1
|
Anderson HL, Cabo J, Karubian J. Fruit resources shape sexual selection processes in a lek mating system. Biol Lett 2024; 20:20240284. [PMID: 39319668 PMCID: PMC11423539 DOI: 10.1098/rsbl.2024.0284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/12/2024] [Accepted: 07/19/2024] [Indexed: 09/26/2024] Open
Abstract
The degree to which within-population variation in sexual trait expression relates to resource heterogeneity remains poorly explored. This is particularly true in lek-mating species, where genetic explanations for male phenotypic variance and mating success are dominant. Here, we demonstrate a link between fine-scale fruit resource availability and indices of male mating success in the white-bearded manakin (Manacus manacus), a lek-mating frugivorous bird that produces energetically costly courtship displays. We used motion-activated camera traps to monitor male display behaviour and female visitation at male courts while concurrently conducting twice-monthly fruit surveys around courts. We observed significant variability in ripe fruit biomass among display courts and leks, and mean fruit biomass at courts significantly predicted male display rates. In turn, male display rate was the strongest predictor of female visitation to courts. Causal modelling supported the hypothesis that hyper-local fruit availability indirectly affects female visitation via its direct effects on male display rate. The demonstration that resource availability at fine spatial scales predicts display rate in a lekking organism-for which resource-related variables are typically not considered to play important roles in shaping male reproductive variance-has implications for the expression, honesty and maintenance of sexually selected traits under fluctuating ecological conditions.
Collapse
Affiliation(s)
- H. Luke Anderson
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA70118, USA
- Fundación para la Conservación de los Andes Tropicales, Quito, Ecuador
| | - Jairo Cabo
- Fundación para la Conservación de los Andes Tropicales, Quito, Ecuador
| | - Jordan Karubian
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA70118, USA
- Fundación para la Conservación de los Andes Tropicales, Quito, Ecuador
- Universidad San Francisco de Quito USFQ, Estación de Biodiversidad Tiputini, Quito, Ecuador
| |
Collapse
|
2
|
Vernasco BJ, Long KM, Braun MJ, Brawn JD. Genetic and telomeric variability: Insights from a tropical avian hybrid zone. Mol Ecol 2024; 33:e17491. [PMID: 39192633 DOI: 10.1111/mec.17491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 08/29/2024]
Abstract
Telomere lengths and telomere dynamics can correlate with lifespan, behaviour and individual quality. Such relationships have spurred interest in understanding variation in telomere lengths and their dynamics within and between populations. Many studies have identified how environmental processes can influence telomere dynamics, but the role of genetic variation is much less well characterized. To provide a novel perspective on how telomeric variation relates to genetic variability, we longitudinally sampled individuals across a narrow hybrid zone (n = 127 samples), wherein two Manacus species characterized by contrasting genome-wide heterozygosity interbreed. We measured individual (n = 66) and population (n = 3) differences in genome-wide heterozygosity and, among hybrids, amount of genetic admixture using RADseq-generated SNPs. We tested for population differences in telomere lengths and telomere dynamics. We then examined how telomere lengths and telomere dynamics covaried with genome-wide heterozygosity within populations. Hybrid individuals exhibited longer telomeres, on average, than individuals sampled in the adjacent parental populations. No population differences in telomere dynamics were observed. Within the parental population characterized by relatively low heterozygosity, higher genome-wide heterozygosity was associated with shorter telomeres and higher rates of telomere shortening-a pattern that was less apparent in the other populations. All of these relationships were independent of sex, despite the contrasting life histories of male and female manakins. Our study highlights how population comparisons can reveal interrelationships between genetic variation and telomeres, and how naturally occurring hybridization and genome-wide heterozygosity can relate to telomere lengths and telomere dynamics.
