1
|
vonHoldt BM, DeCandia AL, Cassidy KA, Stahler EE, Sinsheimer JS, Smith DW, Stahler DR. Patterns of reproduction and autozygosity distinguish the breeding from nonbreeding gray wolves of Yellowstone National Park. J Hered 2024; 115:327-338. [PMID: 37793153 PMCID: PMC11235126 DOI: 10.1093/jhered/esad062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/06/2023] Open
Abstract
For species of management concern, accurate estimates of inbreeding and associated consequences on reproduction are crucial for predicting their future viability. However, few studies have partitioned this aspect of genetic viability with respect to reproduction in a group-living social mammal. We investigated the contributions of foundation stock lineages, putative fitness consequences of inbreeding, and genetic diversity of the breeding versus nonreproductive segment of the Yellowstone National Park gray wolf population. Our dataset spans 25 years and seven generations since reintroduction, encompassing 152 nuclear families and 329 litters. We found more than 87% of the pedigree foundation genomes persisted and report influxes of allelic diversity from two translocated wolves from a divergent source in Montana. As expected for group-living species, mean kinship significantly increased over time but with minimal loss of observed heterozygosity. Strikingly, the reproductive portion of the population carried a significantly lower genome-wide inbreeding coefficients, autozygosity, and more rapid decay for linkage disequilibrium relative to the nonbreeding population. Breeding wolves had significantly longer lifespans and lower inbreeding coefficients than nonbreeding wolves. Our model revealed that the number of litters was negatively significantly associated with heterozygosity (R = -0.11). Our findings highlight genetic contributions to fitness, and the importance of the reproductively active individuals in a population to counteract loss of genetic variation in a wild, free-ranging social carnivore. It is crucial for managers to mitigate factors that significantly reduce effective population size and genetic connectivity, which supports the dispersion of genetic variation that aids in rapid evolutionary responses to environmental challenges.
Collapse
Affiliation(s)
- Bridgett M vonHoldt
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, United States
| | - Alexandra L DeCandia
- Department of Biology, Georgetown University, Washington, DC, United States
- Center for Conservation Genomics, Smithsonian’s National Zoo and Conservation Biology Institute, Washington, DC, United States
| | - Kira A Cassidy
- Yellowstone Center for Resources, Yellowstone National Park, WY, United States
| | - Erin E Stahler
- Yellowstone Center for Resources, Yellowstone National Park, WY, United States
| | - Janet S Sinsheimer
- Department of Biostatistics, Fielding School of Public Health, UCLA, Los Angeles, CA, United States
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Douglas W Smith
- Yellowstone Center for Resources, Yellowstone National Park, WY, United States
| | - Daniel R Stahler
- Yellowstone Center for Resources, Yellowstone National Park, WY, United States
| |
Collapse
|
2
|
Bennett S, Harris MP, Wanless S, Green JA, Newell M, Searle KR, Daunt F. Earlier and more frequent occupation of breeding sites during the non-breeding season increases breeding success in a colonial seabird. Ecol Evol 2022; 12:e9213. [PMID: 36177129 PMCID: PMC9463023 DOI: 10.1002/ece3.9213] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/16/2022] [Accepted: 07/22/2022] [Indexed: 11/25/2022] Open
Abstract
Competition for high-quality breeding sites in colonial species is often intense, such that individuals may invest considerable time in site occupancy even outside the breeding season. The site defense hypothesis predicts that high-quality sites will be occupied earlier and more frequently, consequently those sites will benefit from earlier and more successful breeding. However, few studies relate non-breeding season occupancy to subsequent breeding performance limiting our understanding of the potential life-history benefits of this behavior. Here, we test how site occupancy in the non-breeding season related to site quality, breeding timing, and breeding success in a population of common guillemots Uria aalge, an abundant and well-studied colonially breeding seabird. Using time-lapse photography, we recorded occupancy at breeding sites from October to March over three consecutive non-breeding seasons. We then monitored the successive breeding timing (lay date) and breeding success at each site. On average, sites were first occupied on the 27th October ± 11.7 days (mean ± SD), subsequently occupied on 46 ± 18% of survey days and for 55 ± 15% of the time when at least one site was occupied. Higher-quality sites, sites with higher average historic breeding success, were occupied earlier, more frequently and for longer daily durations thereafter. Laying was earlier at sites that were occupied more frequently and sites occupied earlier were more successful, supporting the site defense hypothesis. A path analysis showed that the return date had a greater or equal effect on breeding success as lay date. Pair level occupancy had no effect on breeding timing or success. The clear effect of non-breeding occupancy of breeding sites on breeding timing and success highlights the benefits of this behavior on demography in this population and the importance of access to breeding sites outside the breeding season in systems where competition for high-quality sites is intense.
