1
|
Gerritsma YH, Driessen MMG, Tangili M, de Boer SF, Verhulst S. Experimentally manipulated food availability affects offspring quality but not quantity in zebra finch meso-populations. Oecologia 2022; 199:769-783. [PMID: 35614323 PMCID: PMC9465982 DOI: 10.1007/s00442-022-05183-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/03/2022] [Indexed: 11/29/2022]
Abstract
Food availability modulates survival, reproduction and thereby population size. In addition to direct effects, food availability has indirect effects through density of conspecifics and predators. We tested the prediction that food availability in isolation affects reproductive success by experimentally manipulating food availability continuously for 3 years in zebra finches (Taeniopygia guttata) housed in outdoor aviaries. To this end, we applied a technique that mimics natural variation in food availability: increasing the effort required per food reward without affecting diet. Lower food availability resulted in a slight delay of start of laying and fewer clutches per season, but did not affect clutch size or number of offspring reared per annum. However, increasing foraging costs substantially reduced offspring growth. Thus, food availability in isolation did not impact the quantity of offspring reared, at the expense of offspring quality. Growth declined strongly with brood size, and we interpret the lack of response with respect to offspring number as an adaptation to environments with low predictability, at the time of egg laying, of food availability during the period of peak food demand, typically weeks later. Manipulated natal brood size of the parents did not affect reproductive success. Individuals that were more successful reproducers were more likely to survive to the next breeding season, as frequently found in natural populations. We conclude that the causal mechanisms underlying associations between food availability and reproductive success in natural conditions may be more complex than usually assumed. Experiments in semi-natural meso-populations can contribute to further unravelling these mechanisms.
Collapse
|
2
|
Simons MJP, Sebire M, Verhulst S, Groothuis TGG. Androgen Elevation Accelerates Reproductive Senescence in Three-Spined Stickleback. Front Cell Dev Biol 2022; 9:752352. [PMID: 34977010 PMCID: PMC8718761 DOI: 10.3389/fcell.2021.752352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/23/2021] [Indexed: 11/13/2022] Open
Abstract
Costs of reproduction shape the life-history evolution of investment in current and future reproduction and thereby aging. Androgens have been proposed to regulate the physiology governing these investments. Furthermore, androgens are hypothesized to play a central role in carotenoid-dependent sexual signaling, regulating how much carotenoids are diverted to ornamentation and away from somatic maintenance, increasing oxidative stress, and accelerating aging. We investigated these relationships in male three-spined stickleback in which we elevated 11-ketotestosterone and supplied vitamin E, an antioxidant, in a 2 × 2 design. Androgen elevation shortened the time stickleback maintained reproductive activities. We suspect that this effect is caused by 11-ketotestosterone stimulating investment in current reproduction, but we detected no evidence for this in our measurements of reproductive effort: nest building, body composition, and breeding coloration. Carotenoid-dependent coloration was even slightly decreased by 11-ketotestosterone elevation and was left unaffected by vitamin E. Red coloration correlated with life expectancy and reproductive capacity in a quadratic manner, suggesting overinvestment of the individuals exhibiting the reddest bellies. In contrast, blue iris color showed a negative relationship with survival, suggesting physiological costs of producing this aspect of nuptial coloration. In conclusion, our results support the hypothesis that androgens regulate investment in current versus future reproduction, yet the precise mechanisms remain elusive. The quadratic relationships between sexual signal expression and aspects of quality have wider consequences for how we view sexual selection on ornamentation and its relationship with aging.
Collapse
Affiliation(s)
- Mirre J P Simons
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Marion Sebire
- The Centre for Environment, Fisheries and Aquaculture Science, Weymouth, United Kingdom
| | - Simon Verhulst
- Behavioural Biology, Centre for Behaviour and Neuroscience, University of Groningen, Groningen, Netherlands
| | - Ton G G Groothuis
- Behavioural Biology, Centre for Behaviour and Neuroscience, University of Groningen, Groningen, Netherlands
| |
Collapse
|
3
|
Hernández A, Martínez-Gómez M, Beamonte-Barrientos R, Montoya B. Colourful traits in female birds relate to individual condition, reproductive performance and male-mate preferences: a meta-analytic approach. Biol Lett 2021; 17:20210283. [PMID: 34493064 PMCID: PMC8424322 DOI: 10.1098/rsbl.2021.0283] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/16/2021] [Indexed: 11/12/2022] Open
Abstract
Colourful traits in females are suggested to have evolved and be maintained by sexual selection. Although several studies have evaluated this idea, support is still equivocal. Evidence has been compiled in reviews, and a handful of quantitative syntheses has explored cumulative support for the link between condition and specific colour traits in males and females. However, understanding the potential function of females' colourful traits in sexual communication has not been the primary focus of any of those previous studies. Here, using a meta-analytic approach, we find that evidence from empirical studies in birds supports the idea that colourful female ornaments are positively associated with residual mass and immune response, clutch size and male-mate preferences. Hence, colourful traits in female birds likely evolved and are maintained by sexual selection as condition-dependent signals.
