1
|
Cooper NW, Dossman BC, Berrigan LE, Brown JM, Cormier DA, Bégin-Marchand C, Rodewald AD, Taylor PD, Tremblay JA, Marra PP. Atmospheric pressure predicts probability of departure for migratory songbirds. MOVEMENT ECOLOGY 2023; 11:23. [PMID: 37122025 PMCID: PMC10150475 DOI: 10.1186/s40462-022-00356-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/22/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Weather can have both delayed and immediate impacts on animal populations, and species have evolved behavioral adaptions to respond to weather conditions. Weather has long been hypothesized to affect the timing and intensity of avian migration, and radar studies have demonstrated strong correlations between weather and broad-scale migration patterns. How weather affects individual decisions about the initiation of migratory flights, particularly at the beginning of migration, remains uncertain. METHODS Here, we combine automated radio telemetry data from four species of songbirds collected at five breeding and wintering sites in North America with hourly weather data from a global weather model. We use these data to determine how wind profit, atmospheric pressure, precipitation, and cloud cover affect probability of departure from breeding and wintering sites. RESULTS We found that the probability of departure was related to changes in atmospheric pressure, almost completely regardless of species, season, or location. Individuals were more likely to depart on nights when atmospheric pressure had been rising over the past 24 h, which is predictive of fair weather over the next several days. By contrast, wind profit, precipitation, and cloud cover were each only informative predictors of departure probability in a single species. CONCLUSIONS Our results suggest that individual birds actively use weather information to inform decision-making regarding the initiation of departure from the breeding and wintering grounds. We propose that birds likely choose which date to depart on migration in a hierarchical fashion with weather not influencing decision-making until after the departure window has already been narrowed down by other ultimate and proximate factors.
Collapse
Affiliation(s)
- Nathan W Cooper
- Migratory Bird Center, Smithsonian's National Zoo and Conservation Biology Institute, MRC 5503, 3001 Connecticut Ave. NW, Washington, DC, 20013, USA.
| | - Bryant C Dossman
- Department of Biology and McCourt School of Public Policy, Georgetown University, 37th and O Streets NW, Washington, DC, 20057, USA
- Cornell Lab of Ornithology and Department of Natural Resources and the Environment, Cornell University, 159 Sapsucker Woods Rd, Ithaca, NY, 14850, USA
| | - Lucas E Berrigan
- Department of Biology, Acadia University, 33 Westwood Avenue, Wolfville, NS, B4P 2R6, Canada
- Motus Wildlife Tracking System, Birds Canada, Port Rowan, ON, N0E 1M0, Canada
| | - J Morgan Brown
- Department of Biology, Acadia University, 33 Westwood Avenue, Wolfville, NS, B4P 2R6, Canada
- Wildlife Conservation Society Canada, 169 Titanium Way, Whitehorse, YT, Y1A 0E9, Canada
| | - Dominic A Cormier
- Department of Biology, Acadia University, 33 Westwood Avenue, Wolfville, NS, B4P 2R6, Canada
| | - Camille Bégin-Marchand
- Wildlife Research Division, Environment and Climate Change Canada, 1550 Av. D'Estimauville, Québec, QC, G1J 0C3, Canada
| | - Amanda D Rodewald
- Cornell Lab of Ornithology and Department of Natural Resources and the Environment, Cornell University, 159 Sapsucker Woods Rd, Ithaca, NY, 14850, USA
| | - Philip D Taylor
- Department of Biology, Acadia University, 33 Westwood Avenue, Wolfville, NS, B4P 2R6, Canada
| | - Junior A Tremblay
- Wildlife Research Division, Environment and Climate Change Canada, 1550 Av. D'Estimauville, Québec, QC, G1J 0C3, Canada
| | - Peter P Marra
- Department of Biology and McCourt School of Public Policy, Georgetown University, 37th and O Streets NW, Washington, DC, 20057, USA
| |
Collapse
|
2
|
Neima SG, Linhart RC, Hamilton DJ, Gratto-Trevor CL, Paquet J. Length of stay and departure strategies of Semipalmated Sandpipers (Calidris pusilla) during post-breeding migration in the upper Bay of Fundy, Canada. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.897197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Bay of Fundy, Canada is a critical staging area for Semipalmated Sandpipers (Calidris pusilla) during post-breeding migration. Recent range-wide population declines and changes in diet and migratory timing in the Bay of Fundy prompted a re-examination of staging ecology, including length of stay (last estimated in 1981), which is used in calculating migratory population estimates. We used radio-telemetry and the Motus Wildlife Tracking System to estimate individual length of stay and departure conditions for 159 Semipalmated Sandpipers in 2013 and 2014. Using tracking data we compared two estimation methods, minimum length of stay and mark-recapture modelling. Using minimum length of stay, the mean length of stay was approximately 21 days, an increase from the previous estimate of 15 days. Mark-recapture models suggested a much longer staging period that is inconsistent with other data. Sandpipers captured early in the staging period stayed longer on average than those captured later. Departures from the staging area were correlated with north-westerly winds, moderate to high wind speeds and low but rising atmospheric pressures. We suggest that Semipalmated Sandpipers in the Bay of Fundy are not operating on a time-selected migration schedule and instead wait for favourable weather conditions to depart, which occur more often later in the migratory period. Population trends in the Bay of Fundy should be re-evaluated in light of the increased length of stay.
