1
|
Is the primary helper always a key group for the dynamics of cooperative birds? A mathematical study on cooperative breeding birds. Ecol Modell 2021. [DOI: 10.1016/j.ecolmodel.2021.109728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
2
|
Kennedy P, Radford AN. Kin Blackmail as a Coercive Route to Altruism. Am Nat 2021; 197:266-273. [PMID: 33523789 DOI: 10.1086/712349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractThe evolution of altruism (helping a recipient at personal cost) often involves conflicts of interest. Recipients frequently prefer greater altruism than actors are prepared to provide. Coercion by recipients normally involves limiting an actor's options. Here, we consider the possibility of a coercive recipient limiting its own options. Forty years ago, Amotz Zahavi suggested that nesting birds may be "blackmailed" into increased parental care if offspring threaten to harm themselves (and therefore jeopardize the direct fitness of their parents). In a simple kin selection model, we expand blackmail to indirect fitness and highlight that blackmail can occur between any kin to drive reproductive division of labor. In principle, a recipient may place its own fitness at risk (brinkmanship), imposing sanctions on a relative's indirect fitness if the relative fails to cooperate. To use its own survival or reproduction as leverage in a sequential game, a recipient must increase the extent to which its existing fitness depends on the actor's behavior and therefore credibly commit to a cost if the actor does not comply. As it requires opportunities for commitment, kin blackmail can arise only under stringent conditions, but existing kin blackmailers may pass unnoticed because of their strategic success.
Collapse
|
3
|
Kingwell C, Böröczky K, Steitz I, Ayasse M, Wcislo W. Cuticular and Dufour's Gland Chemistry Reflect Reproductive and Social State in the Facultatively Eusocial Sweat Bee Megalopta genalis (Hymenoptera: Halictidae). J Chem Ecol 2021; 47:420-432. [PMID: 33682070 DOI: 10.1007/s10886-021-01262-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/23/2021] [Accepted: 03/02/2021] [Indexed: 01/18/2023]
Abstract
Queen pheromones evolved independently in multiple eusocial insect lineages, in which they mediate reproductive conflict by inhibiting worker ovarian development. Although fundamentally important for reproductive division of labor - the hallmark of eusociality - their evolutionary origins are enigmatic. Here, we analyze cuticular and Dufour's gland chemistries across alternative social and reproductive phenotypes in Megalopta genalis bees (tribe Augochlorini, family Halictidae) that facultatively express simple eusociality. Reproductive bees have distinct overall glandular and cuticular chemical phenotypes compared with non-reproductive workers. On the cuticle, a likely site of signal transmission, reproductives are enriched for certain alkenes, most linear alkanes, and are heavily enriched for all methyl-branched alkanes. Chemicals belonging to these compound classes are known to function as fertility signals in other eusocial insect taxa. Some macrocyclic lactones, compounds that serve as queen pheromones in the other eusocial halictid tribe (Halictini), are also enriched among reproductives relative to workers. The intra-population facultative eusociality of M. genalis permits direct comparisons between individuals expressing alternative reproductive phenotypes - females that reproduce alone (solitary reproductives) and social queens - to highlight traits in the latter that may be important mediators of eusociality. Compared with solitary reproductives, the cuticular chemistries of queens are more strongly differentiated from those of workers, and furthermore are especially enriched for methyl-branched alkanes. Determining the pheromonal function(s) and information content of the candidate signaling compounds we identify will help illuminate the early evolutionary history of queen pheromones, chemical signals central to the organization of insect eusocial behavior.
Collapse
Affiliation(s)
- Callum Kingwell
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA.
