1
|
Gawel L, Powell EC, Brock M, Taylor LA. Conspicuous stripes on prey capture attention and reduce attacks by foraging jumping spiders. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230907. [PMID: 38026030 PMCID: PMC10663800 DOI: 10.1098/rsos.230907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023]
Abstract
Many animals avoid predation using aposematic displays that pair toxic/dangerous defences with conspicuous achromatic warning patterns, such as high-contrast stripes. To understand how these prey defences work, we need to understand the decision-making of visual predators. Here we gave two species of jumping spiders (Phidippus regius and Habronattus trimaculatus) choice tests using live termites that had their back patterns manipulated using paper capes (solid white, solid black, striped). For P. regius, black and striped termites were quicker to capture attention. Yet despite this increased attention, striped termites were attacked at lower rates than either white or black. This suggests that the termite's contrast with the background elicits attention, but the internal striped body patterning reduces attacks. Results from tests with H. trimaculatus were qualitatively similar but did not meet the threshold for statistical significance. Additional exploratory analyses suggest that attention to and aversion to stripes is at least partially innate and provide further insight into how decision-making played out during trials. Because of their rich diversity (over 6500 species) that includes variation in natural history, toxin susceptibility and degree of colour vision, jumping spiders are well suited to test broad generalizations about how and why aposematic displays work.
Collapse
Affiliation(s)
- Lauren Gawel
- Entomology and Nematology Department, University of Florida, 1881 Natural Area Drive, Gainesville, FL 32611, USA
| | - Erin C. Powell
- Entomology and Nematology Department, University of Florida, 1881 Natural Area Drive, Gainesville, FL 32611, USA
- Florida State Collection of Arthropods, Florida Department of Agriculture and Consumer Services, Division of Plant Industry, 1911 SW 34th St, Gainesville, FL 32608, USA
| | - Michelle Brock
- Entomology and Nematology Department, University of Florida, 1881 Natural Area Drive, Gainesville, FL 32611, USA
| | - Lisa A. Taylor
- Entomology and Nematology Department, University of Florida, 1881 Natural Area Drive, Gainesville, FL 32611, USA
| |
Collapse
|
2
|
Duneau D, Buchon N. Gut cancer increases the risk of Drosophila being preyed upon by hunting spiders. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
3
|
Winters AE, Lommi J, Kirvesoja J, Nokelainen O, Mappes J. Multimodal Aposematic Defenses Through the Predation Sequence. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.657740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aposematic organisms warn predators of their unprofitability using a combination of defenses, including visual warning signals, startling sounds, noxious odors, or aversive tastes. Using multiple lines of defense can help prey avoid predators by stimulating multiple senses and/or by acting at different stages of predation. We tested the efficacy of three lines of defense (color, smell, taste) during the predation sequence of aposematic wood tiger moths (Arctia plantaginis) using blue tit (Cyanistes caeruleus) predators. Moths with two hindwing phenotypes (genotypes: WW/Wy = white, yy = yellow) were manipulated to have defense fluid with aversive smell (methoxypyrazines), body tissues with aversive taste (pyrrolizidine alkaloids) or both. In early predation stages, moth color and smell had additive effects on bird approach latency and dropping the prey, with the strongest effect for moths of the white morph with defense fluids. Pyrrolizidine alkaloid sequestration was detrimental in early attack stages, suggesting a trade-off between pyrrolizidine alkaloid sequestration and investment in other defenses. In addition, pyrrolizidine alkaloid taste alone did not deter bird predators. Birds could only effectively discriminate toxic moths from non-toxic moths when neck fluids containing methoxypyrazines were present, at which point they abandoned attack at the consumption stage. As a result, moths of the white morph with an aversive methoxypyrazine smell and moths in the treatment with both chemical defenses had the greatest chance of survival. We suggest that methoxypyrazines act as context setting signals for warning colors and as attention alerting or “go-slow” signals for distasteful toxins, thereby mediating the relationship between warning signal and toxicity. Furthermore, we found that moths that were heterozygous for hindwing coloration had more effective defense fluids compared to other genotypes in terms of delaying approach and reducing the latency to drop the moth, suggesting a genetic link between coloration and defense that could help to explain the color polymorphism. Conclusively, these results indicate that color, smell, and taste constitute a multimodal warning signal that impedes predator attack and improves prey survival. This work highlights the importance of understanding the separate roles of color, smell and taste through the predation sequence and also within-species variation in chemical defenses.
