experimental colonies composed of workers coming from three different source colonies produced more larvae and showed more variation in size compared to groups of workers coming from a single colony. CONCLUSIONS We propose that the benefits of increased diversity stemmed from an improved division of labor. Our study confirms that worker diversity enhances colony performance, thus providing a possible explanation for the evolution of multiply mated queens and multiple-queen colonies in many species of eusocial insects.
Collapse
Affiliation(s)
- Marina N. Psalti
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University of Mainz, Hanns-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| | - Dustin Gohlke
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University of Mainz, Hanns-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| | - Romain Libbrecht
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University of Mainz, Hanns-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| |
Collapse
|
7
|
Andras JP, Hollis KL, Carter KA, Couldwell G, Nowbahari E. Analysis of ants' rescue behavior reveals heritable specialization for first responders. J Exp Biol 2020; 223:jeb212530. [PMID: 32029458 DOI: 10.1242/jeb.212530] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 01/28/2020] [Indexed: 11/20/2022]
Abstract
In colonies of Cataglyphis cursor ants, a single queen mates with multiple males, creating the foundation for heritable behavioral specializations. A novel and unique candidate for such specializations is rescue behavior, a precisely delivered form of altruism in which workers attempt to release trapped nestmates and which relies on short-term memory of previous actions to increase its efficiency. Consistent with task specialization, not all individuals participate; instead, some individuals move away from the victim, which gives rescuers unrestricted access. Using a bioassay to identify rescuers and non-rescuers, coupled with paternity assignment via polymorphic microsatellite markers, we not only show that rescue behavior is heritable, with 34% of the variation explained by paternity, but also establish that rescue, heretofore overlooked in analyses of division of labor, is a true specialization, an ant version of first responders. Moreover, this specialization emerges as early as 5 days of age, and the frequency of rescuers remains constant across ants' age ranges. The extremely broad range of these ants' heritable polyethism provides further support for the critical role of polyandry in increasing the efficiency of colony structure and, in turn, reproductive success.
Collapse
Affiliation(s)
- Jason P Andras
- Department of Biological Sciences, Mount Holyoke College, 50 College Street, South Hadley, MA 01075-1462, USA
| | - Karen L Hollis
- Interdisciplinary Program in Neuroscience & Behavior, Mount Holyoke College, 50 College Street, South Hadley, MA 01075-1462, USA
| | - Kristyn A Carter
- Interdisciplinary Program in Neuroscience & Behavior, Mount Holyoke College, 50 College Street, South Hadley, MA 01075-1462, USA
| | - Genevieve Couldwell
- Interdisciplinary Program in Neuroscience & Behavior, Mount Holyoke College, 50 College Street, South Hadley, MA 01075-1462, USA
| | - Elise Nowbahari
- Laboratoire d'Ethologie Expérimentale et Comparée EA 4443, Université Sorbonne Paris Nord, 93430 Villetaneuse, France
| |
Collapse
|
8
|
Detrain C, Pereira H, Fourcassié V. Differential responses to chemical cues correlate with task performance in ant foragers. Behav Ecol Sociobiol 2019. [DOI: 10.1007/s00265-019-2717-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
9
|
Saar M, Eyer PA, Kilon-Kallner T, Hefetz A, Scharf I. Within-colony genetic diversity differentially affects foraging, nest maintenance, and aggression in two species of harvester ants. Sci Rep 2018; 8:13868. [PMID: 30217995 PMCID: PMC6138738 DOI: 10.1038/s41598-018-32064-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 09/03/2018] [Indexed: 11/09/2022] Open
Abstract
There is accumulating evidence that genetic diversity improves the behavioral performance and consequently the fitness in groups of social animals. We examined the behavioral performance of colonies of two co-occurring, congeneric harvester ant species (Messor arenarius and a non-described Messor sp.) in fitness-related behaviors, pertaining to foraging performance, nest maintenance, and aggression. We linked these behaviors to the colonial genetic diversity, by genotyping workers, using six and five microsatellite markers for M. arenarius and M. sp., respectively. Correlations of genetic diversity with colony performance and aggression level contrasted between the two species. In M. arenarius, genetic diversity was correlated with foraging performance and nest maintenance but not with the overall aggression level, while in M. sp., genetic diversity was correlated with the overall aggression level, but not with foraging performance or nest maintenance. The two species exhibited similar specific aggression levels, with higher aggression shown towards heterospecifics and lower towards non-nestmate conspecifics and nestmates. However, M. sp. workers displayed a tendency to interact for longer with heterospecifics than did M. arenarius. We speculate that the different foraging strategies, group vs. individual foraging, and possibly also the different mating systems, contribute to the differences found in behavior between the two species.