- Smithsonian Tropical Research Institute, Panama City, Panama.
| | - Katalin Böröczky
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Iris Steitz
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - Manfred Ayasse
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - William Wcislo
- Smithsonian Tropical Research Institute, Panama City, Panama
| |
Collapse
|
4
|
Pull CD, McMahon DP. Superorganism Immunity: A Major Transition in Immune System Evolution. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00186] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
5
|
Quan J, Li X, Wang X. The evolution of cooperation in spatial public goods game with conditional peer exclusion. CHAOS (WOODBURY, N.Y.) 2019; 29:103137. [PMID: 31675844 DOI: 10.1063/1.5119395] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/08/2019] [Indexed: 06/10/2023]
Abstract
Social exclusion can prevent free riders from participating in social activities and deprive them of sharing cooperative benefits, which is an effective mechanism for the evolution of cooperation. However, traditional peer-exclusion strategies are unconditional, and as long as there are defectors in the group, they will pay a cost to exclude the defectors. In reality, one of the reasons for the complexity of these strategies is that individuals may react differently depending on the environment in which they are located. Based on this consideration, we introduce a kind of conditional peer-exclusion strategy in the spatial public goods game model. Specifically, the behavior of conditional exclusion depends on the number of defectors in the group and can be adjusted by a tolerance parameter. Only if the number of defectors in the group exceeds the tolerance threshold, conditional exclusion can be triggered to exclude defectors. We explore the effects of parameters such as tolerance, exclusion cost, and probability of exclusion success on the evolution of cooperation. Simulation results confirmed that conditional exclusion can greatly reduce the threshold values of the synergy factor above which cooperation can emerge. Especially, when the tolerance is low, very small synergy factors can promote the population to achieve a high level of cooperation. Moreover, even if the probability of exclusion success is low, or the unit exclusion cost is relatively high, conditional exclusion is effective in promoting cooperation. These results allow us to better understand the role of exclusion strategies in the emergence of cooperation.
Collapse
Affiliation(s)
- Ji Quan
- School of Management, Wuhan University of Technology, Wuhan 430070, China
| | - Xia Li
- School of Management, Wuhan University of Technology, Wuhan 430070, China
| | - Xianjia Wang
- School of Economics and Management, Wuhan University, Wuhan 430072, China
| |
Collapse
|
6
|
Miller JS, Reeve HK. Feedback loops in the major evolutionary transition to eusociality: the status and potential of theoretical approaches. CURRENT OPINION IN INSECT SCIENCE 2019; 34:85-90. [PMID: 31247424 DOI: 10.1016/j.cois.2019.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/19/2019] [Accepted: 04/25/2019] [Indexed: 06/09/2023]
Abstract
In this review, we adopt a step-wise framework for the evolution a major evolutionary transition in light of eusocial insects. By focusing on the sequence of (1) group formation, (2) alignment of genetic interests, and finally (3) group integration to higher-level functioning, we highlight that these steps occasionally interact with each other through feedback. We summarize models that capture such feedback and identify cases where there is room for the development of between-step relationships. We suggest that life history traits may serve as a conduit for analyzing feedback between suites of correlated traits. Our review reveals that there are many relationships both within and between the above steps that await formal modeling.
Collapse
Affiliation(s)
- Julie S Miller
- Ecology & Evolutionary Biology, University of California, Los Angeles, 612 Charles E. Young Dr., Los Angeles, CA 90095, USA.
| | - Hudson Kern Reeve
- Neurobiology & Behavior, Cornell University, 215 Tower Rd., Ithaca, NY 14850, USA
| |
Collapse
|
7
|
Kuijper B, Johnstone RA. The evolution of early-life effects on social behaviour-why should social adversity carry over to the future? Philos Trans R Soc Lond B Biol Sci 2019; 374:20180111. [PMID: 30966877 PMCID: PMC6460086 DOI: 10.1098/rstb.2018.0111] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2019] [Indexed: 12/18/2022] Open
Abstract
Numerous studies have shown that social adversity in early life can have long-lasting consequences for social behaviour in adulthood, consequences that may in turn be propagated to future generations. Given these intergenerational effects, it is puzzling why natural selection might favour such sensitivity to an individual's early social environment. To address this question, we model the evolution of social sensitivity in the development of helping behaviours, showing that natural selection indeed favours individuals whose tendency to help others is dependent on early-life social experience. In organisms with non-overlapping generations, we find that natural selection can favour positive social feedbacks, in which individuals who received more help in early life are also more likely to help others in adulthood, while individuals who received no early-life help develop low tendencies to help others later in life. This positive social sensitivity is favoured because of an intergenerational relatedness feedback: patches with many helpers tend to be more productive, leading to higher relatedness within the local group, which in turn favours higher levels of help in the next generation. In organisms with overlapping generations, this positive feedback is less likely to occur, and those who received more help may instead be less likely to help others (negative social feedback). We conclude that early-life social influences can lead to strong between-individual differences in helping behaviour, which can take different forms dependent on the life history in question. This article is part of the theme issue 'Developing differences: early-life effects and evolutionary medicine'.