Collapse
Affiliation(s)
- Sophie Bennett
- UK Centre for Ecology & Hydrology EdinburghMidlothianUK
- School of Environmental SciencesUniversity of LiverpoolLiverpoolUK
| | | | - Sarah Wanless
- UK Centre for Ecology & Hydrology EdinburghMidlothianUK
| | | | | | | | - Francis Daunt
- UK Centre for Ecology & Hydrology EdinburghMidlothianUK
| |
Collapse
|
3
|
Ausband DE. Genetic diversity and mate selection in a reintroduced population of gray wolves. Sci Rep 2022; 12:535. [PMID: 35017596 PMCID: PMC8752858 DOI: 10.1038/s41598-021-04449-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/16/2021] [Indexed: 11/12/2022] Open
Abstract
The genetic composition of an individual can markedly affect its survival, reproduction, and ultimately fitness. As some wildlife populations become smaller, conserving genetic diversity will be a conservation challenge. Many imperiled species are already supported through population augmentation efforts and we often do not know if or how genetic diversity is maintained in translocated species. As a case study for understanding the maintenance of genetic diversity in augmented populations, I wanted to know if genetic diversity (i.e., observed heterozygosity) remained high in a population of gray wolves in the Rocky Mountains of the U.S. > 20 years after reintroduction. Additionally, I wanted to know if a potential mechanism for such diversity was individuals with below average genetic diversity choosing mates with above average diversity. I also asked whether there was a preference for mating with unrelated individuals. Finally, I hypothesized that mated pairs with above average heterozygosity would have increased survival of young. Ultimately, I found that females with below average heterozygosity did not choose mates with above average heterozygosity and wolves chose mates randomly with respect to genetic relatedness. Pup survival was not higher for mated pairs with above average heterozygosity in my models. The dominant variables predicting pup survival were harvest rate during their first year of life and years pairs were mated. Ultimately, genetic diversity was relatively unchanged > 20 years after reintroduction. The mechanism for maintaining such diversity does not appear related to individuals preferentially choosing more genetically diverse mates. Inbreeding avoidance, however, appears to be at least one mechanism maintaining genetic diversity in this population.
Collapse
Affiliation(s)
- David E Ausband
- U.S. Geological Survey, Idaho Cooperative Fish and Wildlife Research Unit, University of Idaho, 875 Perimeter Drive, MS 1141, Moscow, ID, 83844, USA.
| |
Collapse
|
4
|
Lugli F, Caniglia R, Mattioli L, Fabbri E, Mencucci M, Cappai N, Mucci N, Apollonio M, Scandura M. Lifelong non-invasive genetic monitoring of a philopatric female wolf in the Tuscan Apennines, Italy. EUR J WILDLIFE RES 2021. [DOI: 10.1007/s10344-021-01548-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
Ausband DE. Inherit the kingdom or storm the castle? Breeding strategies in a social carnivore. Ethology 2021. [DOI: 10.1111/eth.13250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- David E. Ausband
- U.S. Geological Survey Idaho Cooperative Fish and Wildlife Research Unit University of Idaho Moscow Idaho USA
| |
Collapse
|
6
|
Bales KL, Ardekani CS, Baxter A, Karaskiewicz CL, Kuske JX, Lau AR, Savidge LE, Sayler KR, Witczak LR. What is a pair bond? Horm Behav 2021; 136:105062. [PMID: 34601430 DOI: 10.1016/j.yhbeh.2021.105062] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 12/18/2022]
Abstract
Pair bonding is a psychological construct that we attempt to operationalize via behavioral and physiological measurements. Yet, pair bonding has been both defined differently in various taxonomic groups as well as used loosely to describe not just a psychological and affective phenomenon, but also a social structure or mating system (either social monogamy or just pair living). In this review, we ask the questions: What has been the historical definition of a pair bond? Has this definition differed across taxonomic groups? What behavioral evidence do we see of pair bonding in these groups? Does this observed evidence alter the definition of pair bonding? Does the observed neurobiology underlying these behaviors affect this definition as well? And finally, what are the upcoming directions in which the study of pair bonding needs to head?
Collapse
Affiliation(s)
- Karen L Bales
- Department of Psychology, University of California, Davis, United States of America; Department of Neurobiology, Physiology, and Behavior, University of California, Davis, United States of America; California National Primate Research Center, United States of America.