Collapse
Affiliation(s)
- Maya Saar
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Pierre-André Eyer
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | - Tal Kilon-Kallner
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Abraham Hefetz
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Inon Scharf
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
10
|
Affiliation(s)
- Cristian Pasquaretta
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse Cedex, France
| | - Raphaël Jeanson
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse Cedex, France
| |
Collapse
|
11
|
Norman VC, Butterfield T, Drijfhout F, Tasman K, Hughes WOH. Alarm Pheromone Composition and Behavioral Activity in Fungus-Growing Ants. J Chem Ecol 2017; 43:225-235. [PMID: 28247150 PMCID: PMC5371636 DOI: 10.1007/s10886-017-0821-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/06/2017] [Accepted: 02/08/2017] [Indexed: 11/29/2022]
Abstract
Chemical communication is a dominant method of communication throughout the animal kingdom and can be especially important in group-living animals in which communicating threats, either from predation or other dangers, can have large impacts on group survival. Social insects, in particular, have evolved a number of pheromonal compounds specifically to signal alarm. There is predicted to be little selection for interspecific variation in alarm cues because individuals may benefit from recognizing interspecific as well as conspecific cues and, consequently, alarm cues are not normally thought to be used for species or nestmate recognition. Here, we examine the composition of the alarm pheromones of seven species of fungus-growing ants (Attini), including both basal and derived species and examine the behavioral responses to alarm pheromone of Acromyrmex leaf-cutting ants, the sister genus to the highly studied Atta leaf-cutting ants. We find surprisingly high interspecific variation in alarm pheromone composition across the attine phylogeny. Interestingly, the active component of the alarm pheromone was different between the two leaf-cutting ant genera. Furthermore, in contrast to previous studies on Atta, we found no differences among morphological castes in their responses to alarm pheromone in Acromyrmex but we did find differences in responses among putative age classes. The results suggest that the evolution of alarm communication and signaling within social insect clades can be unexpectedly complex and that further work is warranted to understand whether the evolution of different alarm pheromone compounds is adaptive.
Collapse
Affiliation(s)
- Victoria C Norman
- School of Life Sciences, University of Sussex, Brighton, East Sussex, BN1 9QG, UK.
| | - Thomas Butterfield
- School of Life Sciences, University of Sussex, Brighton, East Sussex, BN1 9QG, UK
| | - Falko Drijfhout
- Chemical Sciences Research Centre, Keele University, Staffordshire, UK
| | - Kiah Tasman
- School of Life Sciences, University of Sussex, Brighton, East Sussex, BN1 9QG, UK
| | - William O H Hughes
- School of Life Sciences, University of Sussex, Brighton, East Sussex, BN1 9QG, UK
| |
Collapse
|
12
|
Blight O, Villalta I, Cerdá X, Boulay R. Personality traits are associated with colony productivity in the gypsy ant Aphaenogaster senilis. Behav Ecol Sociobiol 2016. [DOI: 10.1007/s00265-016-2224-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
13
|
Norman VC, Pamminger T, Hughes WOH. The effects of disturbance threat on leaf-cutting ant colonies: a laboratory study. INSECTES SOCIAUX 2016; 64:75-85. [PMID: 28255181 PMCID: PMC5310565 DOI: 10.1007/s00040-016-0513-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/26/2016] [Accepted: 08/31/2016] [Indexed: 06/06/2023]
Abstract
The flexibility of organisms to respond plastically to their environment is fundamental to their fitness and evolutionary success. Social insects provide some of the most impressive examples of plasticity, with individuals exhibiting behavioral and sometimes morphological adaptations for their specific roles in the colony, such as large soldiers for nest defense. However, with the exception of the honey bee model organism, there has been little investigation of the nature and effects of environmental stimuli thought to instigate alternative phenotypes in social insects. Here, we investigate the effect of repeated threat disturbance over a prolonged (17 month) period on both behavioral and morphological phenotypes, using phenotypically plastic leaf-cutting ants (Atta colombica) as a model system. We found a rapid impact of threat disturbance on the behavioral phenotype of individuals within threat-disturbed colonies becoming more aggressive, threat responsive, and phototactic within as little as 2 weeks. We found no effect of threat disturbance on morphological phenotypes, potentially, because constraints such as resource limitation outweighed the benefit for colonies of producing larger individuals. The results suggest that plasticity in behavioral phenotypes can enable insect societies to respond to threats even when constraints prevent alteration of morphological phenotypes.