Collapse
Affiliation(s)
- América Hernández
- Doctorado en Ciencias Biológicas, Centro Tlaxcala de Biología de la Conducta (CTBC), Universidad Autónoma de Tlaxcala, Tlaxcala, México
- Facultad de Ciencias, Universidad Nacional Autónoma de México, México City, México
| | - Margarita Martínez-Gómez
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, México
- Estación Científica La Malinche, Centro Tlaxcala de Biología de la Conducta (CTBC), Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | - René Beamonte-Barrientos
- Estación Científica La Malinche, Centro Tlaxcala de Biología de la Conducta (CTBC), Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | - Bibiana Montoya
- Estación Científica La Malinche, Centro Tlaxcala de Biología de la Conducta (CTBC), Universidad Autónoma de Tlaxcala, Tlaxcala, México
| |
Collapse
|
4
|
Yap KN, Powers DR, Vermette ML, Tsai OHI, Williams TD. Physiological adjustments to high foraging effort negatively affect fecundity but not final reproductive output in captive zebra finches. J Exp Biol 2021; 224:jeb.235820. [PMID: 33737390 DOI: 10.1242/jeb.235820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 03/10/2021] [Indexed: 12/11/2022]
Abstract
Foraging at elevated rates to provision offspring is thought to be an energetically costly activity and it has been suggested that there are physiological costs associated with the high workload involved. However, for the most part, evidence for costs of increased foraging and/or reproductive effort is weak. Furthermore, despite some experimental evidence demonstrating negative effects of increased foraging and parental effort, the physiological mechanisms underlying costs associated with high workload remain poorly understood. To examine how high workload affects haematology, oxidative stress and reproductive output, we experimentally manipulated foraging effort in captive zebra finches, Taeniopygia guttata, using a previously described technique, and allowed individuals to breed first in low foraging effort conditions and then in high foraging effort conditions. We found that birds upregulated haematocrit and haemoglobin concentration in response to training. Birds subjected to increased workload during reproduction had lower fecundity, although final reproductive output was not significantly different than that of controls. Offspring of parents subjected to high workload during reproduction also had higher oxidative stress when they were 90 days of age. Total antioxidant capacity and reactive oxygen metabolites of birds responded differently in the two breeding attempts, but we did detect an overall increase in oxidative stress in response to training in either attempt, which could explain the lower fecundity observed in birds subjected to increased workload during reproduction.
Collapse
Affiliation(s)
- Kang Nian Yap
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Donald R Powers
- Department of Biology, George Fox University, 414 N. Meridian Street, Newberg, OR 97132, USA
| | - Melissa L Vermette
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Olivia Hsin-I Tsai
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Tony D Williams
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
5
|
Yap KN, Powers DR, Vermette ML, Tsai OHI, Williams TD. Sex-specific energy management strategies in response to training for increased foraging effort prior to reproduction in captive zebra finches. J Exp Biol 2021; 224:258583. [PMID: 33914039 DOI: 10.1242/jeb.235846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/19/2021] [Indexed: 12/15/2022]
Abstract
Free-living animals often engage in behaviour that involves high rates of workload and results in high daily energy expenditure (DEE), such as reproduction. However, the evidence for elevated DEE accompanying reproduction remains equivocal. In fact, many studies have found no difference in DEE between reproducing and non-reproducing females. One of the hypotheses explaining the lack of difference is the concept of an 'energetic ceiling'. However, it is unclear whether the lack of increase in energy expenditure is due to the existence of an energetic ceiling and/or compensation by males during parental care. To investigate whether an energetic ceiling exists, we experimentally manipulated foraging effort in captive zebra finches, Taeniopygia guttata, creating two groups with high and low foraging efforts followed by both groups breeding in the low foraging effort common garden condition. DEE was measured in both sexes throughout the experiment. We show sex-specific energy management strategies in response to training for increased foraging effort prior to reproduction. Specifically, males and females responded differently to the high foraging effort treatment and subsequently to chick rearing in terms of energy expenditure. Our results also suggest that there is an energetic ceiling in females and that energetic costs incurred prior to reproduction can be carried over into subsequent stages of reproduction in a sex-specific manner.