Collapse
|
3
|
Cohen EB, Horton KG, Marra PP, Clipp HL, Farnsworth A, Smolinsky JA, Sheldon D, Buler JJ. A place to land: spatiotemporal drivers of stopover habitat use by migrating birds. Ecol Lett 2020; 24:38-49. [PMID: 33026159 DOI: 10.1111/ele.13618] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/24/2020] [Accepted: 09/09/2020] [Indexed: 12/20/2022]
Abstract
Migrating birds require en route habitats to rest and refuel. Yet, habitat use has never been integrated with passage to understand the factors that determine where and when birds stopover during spring and autumn migration. Here, we introduce the stopover-to-passage ratio (SPR), the percentage of passage migrants that stop in an area, and use 8 years of data from 12 weather surveillance radars to estimate over 50% SPR during spring and autumn through the Gulf of Mexico and Atlantic coasts of the south-eastern US, the most prominent corridor for North America's migratory birds. During stopovers, birds concentrated close to the coast during spring and inland in forested landscapes during autumn, suggesting seasonal differences in habitat function and highlighting the vital role of stopover habitats in sustaining migratory communities. Beyond advancing understanding of migration ecology, SPR will facilitate conservation through identification of sites that are disproportionally selected for stopover by migrating birds.
Collapse
Affiliation(s)
- Emily B Cohen
- Migratory Bird Center, Smithsonian Conservation Biology Institute, National Zoological Park, 3001 Connecticut Ave NW, Washington, DC, 20008, USA
| | - Kyle G Horton
- Center of Avian Population Studies, Cornell Lab of Ornithology, 159 Sapsucker Woods Rd, Ithaca, NY, 14850, USA
| | - Peter P Marra
- Migratory Bird Center, Smithsonian Conservation Biology Institute, National Zoological Park, 3001 Connecticut Ave NW, Washington, DC, 20008, USA
| | - Hannah L Clipp
- Department of Entomology and Wildlife Ecology, University of Delaware, 531 South College Ave, Newark, DE, 19716, USA
| | - Andrew Farnsworth
- Center of Avian Population Studies, Cornell Lab of Ornithology, 159 Sapsucker Woods Rd, Ithaca, NY, 14850, USA
| | - Jaclyn A Smolinsky
- Department of Entomology and Wildlife Ecology, University of Delaware, 531 South College Ave, Newark, DE, 19716, USA
| | - Daniel Sheldon
- College of Information and Computer Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Jeffrey J Buler
- Department of Entomology and Wildlife Ecology, University of Delaware, 531 South College Ave, Newark, DE, 19716, USA
| |
Collapse
|
4
|
Anderson CM, Gilchrist HG, Ronconi RA, Shlepr KR, Clark DE, Fifield DA, Robertson GJ, Mallory ML. Both short and long distance migrants use energy-minimizing migration strategies in North American herring gulls. MOVEMENT ECOLOGY 2020; 8:26. [PMID: 32549986 PMCID: PMC7294659 DOI: 10.1186/s40462-020-00207-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 04/27/2020] [Indexed: 05/31/2023]
Abstract
BACKGROUND Recent studies have proposed that birds migrating short distances migrate at an overall slower pace, minimizing energy expenditure, while birds migrating long distances minimize time spent on migration to cope with seasonal changes in environmental conditions. METHODS We evaluated variability in the migration strategies of Herring Gulls (Larus argentatus), a generalist species with flexible foraging and flight behaviour. We tracked one population of long distance migrants and three populations of short distance migrants, and compared the directness of their migration routes, their overall migration speed, their travel speed, and their use of stopovers. RESULTS Our research revealed that Herring Gulls breeding in the eastern Arctic migrate long distances to spend the winter in the Gulf of Mexico, traveling more than four times farther than gulls from Atlantic Canada during autumn migration. While all populations used indirect routes, the long distance migrants were the least direct. We found that regardless of the distance the population traveled, Herring Gulls migrated at a slower overall migration speed than predicted by Optimal Migration Theory, but the long distance migrants had higher speeds on travel days. While long distance migrants used more stopover days overall, relative to the distance travelled all four populations used a similar number of stopover days. CONCLUSIONS When taken in context with other studies, we expect that the migration strategies of flexible generalist species like Herring Gulls may be more influenced by habitat and food resources than migration distance.