Collapse
Affiliation(s)
- V. C. Norman
- School of Life Sciences, University of Sussex, Brighton, East Sussex BN1 9QG UK
| | - T. Pamminger
- School of Life Sciences, University of Sussex, Brighton, East Sussex BN1 9QG UK
| | - W. O. H. Hughes
- School of Life Sciences, University of Sussex, Brighton, East Sussex BN1 9QG UK
| |
Collapse
|
14
|
Mersch DP. The social mirror for division of labor: what network topology and dynamics can teach us about organization of work in insect societies. Behav Ecol Sociobiol 2016. [DOI: 10.1007/s00265-016-2104-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Oettler J, Nachtigal AL, Schrader L. Expression of the Foraging Gene Is Associated with Age Polyethism, Not Task Preference, in the Ant Cardiocondyla obscurior. PLoS One 2015; 10:e0144699. [PMID: 26650238 PMCID: PMC4674073 DOI: 10.1371/journal.pone.0144699] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 11/23/2015] [Indexed: 11/18/2022] Open
Abstract
One of the fundamental principles of social organization, age polyethism, describes behavioral maturation of workers leading to switches in task preference. Here we present a system that allows for studying division of labor (DOL) by taking advantage of the relative short life of Cardiocondyla obscurior workers and thereby the pace of behavioral transitions. By challenging same-age young and older age cohorts to de novo establish DOL into nurse and foraging tasks and by forcing nurses to precociously become foragers and vice versa we studied expression patterns of one of the best known candidates for social insect worker behavior, the foraging gene. Contrary to our expectations we found that foraging gene expression correlates with age, but not with the task foraging per se. This suggests that this nutrition-related gene, and the pathways it is embedded in, correlates with physiological changes over time and potentially primes, but not determines task preference of individual workers.
Collapse
Affiliation(s)
- Jan Oettler
- Institut für Zoologie, Universität Regensburg, 93053, Regensburg, Germany
| | | | - Lukas Schrader
- Institut für Zoologie, Universität Regensburg, 93053, Regensburg, Germany
| |
Collapse
|
16
|
Larsen J, Fouks B, Bos N, d'Ettorre P, Nehring V. Variation in nestmate recognition ability among polymorphic leaf-cutting ant workers. JOURNAL OF INSECT PHYSIOLOGY 2014; 70:59-66. [PMID: 25205477 DOI: 10.1016/j.jinsphys.2014.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 08/20/2014] [Accepted: 09/01/2014] [Indexed: 06/03/2023]
Abstract
A key feature for the success of social insects is division of labour, allowing colony members to specialize on different tasks. Nest defence is a defining task for social insects since it is crucial for colony integrity. A particularly impressive and well-known case of worker specialization in complex hymenopteran societies is found in leaf-cutting ants of the genera Atta and Acromyrmex. We hypothesized that three morphological worker castes of Acromyrmex echinatior differ in their likelihood to attack intruders, and show that major workers are more aggressive towards non-nestmate workers than medium and minor workers. Moreover, minors do not discriminate between nestmate and non-nestmate brood, while larger workers do. We further show that A. echinatior ants use cuticular chemical compounds for nestmate recognition. We took advantage of the natural variation in the cuticular compounds between colonies to investigate the proximate factors that may have led to the observed caste differences in aggression. We infer that major workers differ from medium workers in their general propensity to attack intruders (the "action component" of the nestmate recognition system), while minors seem to be less sensitive to foreign odours ("perception component"). Our results highlight the importance of proximate mechanisms underlying social insect behaviour, and encourage an appreciation of intra-colony variation when analysing colony-level traits such as nest defence.