Collapse
Affiliation(s)
- Kang Nian Yap
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Donald R Powers
- Department of Biology, George Fox University, 414 N. Meridian Street, Newberg, OR 97132, USA
| | - Melissa L Vermette
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Olivia Hsin-I Tsai
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Tony D Williams
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
6
|
Briga M, Verhulst S. Mosaic metabolic ageing: Basal and standard metabolic rates age in opposite directions and independent of environmental quality, sex and life span in a passerine. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13785] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Michael Briga
- Groningen Institute for Evolutionary Life Sciences University of Groningen Groningen The Netherlands
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences University of Groningen Groningen The Netherlands
| |
Collapse
|
7
|
Babin A, Motreuil S, Teixeira M, Bauer A, Rigaud T, Moreau J, Moret Y. Origin of the natural variation in the storage of dietary carotenoids in freshwater amphipod crustaceans. PLoS One 2020; 15:e0231247. [PMID: 32294101 PMCID: PMC7159244 DOI: 10.1371/journal.pone.0231247] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 03/19/2020] [Indexed: 11/26/2022] Open
Abstract
Carotenoids are diverse lipophilic natural pigments which are stored in variable amounts by animals. Given the multiple biological functions of carotenoids, such variation may have strong implications in evolutionary biology. Crustaceans such as Gammarus amphipods store large amounts of these pigments and inter-population variation occurs. While differences in parasite selective pressure have been proposed to explain this variation, the contribution of other factors such as genetic differences in the gammarid ability to assimilate and/or store pigments, and the environmental availability of carotenoids cannot be dismissed. This study investigates the relative contributions of the gammarid genotype and of the environmental availability of carotenoids in the natural variability in carotenoid storage. It further explores the link of this natural variability in carotenoid storage with major crustacean immune parameters. We addressed these aspects using the cryptic diversity in the amphipod crustacean Gammarus fossarum and a diet supplementation protocol in the laboratory. Our results suggest that natural variation in G. fossarum storage of dietary carotenoids results from both the availability of the pigments in the environment and the genetically-based ability of the gammarids to assimilate and/or store them, which is associated to levels of stimulation of cellular immune defences. While our results may support the hypothesis that carotenoids storage in this crustacean may evolve in response to parasitic pressure, a better understanding of the specific roles of this large pigment storage in the crustacean physiology is needed.
Collapse
Affiliation(s)
- Aurélie Babin
- Equipe Ecologie Evolutive, UMR CNRS 6282 Biogéosciences, Université de Bourgogne-Franche Comté, Dijon, France
- * E-mail:
| | - Sébastien Motreuil
- Equipe Ecologie Evolutive, UMR CNRS 6282 Biogéosciences, Université de Bourgogne-Franche Comté, Dijon, France
| | - Maria Teixeira
- Equipe Ecologie Evolutive, UMR CNRS 6282 Biogéosciences, Université de Bourgogne-Franche Comté, Dijon, France
| | - Alexandre Bauer
- Equipe Ecologie Evolutive, UMR CNRS 6282 Biogéosciences, Université de Bourgogne-Franche Comté, Dijon, France
| | - Thierry Rigaud
- Equipe Ecologie Evolutive, UMR CNRS 6282 Biogéosciences, Université de Bourgogne-Franche Comté, Dijon, France
| | - Jérôme Moreau
- Equipe Ecologie Evolutive, UMR CNRS 6282 Biogéosciences, Université de Bourgogne-Franche Comté, Dijon, France
| | - Yannick Moret
- Equipe Ecologie Evolutive, UMR CNRS 6282 Biogéosciences, Université de Bourgogne-Franche Comté, Dijon, France
| |
Collapse
|
8
|
Pineda-Pampliega J, Herrera-Dueñas A, Mulder E, Aguirre JI, Höfle U, Verhulst S. Antioxidant supplementation slows telomere shortening in free-living white stork chicks. Proc Biol Sci 2020; 287:20191917. [PMID: 31937223 DOI: 10.1098/rspb.2019.1917] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Telomere length (TL) and shortening is increasingly shown to predict variation in survival and lifespan, raising the question of what causes variation in these traits. Oxidative stress is well known to accelerate telomere attrition in vitro, but its importance in vivo is largely hypothetical. We tested this hypothesis experimentally by supplementing white stork (Ciconia ciconia) chicks with antioxidants. Individuals received either a control treatment, or a supply of tocopherol (vitamin E) and selenium, which both have antioxidant properties. The antioxidant treatment increased the concentration of tocopherol for up to two weeks after treatment but did not affect growth. Using the telomere restriction fragment technique, we evaluated erythrocyte TL and its dynamics. Telomeres shortened significantly over the 21 days between the baseline and final sample, independent of sex, mass, size and hatching order. The antioxidant treatment significantly mitigated shortening rate of average TL (-31% in shorter telomeres; percentiles 10th, 20th and 30th). Thus, our results support the hypothesis that oxidative stress shortens telomeres in vivo.