Collapse
Affiliation(s)
- Christine M. Anderson
- Department of Biology, Acadia University, 33 Westwood Ave, Wolfville, NS B4P 2R6 Canada
| | - H. Grant Gilchrist
- Wildlife Research Division, Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, ON K1S 5B6 Canada
| | - Robert A. Ronconi
- Canadian Wildlife Service, Environment and Climate Change Canada, 45 Alderney Dr, Dartmouth, NS B2Y 2N6 Canada
| | - Katherine R. Shlepr
- Atlantic Lab for Avian Research, Department of Biology, University of New Brunswick, P.O. Box 4400, 10 Bailey Drive, Fredericton, NB E3B 5A3 Canada
| | - Daniel E. Clark
- Massachusetts Department of Conservation and Recreation, Division of Water Supply Protection, 485 Ware Road, Belchertown, MA 01007 USA
| | - David A. Fifield
- Wildlife Research Division, Environment and Climate Change Canada, 6 Bruce Street, Mount Pearl, NL A1N 4T3 Canada
| | - Gregory J. Robertson
- Wildlife Research Division, Environment and Climate Change Canada, 6 Bruce Street, Mount Pearl, NL A1N 4T3 Canada
| | - Mark L. Mallory
- Department of Biology, Acadia University, 33 Westwood Ave, Wolfville, NS B4P 2R6 Canada
| |
Collapse
|
5
|
Compensation for wind drift in the nocturnally migrating Song Thrushes in relation to altitude and wind. Behav Processes 2020; 177:104154. [PMID: 32479841 DOI: 10.1016/j.beproc.2020.104154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 05/23/2020] [Accepted: 05/26/2020] [Indexed: 11/27/2022]
Abstract
Compensation for wind drift in relation to the side-wind velocity and altitude was investigated in Song Thrushes during autumn migration. The birds were recorded at night flying above the prominent leading line of a marine spit which coincided with the general direction of their migration. Among the large size passerine species, Song Thrushes were identified by a combination of five flight characteristics typical only of this species during particular periods of autumn. The thrushes showed different reactions to the crosswinds: complete and partial compensation for the displacement and drift. Under normal visibility, the completeness of compensation depended both on the velocity of the side-wind and altitude. The degree of compensation achieved was reduced with an increase of altitude, regardless of the wind. Under the same wind conditions, the angle of drift (the angle between the track direction and the leading line) increased with altitude, but the number of birds that compensated for drift decreased. On average, at heights below 300 m agl, the thrushes were capable of compensating completely for moderate winds; between 300 and 600 m agl compensation was partial; but above 600 m the birds drifted completely. Birds of the same species flying above the same terrain may demonstrate different reactions to the same crosswind depending on altitude. Meanwhile, flight tracks gradually deviated from the leading line with an increase in altitude, the headings of the birds got closer to the general migratory direction. It is more likely that the birds control displacement using the visual flow regulation principle by the angular velocity of the landmarks below them running aside in relation to their flight direction, which is inversely proportional to the altitude. Low flying thrushes promptly reacted to the shifting of the leading line of the spit with an average angular velocity of more than 0.8°/s perpendicular to the direction of flight and compensated completely for drift. Shifting of the leading line with an angular velocity of less than 0.4°/s, the high flying birds did not seem to notice or did not try to compensate for displacement deliberately.
Collapse
|
6
|
Domenici P, Seebacher F. The impacts of climate change on the biomechanics of animals: Themed Issue Article: Biomechanics and Climate Change. CONSERVATION PHYSIOLOGY 2020; 8:coz102. [PMID: 31976075 PMCID: PMC6956782 DOI: 10.1093/conphys/coz102] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/24/2019] [Accepted: 11/03/2019] [Indexed: 05/09/2023]
Abstract
Anthropogenic climate change induces unprecedented variability in a broad range of environmental parameters. These changes will impact material properties and animal biomechanics, thereby affecting animal performance and persistence of populations. Climate change implies warming at the global level, and it may be accompanied by altered wind speeds, wave action, ocean circulation, acidification as well as increased frequency of hypoxic events. Together, these environmental drivers affect muscle function and neural control and thereby movement of animals such as bird migration and schooling behaviour of fish. Altered environmental conditions will also modify material properties of animals. For example, ocean acidification, particularly when coupled with increased temperatures, compromises calcified shells and skeletons of marine invertebrates and byssal threads of mussels. These biomechanical consequences can lead to population declines and disintegration of habitats. Integrating biomechanical research with ecology is instrumental in predicting the future responses of natural systems to climate change and the consequences for ecosystem services such as fisheries and ecotourism.
Collapse
Affiliation(s)
- Paolo Domenici
- IAS-CNR, Località Sa Mardini, Torregrande, Oristano, 09170 Italy
| | - Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
7
|
Aurbach A, Schmid B, Liechti F, Chokani N, Abhari R. Simulation of broad front bird migration across Western Europe. Ecol Modell 2020. [DOI: 10.1016/j.ecolmodel.2019.108879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
Anderson AM, Duijns S, Smith PA, Friis C, Nol E. Migration Distance and Body Condition Influence Shorebird Migration Strategies and Stopover Decisions During Southbound Migration. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00251] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|