Collapse
Affiliation(s)
- Janni Larsen
- Centre for Social Evolution, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen E, Denmark.
| | - Bertrand Fouks
- Centre for Social Evolution, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen E, Denmark.
| | - Nick Bos
- Centre for Social Evolution, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen E, Denmark.
| | - Patrizia d'Ettorre
- Centre for Social Evolution, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen E, Denmark.
| | - Volker Nehring
- Centre for Social Evolution, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen E, Denmark.
| |
Collapse
|
17
|
Stürup M, Nash DR, Hughes WOH, Boomsma JJ. Sperm mixing in the polyandrous leaf-cutting ant Acromyrmex echinatior. Ecol Evol 2014; 4:3571-82. [PMID: 25478149 PMCID: PMC4224532 DOI: 10.1002/ece3.1176] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/25/2014] [Accepted: 07/02/2014] [Indexed: 11/08/2022] Open
Abstract
The insemination of queens by sperm from multiple males (polyandry) has evolved in a number of eusocial insect lineages despite the likely costs of the behavior. The selective advantages in terms of colony fitness must therefore also be significant and there is now good evidence that polyandry increases genetic variation among workers, thereby improving the efficiency of division of labor, resistance against disease, and diluting the impact of genetically incompatible matings. However, these advantages will only be maximized if the sperm of initially discrete ejaculates are mixed when stored in queen spermathecae and used for egg fertilization in a "fair raffle." Remarkably, however, very few studies have addressed the level of sperm mixing in social insects. Here we analyzed sperm use over time in the highly polyandrous leaf-cutting ant Acromyrmex echinatior. We genotyped cohorts of workers produced either 2 months apart or up to over a year apart, and batches of eggs laid up to over 2 years apart, and tested whether fluctuations in patriline distributions deviated from random. We show that the representation of father males in both egg and worker cohorts does not change over time, consistent with obligatorily polyandrous queens maximizing their fitness when workers are as genetically diverse as possible.
Collapse
Affiliation(s)
- Marlene Stürup
- Department of Biology, Centre for Social Evolution, University of Copenhagen Universitetsparken 15, Copenhagen, 2100, Denmark
| | - David R Nash
- Department of Biology, Centre for Social Evolution, University of Copenhagen Universitetsparken 15, Copenhagen, 2100, Denmark
| | - William O H Hughes
- Department of Biology, Centre for Social Evolution, University of Copenhagen Universitetsparken 15, Copenhagen, 2100, Denmark ; School of Life Sciences, University of Sussex Brighton, BN1 9QG, UK
| | - Jacobus J Boomsma
- Department of Biology, Centre for Social Evolution, University of Copenhagen Universitetsparken 15, Copenhagen, 2100, Denmark
| |
Collapse
|
18
|
Increased grooming after repeated brood care provides sanitary benefits in a clonal ant. Behav Ecol Sociobiol 2014. [DOI: 10.1007/s00265-014-1778-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Slaa EJ, Chappell P, Hughes WOH. Colony genetic diversity affects task performance in the red ant Myrmica rubra. Behav Ecol Sociobiol 2014. [DOI: 10.1007/s00265-014-1703-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
Jeanson R, Weidenmüller A. Interindividual variability in social insects - proximate causes and ultimate consequences. Biol Rev Camb Philos Soc 2013; 89:671-87. [PMID: 24341677 DOI: 10.1111/brv.12074] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 11/15/2013] [Accepted: 11/19/2013] [Indexed: 12/20/2022]
Abstract
Individuals within social groups often show consistent differences in behaviour across time and context. Such interindividual differences and the evolutionary challenge they present have recently generated considerable interest. Social insects provide some of the most familiar and spectacular examples of social groups with large interindividual differences. Investigating these within-group differences has a long research tradition, and behavioural variability among the workers of a colony is increasingly regarded as fundamental for a key feature of social insects: division of labour. The goal of this review is to illustrate what we know about both the proximate mechanisms underlying behavioural variability among the workers of a colony and its ultimate consequences; and to highlight the many open questions in this research field. We begin by reviewing the literature on mechanisms that potentially introduce, maintain, and adjust the behavioural differentiation among workers. We highlight the fact that so far, most studies have focused on behavioural variability based on genetic variability, provided by e.g. multiple mating of the queen, while other mechanisms that may be responsible for the behavioural differentiation among workers have been largely neglected. These include maturational, nutritional and environmental influences. We further discuss how feedback provided by the social environment and learning and experience of adult workers provides potent and little-explored sources of differentiation. In a second part, we address what is known about the potential benefits and costs of increased behavioural variability within the workers of a colony. We argue that all studies documenting a benefit of variability so far have done so by manipulating genetic variability, and that a direct test of the effect of behavioural variability on colony productivity has yet to be provided. We emphasize that the costs associated with interindividual variability have been largely overlooked, and that a better knowledge of the cost/benefit balance of behavioural variability is crucial for our understanding of the evolution of the mechanisms underlying the social organization of insect societies. We conclude by highlighting what we believe to be promising but little-explored avenues for future research on how within-colony variability has evolved and is maintained. We emphasize the need for comparative studies and point out that, so far, most studies on interindividual variability have focused on variability in individual response thresholds, while the significance of variability in other parameters of individual response, such as probability and intensity of the response, has been largely overlooked. We propose that these parameters have important consequences for the colony response. Much more research is needed to understand if and how interindividual variability is modulated in order to benefit division of labour, homeostasis and ultimately colony fitness in social insects.