Collapse
Affiliation(s)
- Ben J Vernasco
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
| | - Kira M Long
- Program in Ecology, Evolution and Conservation Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Michael J Braun
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Department of Biology and Biology Graduate Program, University of Maryland, College Park, Maryland, USA
| | - Jeffrey D Brawn
- Department of Natural Resources and Environmental Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
3
|
Bolton PE, Ryder TB, Dakin R, Houtz JL, Moore IT, Balakrishnan CN, Horton BM. Neurogenomic landscape associated with status-dependent cooperative behaviour. Mol Ecol 2024:e17327. [PMID: 38511765 DOI: 10.1111/mec.17327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/04/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
The neurogenomic mechanisms mediating male-male reproductive cooperative behaviours remain unknown. We leveraged extensive transcriptomic and behavioural data on a neotropical bird species (Pipra filicauda) that performs cooperative courtship displays to understand these mechanisms. In this species, the cooperative display is modulated by testosterone, which promotes cooperation in non-territorial birds, but suppresses cooperation in territory holders. We sought to understand the neurogenomic underpinnings of three related traits: social status, cooperative display behaviour and testosterone phenotype. To do this, we profiled gene expression in 10 brain nuclei spanning the social decision-making network (SDMN), and two key endocrine tissues that regulate social behaviour. We associated gene expression with each bird's behavioural and endocrine profile derived from 3 years of repeated measures taken from free-living birds in the Ecuadorian Amazon. We found distinct landscapes of constitutive gene expression were associated with social status, testosterone phenotype and cooperation, reflecting the modular organization and engagement of neuroendocrine tissues. Sex-steroid and neuropeptide signalling appeared to be important in mediating status-specific relationships between testosterone and cooperation, suggesting shared regulatory mechanisms with male aggressive and sexual behaviours. We also identified differentially regulated genes involved in cellular activity and synaptic potentiation, suggesting multiple mechanisms underpin these genomic states. Finally, we identified SDMN-wide gene expression differences between territorial and floater males that could form the basis of 'status-specific' neurophysiological phenotypes, potentially mediated by testosterone and growth hormone. Overall, our findings provide new, systems-level insights into the mechanisms of cooperative behaviour and suggest that differences in neurogenomic state are the basis for individual differences in social behaviour.
Collapse
Affiliation(s)
- Peri E Bolton
- Department of Biology, East Carolina University, Greenville, North Carolina, USA
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA
| | - T Brandt Ryder
- Migratory Bird Center, Smithsonian National Zoological Park, Washington, District of Columbia, USA
- Bird Conservancy of the Rockies, Fort Collins, Colorado, USA
| | - Roslyn Dakin
- Migratory Bird Center, Smithsonian National Zoological Park, Washington, District of Columbia, USA
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Jennifer L Houtz
- Department of Biology, Millersville University, Millersville, Pennsylvania, USA
- Department of Biology, Allegheny College, Meadville, Pennsylvania, USA
| | - Ignacio T Moore
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | | | - Brent M Horton
- Department of Biology, Millersville University, Millersville, Pennsylvania, USA
| |
Collapse
|
4
|
Boersma J, Enbody ED, Ketaloya S, Watts HE, Karubian J, Schwabl H. Does capacity to produce androgens underlie variation in female ornamentation and territoriality in White-shouldered Fairywren (Malurus alboscapulatus)? Horm Behav 2023; 154:105393. [PMID: 37331309 DOI: 10.1016/j.yhbeh.2023.105393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/20/2023]
Abstract
Historic bias toward study of sex hormones and sexual ornamentation in males currently constrains our perspective of hormone-behavior-phenotype relationships. Resolving how ornamented female phenotypes evolve is particularly important for understanding the diversity of social signals across taxa. Studies of both males and females in taxa with variable female phenotypes are needed to establish whether sexes share mechanisms underlying expression of signaling phenotypes and behavior. White-shouldered Fairywren (Malurus alboscapulatus) subspecies vary in female ornamentation, baseline circulating androgens, and response to territorial intrusion. The moretoni ornamented female subspecies is characterized by higher female, but lower male baseline androgens, and a stronger pair territorial response relative to pairs from the lorentzi unornamented female subspecies. Here we address whether subspecific differences in female ornamentation, baseline androgens, and pair territoriality are associated with ability to elevate androgens following gonadotropin releasing hormone (GnRH) challenge and in response to simulated territorial intrusion. We find that subspecies do not differ in their capacity to produce androgens in either sex following GnRH or simulated territorial intrusion (STI) challenges. STI-induced androgens were predictive of degree of response to territorial intrusions in females only, but the direction of the effect was mixed. GnRH-induced androgens did not correlate with response to simulated intruders, nor did females sampled during intrusion elevate androgens relative to flushed controls, suggesting that increased androgens are not necessary for the expression of territorial defense behaviors. Collectively, our results suggest that capacity to produce androgens does not underlie subspecific patterns of female ornamentation, territoriality, and baseline plasma androgens.