Collapse
|
4
|
Vickers ME, Heisey ML, Taylor LA. Lack of neophobic responses to color in a jumping spider that uses color cues when foraging (Habronattus pyrrithrix). PLoS One 2021; 16:e0254865. [PMID: 34324526 PMCID: PMC8321159 DOI: 10.1371/journal.pone.0254865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/05/2021] [Indexed: 11/19/2022] Open
Abstract
Chemically defended prey often advertise their toxins with bright and conspicuous colors. To understand why such colors are effective at reducing predation, we need to understand the psychology of key predators. In bird predators, there is evidence that individuals avoid novelty-including prey of novel colors (with which they have had no prior experience). Moreover, the effect of novelty is sometimes strongest for colors that are typically associated with aposematic prey (e.g., red, orange, yellow). Given these findings in the bird literature, color neophobia has been argued to be a driving force in the evolution of aposematism. However, no studies have yet asked whether invertebrate predators respond similarly to novel colors. Here, we tested whether naive lab-raised jumping spiders (Habronattus pyrrithrix) exhibit similar patterns of color neophobia to birds. Using color-manipulated living prey, we first color-exposed spiders to prey of two out of three colors (blue, green, or red), with the third color remaining novel. After this color exposure phase, we gave the spiders tests where they could choose between all three colors (two familiar, one novel). We found that H. pyrrithrix attacked novel and familiar-colored prey at equal rates with no evidence that the degree of neophobia varied by color. Moreover, we found no evidence that either prey novelty nor color (nor their interaction) had an effect on how quickly prey was attacked. We discuss these findings in the context of what is known about color neophobia in other animals and how this contributes to our understanding of aposematic signals.
Collapse
Affiliation(s)
- Michael E. Vickers
- Entomology and Nematology Department, University of Florida, Gainesville, FL, United States of America
- Department of Zoology and Entomology, University of the Free State, Bloemfontein, Republic of South Africa
| | - Madison L. Heisey
- Entomology and Nematology Department, University of Florida, Gainesville, FL, United States of America
| | - Lisa A. Taylor
- Entomology and Nematology Department, University of Florida, Gainesville, FL, United States of America
- Florida Museum of Natural History, University of Florida, Gainesville, FL, United States of America
| |
Collapse
|
5
|
Mora-Castro R, Alfaro-Córdoba M, Hernández-Jiménez M, Fernández Otárola M, Méndez-Rivera M, Ramírez-Morales D, Rodríguez-Rodríguez CE, Durán-Rodríguez A, Hanson PE. First evidence for an aposematic function of a very common color pattern in small insects. PLoS One 2021; 16:e0237288. [PMID: 33571212 PMCID: PMC7877781 DOI: 10.1371/journal.pone.0237288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 01/27/2021] [Indexed: 11/18/2022] Open
Abstract
Many small parasitoid wasps have a black head, an orange mesosoma and a black metasoma (BOB color pattern), which is usually present in both sexes. A likely function of this widespread pattern is aposematic (warning) coloration, but this has never been investigated. To test this hypothesis, we presented spider predators (Lyssomanes jemineus), both field-captured and bred in captivity from eggs, to four wasp genera (Baryconus, Chromoteleia, Macroteleia and Scelio), each genus being represented by a BOB morphospecies and black morphospecies. We also used false prey, consisting of lures made of painted rice grains. Behavioral responses were analyzed with respect to presence or absence of the BOB pattern. In order to better understand the results obtained, two additional studies were performed. First, the reflection spectrum of the cuticle of the wasp and a theoretical visual sensibility of the spider were used to calculate a parameter we called "absorption contrast" that allows comparing the perception contrast between black and orange in each wasp genus as viewed by the spider. Second, acute toxicity trials with the water flea, Daphnia magna, were performed to determine toxicity differences between BOB and non-BOB wasps. At least some of the results suggest that the BOB color pattern may possibly play an aposematic role.