Collapse
Affiliation(s)
- Bram Kuijper
- Environment and Sustainability Institute, University of Exeter Cornwall Campus, Penryn TR10 9FE, UK
| | - Rufus A. Johnstone
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| |
Collapse
|
8
|
Comparative transcriptomics of social insect queen pheromones. Nat Commun 2019; 10:1593. [PMID: 30962449 PMCID: PMC6453924 DOI: 10.1038/s41467-019-09567-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 03/19/2019] [Indexed: 12/18/2022] Open
Abstract
Queen pheromones are chemical signals that mediate reproductive division of labor in eusocial animals. Remarkably, queen pheromones are composed of identical or chemically similar compounds in some ants, wasps and bees, even though these taxa diverged >150MYA and evolved queens and workers independently. Here, we measure the transcriptomic consequences of experimental exposure to queen pheromones in workers from two ant and two bee species (genera: Lasius, Apis, Bombus), and test whether they are similar across species. Queen pheromone exposure affected transcription and splicing at many loci. Many genes responded consistently in multiple species, and the set of pheromone-sensitive genes was enriched for functions relating to lipid biosynthesis and transport, olfaction, production of cuticle, oogenesis, and histone (de)acetylation. Pheromone-sensitive genes tend to be evolutionarily ancient, positively selected, peripheral in the gene coexpression network, hypomethylated, and caste-specific in their expression. Our results reveal how queen pheromones achieve their effects, and suggest that ants and bees use similar genetic modules to achieve reproductive division of labor.
Collapse
|
9
|
Evolution of delayed dispersal and subsequent emergence of helping, with implications for cooperative breeding. J Theor Biol 2018; 427:53-64. [PMID: 28596113 DOI: 10.1016/j.jtbi.2017.05.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 04/07/2017] [Accepted: 05/31/2017] [Indexed: 11/24/2022]
Abstract
Cooperative breeding occurs when individuals help raise the offspring of others. It is widely accepted that help displayed by cooperative breeders emerged only after individuals' tendency to delay dispersal had become established. We use this idea as a basis for two inclusive-fitness models: one for the evolution of delayed dispersal, and a second for the subsequent emergence of helpful behavior exhibited by non-breeding individuals. We focus on a territorial species in a saturated environment, and allow territories to be inherited by non-breeding individuals who have delayed dispersal. Our first model predicts that increased survivorship and increased fecundity both provide an incentive to non-breeding individuals to delay dispersal, and stay near their natal territory for some period of time. Predictions from the first model can be well understood by ignoring complications arising from competition among relatives. Our second model shows that effects on relatives play a primary role in the advantage of helping. In addition, the second model predicts that increased survivorship and fecundity promote the emergence of help. Together, our models lead us to conclude that the emergence of cooperative-breeding systems is made easier by life-history features associated with high survivorship and fecundity. We discuss the implications of our conclusions for life-history-based hypotheses of cooperative breeding and social evolution.