Collapse
Affiliation(s)
- Javier Pineda-Pampliega
- Department of Biodiversity, Ecology and Evolution, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain
| | - Amparo Herrera-Dueñas
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Ellis Mulder
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - José I Aguirre
- Department of Biodiversity, Ecology and Evolution, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain
| | - Ursula Höfle
- SaBio Research Group, Instituto de Investigación en Recursos Cinegéticos IREC, (CSIC-UCLM-JCCM), 13071 Ciudad Real, Spain
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
9
|
Kim SY, Velando A. Attractive male sticklebacks carry more oxidative DNA damage in the soma and germline. J Evol Biol 2019; 33:121-126. [PMID: 31610052 DOI: 10.1111/jeb.13552] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 10/07/2019] [Accepted: 10/10/2019] [Indexed: 12/23/2022]
Abstract
Trade-offs between the expression of sexual signals and the maintenance of somatic and germline tissues are expected when these depend upon the same resources. Despite the importance of sperm DNA integrity, its trade-off with sexual signalling has rarely been explored. We experimentally tested the trade-off between carotenoid-based sexual coloration and oxidative DNA damage in skeletal muscle, testis and sperm by manipulating reproductive schedule (early vs. late onset of breeding) in male three-spined sticklebacks. Oxidative DNA damage was measured as the amount of 8-hydroxy-2-deoxyguanosine in genomic DNA. Irrespective of the experimentally manipulated reproductive schedule, individuals investing more in red coloration showed higher levels of oxidative DNA damage in muscle, testis and sperm during the peak breeding season. Our results show that the expression of red coloration traded off against the level of oxidative DNA damage possibly due to the competing functions of carotenoids as colorants and antioxidants. Thus, female sticklebacks may risk fertility and viability of offspring by choosing redder, more deteriorated partners with decreased sperm DNA integrity. The evolution of sexual signal may be constrained by oxidative DNA damage in the soma and germline.
Collapse
Affiliation(s)
- Sin-Yeon Kim
- Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, Vigo, Spain
| | - Alberto Velando
- Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, Vigo, Spain
| |
Collapse
|
10
|
Babin A, Moreau J, Moret Y. Storage of Carotenoids in Crustaceans as an Adaptation to Modulate Immunopathology and Optimize Immunological and Life-History Strategies. Bioessays 2019; 41:e1800254. [PMID: 31566782 DOI: 10.1002/bies.201800254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 08/11/2019] [Indexed: 12/14/2022]
Abstract
Why do some invertebrates store so much carotenoids in their tissues? Storage of carotenoids may not simply be passive and dependent on their environmental availability, as storage variation exists at various taxonomic scales, including among individuals within species. While the strong antioxidant and sometimes immune-stimulating properties of carotenoids may be beneficial enough to cause the evolution of features improving their assimilation and storage, they may also have fitness downsides explaining why massive carotenoid storage is not universal. Here, the functional and ecological implications of carotenoid storage for the evolution of invertebrate innate immune defenses are examined, especially in crustaceans, which massively store carotenoids for unclear reasons. Three testable hypotheses about the role of carotenoid storage in immunological (resistance and tolerance) and life-history strategies (with a focus on aging) are proposed, which may ultimately explain the storage of large amounts of these pigments in a context of host-pathogen interactions.
Collapse
Affiliation(s)
- Aurélie Babin
- Équipe Écologie Évolutive, UMR CNRS 6282 Biogéosciences, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, F-21000, Dijon, France
| | - Jérôme Moreau
- Équipe Écologie Évolutive, UMR CNRS 6282 Biogéosciences, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, F-21000, Dijon, France
| | - Yannick Moret
- Équipe Écologie Évolutive, UMR CNRS 6282 Biogéosciences, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, F-21000, Dijon, France
| |
Collapse
|
11
|
Yap KN, Serota MW, Williams TD. The Physiology of Exercise in Free-Living Vertebrates: What Can We Learn from Current Model Systems? Integr Comp Biol 2018; 57:195-206. [PMID: 28662569 DOI: 10.1093/icb/icx016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
SYNOPSIS Many behaviors crucial for survival and reproductive success in free-living animals, including migration, foraging, and escaping from predators, involve elevated levels of physical activity. However, although there has been considerable interest in the physiological and biomechanical mechanisms that underpin individual variation in exercise performance, to date, much work on the physiology of exercise has been conducted in laboratory settings that are often quite removed from the animal's ecology. Here we review current, laboratory-based model systems for exercise (wind or swim tunnels for migration studies in birds and fishes, manipulation of exercise associated with non-migratory activity in birds, locomotion in lizards, and wheel running in rodents) to identify common physiological markers of individual variation in exercise capacity and/or costs of increased activity. Secondly, we consider how physiological responses to exercise might be influenced by (1) the nature of the activity (i.e., voluntary or involuntary, intensity, and duration), and (2) resource acquisition and food availability, in the context of routine activities in free-living animals. Finally, we consider evidence that the physiological effects of experimentally-elevated activity directly affect components of fitness such as reproduction and survival. We suggest that developing more ecologically realistic laboratory systems, incorporating resource-acquisition, functional studies across multiple physiological systems, and a life-history framework, with reproduction and survival end-points, will help reveal the mechanisms underlying the consequences of exercise, and will complement studies in free-living animals taking advantage of new developments in wildlife-tracking.