Collapse
Affiliation(s)
- Raphaël Jeanson
- Centre National de la Recherche Scientifique, Centre de Recherches sur la Cognition Animale, 118 Route de Narbonne, 31062 Cedex 9, Toulouse, France; Centre de Recherches sur la Cognition Animale, Université Paul Sabatier, 118 Route de Narbonne, 31062 Cedex 9, Toulouse, France
| | | |
Collapse
|
21
|
Biogenic amines are associated with worker task but not patriline in the leaf-cutting ant Acromyrmex echinatior. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2013; 199:1117-27. [PMID: 24072064 DOI: 10.1007/s00359-013-0854-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/31/2013] [Accepted: 09/02/2013] [Indexed: 10/26/2022]
Abstract
Division of labor among eusocial insect workers is a hallmark of advanced social organization, but its underlying neural mechanisms are not well understood. We investigated whether differences in whole-brain levels of the biogenic amines dopamine (DA), serotonin (5HT), and octopamine (OA) are associated with task specialization and genotype in similarly sized and aged workers of the leaf-cutting ant Acromyrmex echinatior, a polyandrous species in which genotype correlates with worker task specialization. We compared amine levels of foragers and waste management workers to test for an association with worker task, and young in-nest workers across patrilines to test for a genetic influence on brain amine levels. Foragers had higher levels of DA and OA and a higher OA:5HT ratio than waste management workers. Patrilines did not significantly differ in amine levels or their ratios, although patriline affected worker body size, which correlated with amine levels despite the small size range sampled. Levels of all three amines were correlated within individuals in both studies. Among patrilines, mean levels of DA and OA, and OA and 5HT were also correlated. Our results suggest that differences in biogenic amines could regulate worker task specialization, but may be not be significantly affected by genotype.
Collapse
|
22
|
Eyer PA, Freyer J, Aron S. Genetic polyethism in the polyandrous desert ant Cataglyphis cursor. Behav Ecol 2012. [DOI: 10.1093/beheco/ars146] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
23
|
Libbrecht R, Keller L. Genetic compatibility affects division of labor in the Argentine ant Linepithema humile. Evolution 2012; 67:517-24. [PMID: 23356622 DOI: 10.1111/j.1558-5646.2012.01792.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Division of labor is central to the organization of insect societies. Within-colony comparisons between subfamilies of workers (patrilines or matrilines) revealed genetic effects on division of labor in many social insect species. Although this has been taken as evidence for additive genetic effects on division of labor, it has never been experimentally tested. To determine the relative roles of additive and nonadditive genetic effects (e.g., genetic compatibility, epistasis, and parent-of-origin imprinting effects) on worker behavior, we performed controlled crosses using the Argentine ant Linepithema humile. Three of the measured behaviors (the efficiency to collect pupae, the foraging propensity, and the distance between non-brood-tenders and brood) were affected by the maternal genetic background and the two others (the efficiency to feed larvae and the distance between brood-tenders and brood) by the paternal genetic background. Moreover, there were significant interactions between the maternal and paternal genetic backgrounds for three of the five behaviors. These results are most consistent with parent-of-origin and genetic compatibility effects on division of labor. The finding of nonadditive genetic effects is in strong contrast with the current view and has important consequences for our understanding of division of labor in insect societies.