Collapse
|
10
|
Cornwallis CK. Cooperative breeding and the evolutionary coexistence of helper and nonhelper strategies. Proc Natl Acad Sci U S A 2018; 115:1684-1686. [PMID: 29440486 PMCID: PMC5828639 DOI: 10.1073/pnas.1722395115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
11
|
Junghanns A, Holm C, Schou MF, Sørensen AB, Uhl G, Bilde T. Extreme allomaternal care and unequal task participation by unmated females in a cooperatively breeding spider. Anim Behav 2017. [DOI: 10.1016/j.anbehav.2017.08.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
12
|
Dew RM, Tierney SM, Schwarz MP. Lack of ovarian skew in an allodapine bee and the evolution of casteless social behaviour. ETHOL ECOL EVOL 2017. [DOI: 10.1080/03949370.2017.1313784] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Rebecca M. Dew
- School of Biology, The Flinders University of South Australia, GPO Box 2100, Adelaide, SA, Australia
| | - Simon M. Tierney
- School of Biological Sciences, University of Adelaide, North Terrace, Adelaide, Australia
| | - Michael P. Schwarz
- School of Biology, The Flinders University of South Australia, GPO Box 2100, Adelaide, SA, Australia
| |
Collapse
|
13
|
Rodrigues AMM, Kokko H. Models of social evolution: can we do better to predict 'who helps whom to achieve what'? Philos Trans R Soc Lond B Biol Sci 2016; 371:20150088. [PMID: 26729928 DOI: 10.1098/rstb.2015.0088] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Models of social evolution and the evolution of helping have been classified in numerous ways. Two categorical differences have, however, escaped attention in the field. Models tend not to justify why they use a particular assumption structure about who helps whom: a large number of authors model peer-to-peer cooperation of essentially identical individuals, probably for reasons of mathematical convenience; others are inspired by particular cooperatively breeding species, and tend to assume unidirectional help where subordinates help a dominant breed more efficiently. Choices regarding what the help achieves (i.e. which life-history trait of the helped individual is improved) are similarly made without much comment: fecundity benefits are much more commonly modelled than survival enhancements, despite evidence that these may interact when the helped individual can perform life-history reallocations (load-lightening and related phenomena). We review our current theoretical understanding of effects revealed when explicitly asking 'who helps whom to achieve what', from models of mutual aid in partnerships to the very few models that explicitly contrast the strength of selection to help enhance another individual's fecundity or survival. As a result of idiosyncratic modelling choices in contemporary literature, including the varying degree to which demographic consequences are made explicit, there is surprisingly little agreement on what types of help are predicted to evolve most easily. We outline promising future directions to fill this gap.
Collapse
Affiliation(s)
- António M M Rodrigues
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK Wolfson College, Barton Road, Cambridge CB3 9BB, UK
| | - Hanna Kokko
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
14
|
Holman L, Hanley B, Millar JG. Highly specific responses to queen pheromone in three Lasius ant species. Behav Ecol Sociobiol 2016. [DOI: 10.1007/s00265-016-2058-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Abstract
Why do most animals live solitarily, while complex social life is restricted to a few cooperatively breeding vertebrates and social insects? Here, we synthesize concepts and theories in social evolution and discuss its underlying ecological causes. Social evolution can be partitioned into (a) formation of stable social groups, (b) evolution of helping, and (c) transition to a new evolutionary level. Stable social groups rarely evolve due to competition over food and/or reproduction. Food competition is overcome in social insects with central-place foraging or bonanza-type food resources, whereas competition over reproduction commonly occurs because staying individuals are rarely sterile. Hence, the evolution of helping is shaped by direct and indirect fitness options and helping is only altruism if it reduces the helper's direct fitness. The helper's capability to gain direct fitness also creates within-colony conflict. This prevents transition to a new evolutionary level.
Collapse
Affiliation(s)
- Judith Korb
- Department of Evolutionary Biology & Ecology, University of Freiburg, D-79104 Freiburg, Germany;
| | - Jürgen Heinze
- Institute of Zoology/Evolutionary Biology, University of Regensburg, D-93040 Regensburg, Germany;
| |
Collapse
|
16
|
González-Forero M. Stable eusociality via maternal manipulation when resistance is costless. J Evol Biol 2015; 28:2208-23. [PMID: 26341103 PMCID: PMC4685003 DOI: 10.1111/jeb.12744] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 07/26/2015] [Accepted: 08/25/2015] [Indexed: 11/27/2022]
Abstract
In many eusocial species, queens use pheromones to influence offspring to express worker phenotypes. Although evidence suggests that queen pheromones are honest signals of the queen's reproductive health, here I show that queen's honest signalling can result from ancestral maternal manipulation. I develop a mathematical model to study the coevolution of maternal manipulation, offspring resistance to manipulation and maternal resource allocation. I assume that (i) maternal manipulation causes offspring to be workers against offspring's interests; (ii) offspring can resist at no direct cost, as is thought to be the case with pheromonal manipulation; and (iii) the mother chooses how much resource to allocate to fertility and maternal care. In the coevolution of these traits, I find that maternal care decreases, thereby increasing the benefit that offspring obtain from help, which in the long run eliminates selection for resistance. Consequently, ancestral maternal manipulation yields stable eusociality despite costless resistance. Additionally, ancestral manipulation in the long run becomes honest signalling that induces offspring to help. These results indicate that both eusociality and its commonly associated queen honest signalling can be likely to originate from ancestral manipulation.