Collapse
Affiliation(s)
- Kang Nian Yap
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British V5A 1S6, Canada, Columbia
| | - Mitchell W Serota
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British V5A 1S6, Canada, Columbia
| | - Tony D Williams
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British V5A 1S6, Canada, Columbia
| |
Collapse
|
12
|
Cantarero A, Alonso-Alvarez C. Mitochondria-targeted molecules determine the redness of the zebra finch bill. Biol Lett 2018; 13:rsbl.2017.0455. [PMID: 29070589 DOI: 10.1098/rsbl.2017.0455] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/04/2017] [Indexed: 11/12/2022] Open
Abstract
The evolution and production mechanisms of red carotenoid-based ornaments in animals are poorly understood. Recently, it has been suggested that enzymes transforming yellow carotenoids to red pigments (ketolases) in animal cells may be positioned in the inner mitochondrial membrane (IMM) intimately linked to the electron transport chain. These enzymes may mostly synthesize coenzyme Q10 (coQ10), a key redox-cycler antioxidant molecularly similar to yellow carotenoids. It has been hypothesized that this shared pathway favours the evolution of red traits as sexually selected individual quality indices by revealing a well-adjusted oxidative metabolism. We administered mitochondria-targeted molecules to male zebra finches (Taeniopygia guttata) measuring their bill redness, a trait produced by transforming yellow carotenoids. One molecule included coQ10 (mitoquinone mesylate, MitoQ) and the other one (decyl-triphenylphosphonium; dTPP) has the same structure without the coQ10 aromatic ring. At the highest dose, the bill colour of MitoQ and dTPP birds strongly differed: MitoQ birds' bills were redder and dTPP birds showed paler bills even compared to birds injected with saline only. These results suggest that ketolases are indeed placed at the IMM and that coQ10 antioxidant properties may improve their efficiency. The implications for evolutionary theories of sexual signalling are discussed.
Collapse
Affiliation(s)
- Alejandro Cantarero
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales - CSIC, C/ José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Carlos Alonso-Alvarez
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales - CSIC, C/ José Gutiérrez Abascal 2, 28006 Madrid, Spain
| |
Collapse
|
13
|
Dhinaut J, Balourdet A, Teixeira M, Chogne M, Moret Y. A dietary carotenoid reduces immunopathology and enhances longevity through an immune depressive effect in an insect model. Sci Rep 2017; 7:12429. [PMID: 28963510 PMCID: PMC5622072 DOI: 10.1038/s41598-017-12769-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 09/15/2017] [Indexed: 11/09/2022] Open
Abstract
Immunopathology corresponds to self-damage of the inflammatory response, resulting from oxidizing molecules produced when the immune system is activated. Immunopathology often contributes to age-related diseases and is believed to accelerate ageing. Prevention of immunopathology relies on endogenous antioxidant enzymes and the consumption of dietary antioxidants, including carotenoids such as astaxanthin. Astaxanthin currently raises considerable interest as a powerful antioxidant and for its potential in alleviating age-related diseases. Current in vitro and short-term in vivo studies provide promising results about immune-stimulating and antioxidant properties of astaxanthin. However, to what extent dietary supplementation with astaxanthin can prevent long-term adverse effects of immunopathology on longevity is unknown so far. Here, using the mealworm beetle, Tenebrio molitor, as biological model we tested the effect of lifetime dietary supplementation with astaxanthin on longevity when exposed to early life inflammation. While supplementation with astaxanthin was found to lessen immunopathology cost on larval survival and insect longevity, it was also found to reduce immunity, growth rate and the survival of non immune-challenged larvae. This study therefore reveals that astaxanthin prevents immunopathology through an immune depressive effect and can have adverse consequences on growth.
Collapse
Affiliation(s)
- Julien Dhinaut
- UMR CNRS 6282 BioGéoSciences, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, Dijon, France
| | - Aude Balourdet
- UMR CNRS 6282 BioGéoSciences, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, Dijon, France
| | - Maria Teixeira
- UMR CNRS 6282 BioGéoSciences, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, Dijon, France
| | - Manon Chogne
- UMR CNRS 6282 BioGéoSciences, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, Dijon, France
| | - Yannick Moret
- UMR CNRS 6282 BioGéoSciences, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, Dijon, France.