Collapse
Affiliation(s)
- Rebeca Mora-Castro
- Centro de Investigación en Biología Celular y Molecular, University of Costa Rica, San José, Costa Rica
- Centro de Investigación en Ciencia e Ingeniería de Materiales, University of Costa Rica, San José, Costa Rica
- Escuela de Biología, University of Costa Rica, San José, Costa Rica
- * E-mail:
| | - Marcela Alfaro-Córdoba
- Centro de Investigación en Matemática Pura y Aplicada, University of Costa Rica, San José, Costa Rica
- Escuela de Estadística, University of Costa Rica, San José, Costa Rica
| | - Marcela Hernández-Jiménez
- Centro de Investigación en Ciencia e Ingeniería de Materiales, University of Costa Rica, San José, Costa Rica
- Escuela de Física, University of Costa Rica, San José, Costa Rica
| | - Mauricio Fernández Otárola
- Escuela de Biología, University of Costa Rica, San José, Costa Rica
- Centro de Investigación en Biodiversidad y Ecología Tropical (CIBET), University of Costa Rica, San José, Costa Rica
| | - Michael Méndez-Rivera
- Centro de Investigación en Contaminación Ambiental (CICA), University of Costa Rica, San José, Costa Rica
| | - Didier Ramírez-Morales
- Centro de Investigación en Contaminación Ambiental (CICA), University of Costa Rica, San José, Costa Rica
| | | | | | - Paul E. Hanson
- Escuela de Biología, University of Costa Rica, San José, Costa Rica
| |
Collapse
|
6
|
Hemipteran defensive odors trigger predictable color biases in jumping spider predators. Sci Rep 2020; 10:21898. [PMID: 33318578 PMCID: PMC7736339 DOI: 10.1038/s41598-020-78952-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 12/01/2020] [Indexed: 11/16/2022] Open
Abstract
Multimodal warning displays often pair one signal modality (odor) with a second modality (color) to avoid predation. Experiments with bird predators suggest these signal components interact synergistically, with aversive odors triggering otherwise hidden aversions to particular prey colors. In a recent study, this phenomenon was found in a jumping spider (Habronattus trimaculatus), with the defensive odor from a coreid bug (Acanthocephala femorata) triggering an aversion to red. Here, we explore how generalizable this phenomenon is by giving H. trimaculatus the choice between red or black prey in the presence or absence of defensive odors secreted from (1) eastern leaf-footed bugs (Leptoglossus phyllopus, Hemiptera), (2) grass stinkbugs (Mormidea pama, Hemiptera), (3) Asian ladybird beetles (Harmonia axyridis, Coleoptera), and (4) eastern lubber grasshoppers (Romalea microptera, Orthoptera). As expected, in the presence of the hemipteran odors, spiders were less likely to attack red prey (compared to no odor). Unexpectedly, the beetle and grasshopper odors did not bias spiders away from red. Our results with the hemipteran odors were unique to red; follow-up experiments indicated that these odors did not affect biases for/against green prey. We discuss our findings in the context of generalized predator foraging behavior and the functions of multimodal warning displays.