Collapse
Affiliation(s)
- Romain Libbrecht
- Department of Ecology and Evolution, Biophore Building, University of Lausanne, CH-1015 Lausanne, Switzerland.
| | | |
Collapse
|
24
|
Constant N, Santorelli LA, Lopes JFS, Hughes WOH. The effects of genotype, caste, and age on foraging performance in leaf-cutting ants. Behav Ecol 2012. [DOI: 10.1093/beheco/ars116] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
25
|
Duarte A, Weissing FJ, Pen I, Keller L. An Evolutionary Perspective on Self-Organized Division of Labor in Social Insects. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2011. [DOI: 10.1146/annurev-ecolsys-102710-145017] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ana Duarte
- Department of Theoretical Biology, Center for Ecological and Evolutionary Studies, University of Groningen, Groningen, 9747 AG The Netherlands; , ,
| | - Franz J. Weissing
- Department of Theoretical Biology, Center for Ecological and Evolutionary Studies, University of Groningen, Groningen, 9747 AG The Netherlands; , ,
| | - Ido Pen
- Department of Theoretical Biology, Center for Ecological and Evolutionary Studies, University of Groningen, Groningen, 9747 AG The Netherlands; , ,
| | - Laurent Keller
- Department of Ecology and Evolution, University of Lausanne, Lausanne, CH-1015 Switzerland;
| |
Collapse
|
26
|
Chapman BB, Thain H, Coughlin J, Hughes WO. Behavioural syndromes at multiple scales in Myrmica ants. Anim Behav 2011. [DOI: 10.1016/j.anbehav.2011.05.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Endemic social diversity within natural kin groups of a cooperative bacterium. Proc Natl Acad Sci U S A 2011; 108 Suppl 2:10823-30. [PMID: 21690390 DOI: 10.1073/pnas.1100307108] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The spatial structure of genetic diversity underlying social variation is a critical determinant of how cooperation and conflict evolve. Here we investigated whether natural social groups of the cooperative soil bacterium Myxococcus xanthus harbor internal genetic and phenotypic variation and thus the potential for social conflict between interacting cells. Ten M. xanthus fruiting bodies isolated from soil were surveyed for variation in multiple social phenotypes and genetic loci, and patterns of diversity within and across fruiting body groups were examined. Eight of the 10 fruiting bodies were found to be internally diverse, with four exhibiting significant variation in social swarming phenotypes and five harboring large variation in the number of spores produced by member clones in pure culture. However, genetic variation within fruiting bodies was much lower than across fruiting bodies, suggesting that migration across even spatially proximate groups is limited relative to mutational generation of persisting endemic diversity. Our results simultaneously highlight the potential for social conflict within Myxococcus social groups and the possibility of social coevolution among diverse related lineages that are clustered in space and cotransmitted across generations.
Collapse
|
28
|
Grunewald TGP, Herbst SM, Heinze J, Burdach S. Understanding tumor heterogeneity as functional compartments--superorganisms revisited. J Transl Med 2011; 9:79. [PMID: 21619636 PMCID: PMC3118334 DOI: 10.1186/1479-5876-9-79] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 05/27/2011] [Indexed: 02/07/2023] Open
Abstract
Compelling evidence broadens our understanding of tumors as highly heterogeneous populations derived from one common progenitor. In this review we portray various stages of tumorigenesis, tumor progression, self-seeding and metastasis in analogy to the superorganisms of insect societies to exemplify the highly complex architecture of a neoplasm as a system of functional "castes." Accordingly, we propose a model in which clonal expansion and cumulative acquisition of genetic alterations produce tumor compartments each equipped with distinct traits and thus distinct functions that cooperate to establish clinically apparent tumors. This functional compartment model also suggests mechanisms for the self-construction of tumor stem cell niches. Thus, thinking of a tumor as a superorganism will provide systemic insight into its functional compartmentalization and may even have clinical implications.
Collapse
Affiliation(s)
- Thomas G P Grunewald
- Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, Kölner Platz 1, Munich, Germany.
| | | | | | | |
Collapse
|