| |
Collapse
|
14
|
Demeyrier V, Charmantier A, Lambrechts MM, Grégoire A. Disentangling drivers of reproductive performance in urban great tits: a food supplementation experiment. ACTA ACUST UNITED AC 2017; 220:4195-4203. [PMID: 28939562 DOI: 10.1242/jeb.161067] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 09/15/2017] [Indexed: 12/20/2022]
Abstract
Worldwide urban expansion induces degradation of the natural environment, resulting in new constraints in terms of breeding sites, anthropogenic disturbances as well as food resources. The alteration of resource abundance and type may induce non-adaptive investments in reproduction from urban dwellers. Food availability and quality have been identified as potential drivers of the decline in passerine body mass and fledging success in urbanized landscapes, particularly if birds misinterpret cues of food abundance used to adjust their reproductive investment. In a previous study, we demonstrated in urban great tits, Parus major, that highly preferred larger cavities have larger clutches with lower breeding success, leading to a maladaptive breeding investment. Previous studies also showed that urban great tits are smaller or thinner than rural ones, both at nestling and adult stages. Here, we present the results of a food-supplementation experiment to examine whether food resources mediate this maladaptive breeding investment and constrain the reproductive performance of this urban bird population. We predicted higher performance in food-supplemented broods, especially in larger cavities, and stronger effects of the supplementation in more artificialized territories. Surprisingly, we found that food-supplemented nestlings and their parents had lower body mass and condition, especially in areas with more pedestrians. Supplementation was also associated with lower nestling survival until fledging in places that presented lower levels of naturalness, independently of cavity size. This work highlights a lack of knowledge on avian feeding behaviour in cities, a key element for understanding how breeding performance is affected by human presence and habitat naturalness.
Collapse
Affiliation(s)
- Virginie Demeyrier
- Centre d'Ecologie Fonctionnelle et Evolutive, CEFE UMR 5175, Campus CNRS, Université de Montpellier, 1919 route de Mende, 34293 Montpellier Cedex 5, France
| | - Anne Charmantier
- Centre d'Ecologie Fonctionnelle et Evolutive, CEFE UMR 5175, Campus CNRS, Université de Montpellier, 1919 route de Mende, 34293 Montpellier Cedex 5, France
| | - Marcel M Lambrechts
- Centre d'Ecologie Fonctionnelle et Evolutive, CEFE UMR 5175, Campus CNRS, Université de Montpellier, 1919 route de Mende, 34293 Montpellier Cedex 5, France
| | - Arnaud Grégoire
- Centre d'Ecologie Fonctionnelle et Evolutive, CEFE UMR 5175, Campus CNRS, Université de Montpellier, 1919 route de Mende, 34293 Montpellier Cedex 5, France
| |
Collapse
|
15
|
Yap KN, Kim OR, Harris KC, Williams TD. Physiological effects of increased foraging effort in a small passerine. J Exp Biol 2017; 220:4282-4291. [DOI: 10.1242/jeb.160812] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 09/21/2017] [Indexed: 01/04/2023]
Abstract
Foraging to obtain food, either for self-maintenance or at presumably elevated rates to provision offspring, is thought to be an energetically demanding activity but one that is essential for fitness (higher reproductive success and survival). Nevertheless, the physiological mechanisms that allow some individuals to support higher foraging performance, and the mechanisms underlying costs of high workload, remain poorly understood. We experimentally manipulated foraging behaviour in zebra finches (Taeniopygia guttata) using the technique described by Koetsier and Verhulst (2011). Birds in the “high foraging effort” (HF) group had to obtain food either while flying/hovering or by making repeated hops or jumps from the ground up to the feeder, behaviour typical of the extremely energetically-expensive foraging mode observed in many free-living small passerines. HF birds made significantly more trips to the feeder per 10min whereas control birds spent more time (perched) at the feeder. Despite this marked change in foraging behaviour we documented few short- or long-term effects of “training” (3 days and 90 days of “training” respectively) and some of these effects were sex-specific. There were no effects of treatment on BMR, hematocrit, hemoglobin, or plasma glycerol, triglyceride, glucose levels, and masses of kidney, crop, large intestine, small intestine, gizzard and liver. HF females had higher masses of flight muscle, leg muscle, heart and lung compared to controls. In contrast, HF males had lower heart mass than controls and there were no differences for other organs. When both sexes were pooled, there were no effects of treatment on body composition. Finally, birds in the HF treatment had higher levels of reactive oxygen metabolites (dROMs) and, consequently, although treatment did not affect total antioxidant capacity (OXY), birds in the HF treatment had higher oxidative stress.