Collapse
Affiliation(s)
- M González-Forero
- Department of Ecology and Evolutionary Biology, National Institute for Mathematical and Biological Synthesis (NIMBioS), University of Tennessee, Knoxville, TN, USA
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
17
|
Caliari Oliveira R, Oi CA, do Nascimento MMC, Vollet-Neto A, Alves DA, Campos MC, Nascimento F, Wenseleers T. The origin and evolution of queen and fertility signals in Corbiculate bees. BMC Evol Biol 2015; 15:254. [PMID: 26573687 PMCID: PMC4647589 DOI: 10.1186/s12862-015-0509-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/12/2015] [Indexed: 12/13/2022] Open
Abstract
Background In social Hymenoptera (ants, bees and wasps), various chemical compounds present on the cuticle have been shown to act as fertility signals. In addition, specific queen-characteristic hydrocarbons have been implicated as sterility-inducing queen signals in ants, wasps and bumblebees. In Corbiculate bees, however, the chemical nature of queen-characteristic and fertility-linked compounds appears to be more diverse than in ants and wasps. Moreover, it remains unknown how queen signals evolved across this group and how they might have been co-opted from fertility signals in solitary ancestors. Results Here, we perform a phylogenetic analysis of fertility-linked compounds across 16 species of solitary and eusocial bee species, comprising both literature data as well as new primary data from a key solitary outgroup species, the oil-collecting bee Centris analis, and the highly eusocial stingless bee Scaptotrigona depilis. Our results demonstrate the presence of fertility-linked compounds belonging to 12 different chemical classes. In addition, we find that some classes of compounds (linear and branched alkanes, alkenes, esters and fatty acids) were already present as fertility-linked signals in the solitary ancestors of Corbiculate bees, while others appear to be specific to certain species. Conclusion Overall, our results suggest that queen signals in Corbiculate bees are likely derived from ancestral fertility-linked compounds present in solitary bees that lacked reproductive castes. These original fertility-linked cues or signals could have been produced either as a by-product of ovarian activation or could have served other communicative purposes, such as in mate recognition or the regulation of egg-laying. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0509-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ricardo Caliari Oliveira
- Department of Biology, Laboratory of Socioecology & Social Evolution, KU Leuven, Leuven, Belgium.
| | - Cintia Akemi Oi
- Department of Biology, Laboratory of Socioecology & Social Evolution, KU Leuven, Leuven, Belgium.
| | | | - Ayrton Vollet-Neto
- Department of Biology, Laboratory of Behavioral Ecology, FFCLRP, University of São Paulo, Ribeirão Preto, Brazil.
| | - Denise Araujo Alves
- Department of Entomology and Acarology, ESALQ, University of São Paulo, Piracicaba, Brazil.
| | - Maria Claudia Campos
- Department of Biology, Laboratory of Behavioral Ecology, FFCLRP, University of São Paulo, Ribeirão Preto, Brazil.
| | - Fabio Nascimento
- Department of Biology, Laboratory of Behavioral Ecology, FFCLRP, University of São Paulo, Ribeirão Preto, Brazil.
| | - Tom Wenseleers
- Department of Biology, Laboratory of Socioecology & Social Evolution, KU Leuven, Leuven, Belgium.
| |
Collapse
|
18
|
English S, Browning LE, Raihani NJ. Developmental plasticity and social specialization in cooperative societies. Anim Behav 2015. [DOI: 10.1016/j.anbehav.2015.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|