Collapse
|
7
|
De Agrò M. SPiDbox: design and validation of an open-source "Skinner-box" system for the study of jumping spiders. J Neurosci Methods 2020; 346:108925. [PMID: 32896539 DOI: 10.1016/j.jneumeth.2020.108925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND Skinner-box systems are fundamental in behavioural research. They are objective, reliable and can be used to carry out procedures otherwise impossible with manual methodologies. Recently, jumping spiders have caught the interest of scientists for their remarkable cognitive abilities. However, inquiries on their learning abilities are still few, since we lacked a proper methodology capable of overcoming the inherent difficulties that this family poses when carrying out a conditioning protocol. NEW METHOD In this paper, a new, automated, open-source Skinner-box, intended for the study of jumping spiders is presented. The system is 3d printable, cheap, fully open-source; is controlled with a Raspberry Pi Zero by a Python script. Since spiders are too lightweight to activate large physical object, the SPiDbox employs photo-sensors. RESULTS To validate the methodology, 30 Phidippus regius underwent a training procedure for a simple discrimination task to validate the effectiveness of the system. The spiders managed to learn the task, establishing the effectiveness of the SPiDbox. COMPARISON WITH EXISTING METHODS This automated training appears to be more reliable and effective than traditional methodologies. Moreover, its highly scalable, as many SPiDboxes could be used in parallel. CONCLUSIONS The SPiDbox appears to be an effective system to train jumping spiders, opening up the possibility to study learning in increasingly more complex tasks, possibly extending our understanding of jumping spiders' cognitive abilities.
Collapse
Affiliation(s)
- Massimo De Agrò
- Department of General Psychology, University of Padua, Italy; Esapolis' Living Insects Museum, Padua, Italy.
| |
Collapse
|
8
|
Winsor AM, Ihle M, Taylor LA. Methods for independently manipulating palatability and color in small insect prey. PLoS One 2020; 15:e0231205. [PMID: 32255810 PMCID: PMC7138310 DOI: 10.1371/journal.pone.0231205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 03/18/2020] [Indexed: 12/04/2022] Open
Abstract
Understanding how the psychology of predators shapes the defenses of colorful aposematic prey has been a rich area of inquiry, with emphasis on hypothesis-driven experiments that independently manipulate color and palatability in prey to examine predator responses. Most of these studies focus on avian predators, despite calls to consider more taxonomically diverse predators. This taxonomic bias leaves gaps in our knowledge about the generalizability of current theory. Here we have adapted tools that have been successfully used with bird predators and scaled them down and tested them with smaller predators (Habronattus jumping spiders) and small insect prey (termites, milkweed bug nymphs, pinhead crickets, fruit flies). Specifically, we test (1) the application of denatonium benzoate (DB) to the surface of live termites, crickets, and fruit flies, and (2) the effectiveness of manipulating the palatability of milkweed bug nymphs through diet. We also test the effectiveness of combining these palatability manipulations with various color manipulations. Across several experiments, we confirm that our palatability manipulations are not detectable to the spiders before they attack (i.e., they do not produce aversive odors that spiders avoid), and show that unpalatable prey are indeed quickly rejected and spiders do not habituate to the taste with experience. We also investigate limitations of these techniques by assessing possible unintended effects on prey behavior and the risk of contact contamination when using DB-treated prey in experiments. While similar tools have been used to manipulate color and palatability with avian predators and relatively large insect prey, we show how these techniques can be effectively adapted for use with small invertebrate predators and prey.
Collapse
Affiliation(s)
- Alex M. Winsor
- Entomology and Nematology Department, University of Florida, Gainesville, FL, United States of America
- Organismic and Evolutionary Biology, University of Massachusetts Amherst, Amherst, MA, United States of America
- * E-mail:
| | - Malika Ihle
- Entomology and Nematology Department, University of Florida, Gainesville, FL, United States of America
| | - Lisa A. Taylor
- Entomology and Nematology Department, University of Florida, Gainesville, FL, United States of America
- Florida Museum of Natural History, University of Florida, Gainesville, FL, United States of America
| |
Collapse
|
9
|
Wilts BD, Otto J, Stavenga DG. Ultra-dense, curved, grating optics determines peacock spider coloration. NANOSCALE ADVANCES 2020; 2:1122-1127. [PMID: 36133071 PMCID: PMC9416901 DOI: 10.1039/c9na00494g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 02/20/2020] [Indexed: 05/23/2023]
Abstract
Controlling light through photonic nanostructures is important for everyday optical components, from spectrometers to data storage and readout. In nature, nanostructured materials produce wavelength-dependent colors that are key for visual communication across animals. Here, we investigate two Australian peacock spiders, which court females in complex dances with either iridescent color patterns (Maratus robinsoni) or an approximately angle-independent blue coloration (M. nigromaculatus). Using light microscopy, FIB-SEM imaging, imaging scatterometry, and optical modeling, we show that both color displays originate from nanogratings on structured 3D surfaces. The difference in angle-dependency of the coloration results from a combination of the local scale shape and the nanograting period. The iridescence of M. robinsoni arises from ordered gratings on locally flat substrates, while the more stable blue colors of M. nigromaculatus originate from ultra-dense, curved gratings with multiscale disorder. Our results shed light on the design principle of the peacock spiders' scales and could inspire novel dispersive components, e.g. used in spectroscopic applications.