Collapse
Affiliation(s)
- Kang Nian Yap
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Oh Run Kim
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Karilyn C. Harris
- Department of Psychology, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Tony D. Williams
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
16
|
Giraudeau M, Ziegler AK, Pick JL, Ducatez S, Canale CI, Tschirren B. Interactive effects of yolk testosterone and carotenoid on prenatal growth and offspring physiology in a precocial bird. Behav Ecol 2016. [DOI: 10.1093/beheco/arw127] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
17
|
Simons MJP, Briga M, Verhulst S. Stabilizing survival selection on presenescent expression of a sexual ornament followed by a terminal decline. J Evol Biol 2016; 29:1368-78. [PMID: 27061923 PMCID: PMC4957616 DOI: 10.1111/jeb.12877] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/02/2016] [Accepted: 04/05/2016] [Indexed: 11/27/2022]
Abstract
Senescence is a decrease in functional capacity, increasing mortality rate with age. Sexual signals indicate functional capacity, because costs of ornamentation ensure signal honesty, and are therefore expected to senesce, tracking physiological deterioration and mortality. For sexual traits, mixed associations with age and positive associations with life expectancy have been reported. However, whether these associations are caused by selective disappearance and/or within-individual senescence of sexual signals, respectively, is not known. We previously reported that zebra finches with redder bills had greater life expectancy, based on a single bill colour measurement per individual. We here extend this analysis using longitudinal data and show that this finding is attributable to terminal declines in bill redness in the year before death, with no detectable change in presenescent redness. Additionally, there was a quadratic relationship between presenescent bill colouration and survival: individuals with intermediate bill redness have maximum survival prospects. This may reflect that redder individuals overinvest in colouration and/or associated physiological changes, while below-average bill redness probably reflects poorer phenotypic quality. Together, this pattern suggests that bill colouration is defended against physiological deterioration, because of mate attraction benefits, or that physiological deterioration is not a gradual process, but accelerates sharply prior to death. We discuss these possibilities in the context of the reliability theory of ageing and sexual selection.
Collapse
Affiliation(s)
- M J P Simons
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - M Briga
- Behavioural Biology, Centre for Life Sciences, University of Groningen, Groningen, The Netherlands
| | - S Verhulst
- Behavioural Biology, Centre for Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
18
|
Cothran RD, Gervasi SS, Murray C, French BJ, Bradley PW, Urbina J, Blaustein AR, Relyea RA. Carotenoids and amphibians: effects on life history and susceptibility to the infectious pathogen, Batrachochytrium dendrobatidis. CONSERVATION PHYSIOLOGY 2015; 3:cov005. [PMID: 27293690 PMCID: PMC4778475 DOI: 10.1093/conphys/cov005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 01/02/2015] [Accepted: 01/26/2015] [Indexed: 05/23/2023]
Abstract
Carotenoids are considered beneficial nutrients because they provide increased immune capacity. Although carotenoid research has been conducted in many vertebrates, little research has been done in amphibians, a group that is experiencing global population declines from numerous causes, including disease. We raised two amphibian species through metamorphosis on three carotenoid diets to quantify the effects on life-history traits and post-metamorphic susceptibility to a fungal pathogen (Batrachochytrium dendrobatidis; Bd). Increased carotenoids had no effect on survival to metamorphosis in gray treefrogs (Hyla versicolor) but caused lower survival to metamorphosis in wood frogs [Lithobates sylvaticus (Rana sylvatica)]. Increased carotenoids caused both species to experience slower development and growth. When exposed to Bd after metamorphosis, wood frogs experienced high mortality, and the carotenoid diets had no mitigating effects. Gray treefrogs were less susceptible to Bd, which prevented an assessment of whether carotenoids could mitigate the effects of Bd. Moreover, carotenoids had no effect on pathogen load. As one of only a few studies examining the effects of carotenoids on amphibians and the first to examine potential interactions with Bd, our results suggest that carotenoids do not always serve amphibians in the many positive ways that have become the paradigm in other vertebrates.
Collapse
Affiliation(s)
- Rickey D Cothran
- Department of Biological Sciences, Southwestern Oklahoma State University, Weatherford, OK 73096, USA
| | - Stephanie S Gervasi
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| | - Cindy Murray
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Beverly J French
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Paul W Bradley
- Environmental Sciences Graduate Program, Oregon State University, Corvallis, OR 97331, USA
| | - Jenny Urbina
- Environmental Sciences Graduate Program, Oregon State University, Corvallis, OR 97331, USA
| | - Andrew R Blaustein
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| | - Rick A Relyea
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
19
|
Roulin A. Condition-dependence, pleiotropy and the handicap principle of sexual selection in melanin-based colouration. Biol Rev Camb Philos Soc 2015; 91:328-48. [PMID: 25631160 DOI: 10.1111/brv.12171] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 11/30/2014] [Accepted: 12/11/2014] [Indexed: 02/03/2023]
Abstract
The signalling function of melanin-based colouration is debated. Sexual selection theory states that ornaments should be costly to produce, maintain, wear or display to signal quality honestly to potential mates or competitors. An increasing number of studies supports the hypothesis that the degree of melanism covaries with aspects of body condition (e.g. body mass or immunity), which has contributed to change the initial perception that melanin-based colour ornaments entail no costs. Indeed, the expression of many (but not all) melanin-based colour traits is weakly sensitive to the environment but strongly heritable suggesting that these colour traits are relatively cheap to produce and maintain, thus raising the question of how such colour traits could signal quality honestly. Here I review the production, maintenance and wearing/displaying costs that can generate a correlation between melanin-based colouration and body condition, and consider other evolutionary mechanisms that can also lead to covariation between colour and body condition. Because genes controlling melanic traits can affect numerous phenotypic traits, pleiotropy could also explain a linkage between body condition and colouration. Pleiotropy may result in differently coloured individuals signalling different aspects of quality that are maintained by frequency-dependent selection or local adaptation. Colouration may therefore not signal absolute quality to potential mates or competitors (e.g. dark males may not achieve a higher fitness than pale males); otherwise genetic variation would be rapidly depleted by directional selection. As a consequence, selection on heritable melanin-based colouration may not always be directional, but mate choice may be conditional to environmental conditions (i.e. context-dependent sexual selection). Despite the interest of evolutionary biologists in the adaptive value of melanin-based colouration, its actual role in sexual selection is still poorly understood.