| | - Cory S Ardekani
- Department of Psychology, University of California, Davis, United States of America
| | - Alexander Baxter
- Department of Psychology, University of California, Davis, United States of America; California National Primate Research Center, United States of America
| | - Chloe L Karaskiewicz
- Department of Psychology, University of California, Davis, United States of America; California National Primate Research Center, United States of America
| | - Jace X Kuske
- Department of Psychology, University of California, Davis, United States of America
| | - Allison R Lau
- Department of Psychology, University of California, Davis, United States of America; California National Primate Research Center, United States of America
| | - Logan E Savidge
- Department of Psychology, University of California, Davis, United States of America; California National Primate Research Center, United States of America
| | - Kristina R Sayler
- Department of Human Ecology, University of California, Davis, United States of America
| | - Lynea R Witczak
- Department of Psychology, University of California, Davis, United States of America; California National Primate Research Center, United States of America
| |
Collapse
|
7
|
Natoli E, Bonanni R, Cafazzo S, Mills DS, Pontier D, Pilot M. Genetic inference of the mating system of free-ranging domestic dogs. Behav Ecol 2021; 32:646-656. [PMID: 34539241 PMCID: PMC8444980 DOI: 10.1093/beheco/arab011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 12/11/2020] [Accepted: 02/03/2021] [Indexed: 12/21/2022] Open
Abstract
Domestication has greatly changed the social and reproductive behavior of dogs relative to that of wild members of the genus Canis, which typically exhibit social monogamy and extended parental care. Unlike a typical gray wolf pack that consists of a single breeding pair and their offspring from multiple seasons, a group of free-ranging dogs (FRDs) can include multiple breeding individuals of both sexes. To understand the consequences of this shift in reproductive behavior, we reconstructed the genetic pedigree of an FRD population and assessed the kinship patterns in social groups, based on genome-wide single-nucleotide polymorphism genotypes. Consistent with behavioral observations, the mating system of the study population was characterized by polygynandry. Instead of the discreet family units observed in wolves, FRDs were linked by a network of kinship relationships that spread across packs. However, we also observed reproduction of the same male-female pairs in multiple seasons, retention of adult offspring in natal packs, and dispersal between neighboring packs-patterns in common with wolves. Although monogamy is the predominant mating system in wolves, polygyny and polyandry are occasionally observed in response to increased food availability. Thus, polygynandry of domestic dogs was likely influenced by the shift in ecological niche from an apex predator to a human commensal.
Collapse
Affiliation(s)
- Eugenia Natoli
- Canile Sovrazonale, ASL Roma 3 (Local Health Unit Rome 3), Via della Magliana 856H, 00148 Rome, Italy
| | | | | | - Daniel S Mills
- School of Life Sciences, University of Lincoln, Lincoln LN6 7DL, UK
| | - Dominique Pontier
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Małgorzata Pilot
- Museum and Institute of Zoology, Polish Academy of Sciences, ul. Nadwiślańska 108, 80-680 Gdańsk, Poland
| |
Collapse
|
8
|
Ausband DE, Waits L. Does harvest affect genetic diversity in grey wolves? Mol Ecol 2020; 29:3187-3195. [PMID: 32657476 DOI: 10.1111/mec.15552] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 01/01/2023]
Abstract
Harvest can affect vital rates such as reproduction and survival, but also genetic measures of individual and population health. Grey wolves (Canis lupus) live and breed in groups, and effective population size is a small fraction of total abundance. As a result, genetic diversity of wolves may be particularly sensitive to harvest. We evaluated how harvest affected genetic diversity and relatedness in wolves. We hypothesized that harvest would (a) reduce relatedness of individuals within groups in a subpopulation but increase relatedness of individuals between groups due to increased local immigration, (b) increase individual heterozygosity and average allelic richness across groups in subpopulations and (c) add new alleles to a subpopulation and decrease the number of private alleles in subpopulations due to an increase in breeding opportunities for unrelated individuals. We found harvest had no effect on observed heterozygosity of individuals or allelic richness at loci within subpopulations but was associated with a small, biologically insignificant effect on within-group relatedness values in grey wolves. Harvest was, however, positively associated with increased relatedness of individuals between groups and a net gain (+16) of alleles into groups in subpopulations monitored since harvest began, although the number of private alleles in subpopulations overall declined. Harvest likely created opportunities for wolves to immigrate into nearby groups and breed, thereby making groups in subpopulations more related over time. Harvest appears to affect genetic diversity in wolves at the group and population levels, but its effects are less apparent at the individual level given the population sizes we studied.
Collapse
Affiliation(s)
- David E Ausband
- Idaho Cooperative Fish and Wildlife Research Unit, U.S. Geological Survey, University of Idaho, Moscow, ID, USA
| | - Lisette Waits
- Department of Fish and Wildlife Sciences, University of Idaho, Moscow, ID, USA
| |
Collapse
|
9
|
Bassing SB, Ausband DE, Mitchell MS, Schwartz MK, Nowak JJ, Hale GC, Waits LP. Immigration does not offset harvest mortality in groups of a cooperatively breeding carnivore. Anim Conserv 2020. [DOI: 10.1111/acv.12593] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- S. B. Bassing
- Montana Cooperative Wildlife Research Unit Wildlife Biology Program University of Montana Missoula MT USA
| | - D. E. Ausband
- Idaho Department of Fish and Game Coeur d’Alene ID USA
| | - M. S. Mitchell
- U.S. Geological Survey Montana Cooperative Wildlife Research Unit Wildlife Biology Program University of Montana Missoula MT USA
| | - M. K. Schwartz
- U.S. Forest Service National Genomics Center for Wildlife and Fish Conservation Missoula MT USA
| | - J. J. Nowak
- Wildlife Biology Program Department of Ecosystem and Conservation Sciences W.A. Franke College of Forestry and Conservation University of Montana Missoula MT USA
| | - G. C. Hale
- Alberta Environment and Parks Blairmore AB Canada
| | - L. P. Waits
- Department of Fish and Wildlife Sciences University of Idaho Moscow ID USA
| |
Collapse
|