Collapse
Affiliation(s)
- Bodo D Wilts
- Adolphe Merkle Institute, University of Fribourg Chemin des Verdiers 4 CH-1700 Fribourg Switzerland
| | - Jürgen Otto
- Grevillea Court 19 Grevillea Avenue St. Ives New South Wales 2075 Australia
| | - Doekele G Stavenga
- Zernike Institute for Advanced Materials, University of Groningen NL-9747AG Groningen The Netherlands
| |
Collapse
|
10
|
Aartsma Y, Cusumano A, Fernández de Bobadilla M, Rusman Q, Vosteen I, Poelman EH. Understanding insect foraging in complex habitats by comparing trophic levels: insights from specialist host-parasitoid-hyperparasitoid systems. CURRENT OPINION IN INSECT SCIENCE 2019; 32:54-60. [PMID: 31113632 DOI: 10.1016/j.cois.2018.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/09/2018] [Accepted: 11/06/2018] [Indexed: 06/09/2023]
Abstract
Insects typically forage in complex habitats in which their resources are surrounded by non-resources. For herbivores, pollinators, parasitoids, and higher level predators research has focused on how specific trophic levels filter and integrate information from cues in their habitat to locate resources. However, these insights frequently build specific theory per trophic level and seldom across trophic levels. Here, we synthesize advances in understanding of insect foraging behavior in complex habitats by comparing trophic levels in specialist host-parasitoid-hyperparasitoid systems. We argue that resources may become less apparent to foraging insects when they are member of higher trophic levels and hypothesize that higher trophic level organisms require a larger number of steps in their foraging decisions. We identify important knowledge gaps of information integration strategies by insects that belong to higher trophic levels.
Collapse
Affiliation(s)
- Yavanna Aartsma
- Wageningen University, Laboratory of Entomology, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Antonino Cusumano
- Wageningen University, Laboratory of Entomology, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | | | - Quint Rusman
- Wageningen University, Laboratory of Entomology, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Ilka Vosteen
- Wageningen University, Laboratory of Entomology, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Erik H Poelman
- Wageningen University, Laboratory of Entomology, P.O. Box 16, 6700 AA Wageningen, The Netherlands.
| |
Collapse
|
11
|
Powell EC, Cook C, Coco J, Brock M, Holian LA, Taylor LA. Prey colour biases in jumping spiders (
Habronattus brunneus
) differ across populations. Ethology 2019. [DOI: 10.1111/eth.12859] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Erin C. Powell
- Entomology and Nematology Department University of Florida Gainesville Florida
- School of Biological Sciences University of Auckland Auckland New Zealand
| | - Collette Cook
- Entomology and Nematology Department University of Florida Gainesville Florida
| | - Jeffrey Coco
- Entomology and Nematology Department University of Florida Gainesville Florida
| | - Michelle Brock
- Entomology and Nematology Department University of Florida Gainesville Florida
| | - Lauren A. Holian
- Entomology and Nematology Department University of Florida Gainesville Florida
| | - Lisa A. Taylor
- Entomology and Nematology Department University of Florida Gainesville Florida
- Florida Museum of Natural History University of Florida Gainesville Florida
| |
Collapse
|