Collapse
Affiliation(s)
- Alexandre Roulin
- Department of Ecology and Evolution, University of Lausanne, Building Biophore, 1015 Lausanne, Switzerland
| |
Collapse
|
20
|
Simons MJP, Groothuis TGG, Verhulst S. An appraisal of how the vitamin A-redox hypothesis can maintain honesty of carotenoid-dependent signals. Ecol Evol 2014; 5:224-8. [PMID: 25628879 PMCID: PMC4298449 DOI: 10.1002/ece3.1364] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 11/17/2014] [Indexed: 11/09/2022] Open
Abstract
The vitamin A-redox hypothesis provides an explanation for honest signaling of phenotypic quality by carotenoid-dependent traits. A key aspect of the vitamin A-redox hypothesis, applicable to both yellow and red coloration, is the hypothesized negative feedback of tightly regulated Vitamin A plasma levels on the enzyme responsible for sequestering both Vitamin A and carotenoids from the gut. We performed a meta-analysis and find that vitamin A levels are positively related to carotenoid plasma levels (r = 0.50, P = 0.0002). On the basis of this finding and further theoretical considerations, we propose that the vitamin A-redox hypothesis is unlikely to explain carotenoid-dependent honest signaling.
Collapse
Affiliation(s)
- Mirre J P Simons
- Department of Animal and Plant Sciences, University of SheffieldSheffield, S102TN, UK
- Behavioural Biology, University of GroningenPO-Box 11103, 9700CC, Groningen, the Netherlands
- Correspondence Mirre J. P. Simons, Department of Animal and Plant Sciences, University of Sheffield, Sheffield S102TN, UK., Tel: +44 114 2220123; Fax: +44 114 2220002;, E-mail:
| | - Ton G G Groothuis
- Behavioural Biology, University of GroningenPO-Box 11103, 9700CC, Groningen, the Netherlands
| | - Simon Verhulst
- Behavioural Biology, University of GroningenPO-Box 11103, 9700CC, Groningen, the Netherlands
| |
Collapse
|
21
|
Simons MJP, Maia R, Leenknegt B, Verhulst S. Carotenoid-dependent signals and the evolution of plasma carotenoid levels in birds. Am Nat 2014; 184:741-51. [PMID: 25438174 DOI: 10.1086/678402] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Sexual selection has resulted in a wide array of ornaments used in mate choice, and such indicator traits signal quality honestly when they bear costs, precluding cheating. Carotenoid-dependent coloration has attracted considerable attention in this context, because investing carotenoids in coloration has to be traded off against its physiological functions; carotenoids are antioxidants and increase immunocompetence. This trade-off is hypothesized to underlie the honesty of carotenoid-dependent coloration, signaling the "handicap" of allocating carotenoids away from somatic maintenance toward sexual display. Utilizing recent advances in modeling adaptive evolution, we used a comparative approach to investigate the evolution of plasma carotenoid levels using a species-level phylogeny of 178 bird species. We find that the evolutionary optimum for carotenoid levels is higher in lineages that evolved carotenoid-dependent coloration, with strong attraction toward this optimum. Hence, carotenoids do not appear to be limiting, given that higher carotenoid levels readily evolve in response to the evolution of carotenoid-dependent coloration. These findings challenge the assumption that carotenoids are a scarce resource and thus also challenge the hypothesis that physiological resource value of carotenoids underlies honesty of carotenoid-dependent traits. Therefore, the comparative evidence suggests that other factors, such as the acquisition and incorporation of carotenoids, are involved in maintaining signal honesty.
Collapse
Affiliation(s)
- Mirre J P Simons
- Behavioural Biology, Centre for Life Sciences, University of Groningen, PO Box 11103, 9700CC, Groningen, The Netherlands
| | | | | | | |
Collapse
|