Collapse
Affiliation(s)
- Jordan Boersma
- School of Biological Sciences, Washington State University, Pullman, WA, USA; Cornell Lab of Ornithology, Ithaca, NY, USA; Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA.
| | - Erik D Enbody
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA, USA; Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, USA
| | - Serena Ketaloya
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, USA; Porotona Village, Milne Bay Province, Papua New Guinea
| | - Heather E Watts
- School of Biological Sciences, Washington State University, Pullman, WA, USA; Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Jordan Karubian
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, USA
| | - Hubert Schwabl
- School of Biological Sciences, Washington State University, Pullman, WA, USA; Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| |
Collapse
|
5
|
Alfonso C, Jones BC, Vernasco BJ, Moore IT. Integrative Studies of Sexual Selection in Manakins, a Clade of Charismatic Tropical Birds. Integr Comp Biol 2021; 61:1267-1280. [PMID: 34251421 DOI: 10.1093/icb/icab158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/07/2021] [Accepted: 07/07/2021] [Indexed: 11/14/2022] Open
Abstract
The neotropical manakins (family Pipridae) provide a great opportunity for integrative studies of sexual selection as nearly all of the 51 species are lek-breeding, an extreme form of polygyny, and highly sexually dimorphic both in appearance and behavior. Male courtship displays are often elaborate and include auditory cues, both vocal and mechanical, as well as visual elements. In addition, the displays are often extremely rapid, highly acrobatic, and, in some species, multiple males perform coordinated displays that form the basis of long-term coalitions. Male manakins also exhibit unique neuroendocrine, physiological, and anatomical adaptations to support the performance of these complex displays and the maintenance of their intricate social systems. The Manakin Genomics Research Coordination Network (Manakin RCN, https://www.manakinsrcn.org) has brought together researchers (many in this symposium and this issue) from across disciplines to address the implications of sexual selection on evolution, ecology, behavior, and physiology in manakins. The objective of this paper is to present some of the most pertinent and integrative manakin research as well as introducing the papers presented in this issue. The results discussed at the manakin symposium, part of the 2021 Society for Integrative and Comparative Biology Conference, highlight the remarkable genomic, behavioral, and physiological adaptations as well as the evolutionary causes and consequences of strong sexual selection pressures that are evident in manakins.
Collapse
Affiliation(s)
- Camilo Alfonso
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Blake C Jones
- Science and Mathematics, Bennington College, 1 College Dr., Bennington, VT 05201, USA
| | - Ben J Vernasco
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Ignacio T Moore
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
6
|
Vernasco BJ, Dakin R, Majer AD, Haussmann MF, Brandt Ryder T, Moore IT. Longitudinal dynamics and behavioural correlates of telomeres in male wire‐tailed manakins. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13715] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Ben J. Vernasco
- Department of Biological Sciences Virginia Tech Blacksburg VA USA
| | - Roslyn Dakin
- Migratory Bird Center Smithsonian Conservation Biology Institute Washington DC USA
| | | | | | - T. Brandt Ryder
- Migratory Bird Center Smithsonian Conservation Biology Institute Washington DC USA
| | - Ignacio T. Moore
- Department of Biological Sciences Virginia Tech Blacksburg VA USA
| |
Collapse
|
7
|
Dakin R, Moore IT, Horton BM, Vernasco BJ, Ryder TB. Testosterone-mediated behaviour shapes the emergent properties of social networks. J Anim Ecol 2020; 90:131-142. [PMID: 32745255 DOI: 10.1111/1365-2656.13305] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/07/2020] [Indexed: 12/20/2022]
Abstract
Social networks can vary in their organization and dynamics, with implications for ecological and evolutionary processes. Understanding the mechanisms that drive social network dynamics requires integrating individual-level biology with comparisons across multiple social networks. Testosterone is a key mediator of vertebrate social behaviour and can influence how individuals interact with social partners. Although the effects of testosterone on individual behaviour are well established, no study has examined whether hormone-mediated behaviour can scale up to shape the emergent properties of social networks. We investigated the relationship between testosterone and social network dynamics in the wire-tailed manakin, a lekking bird species in which male-male social interactions form complex social networks. We used an automated proximity system to longitudinally monitor several leks and we quantified the social network structure at each lek. Our analysis examines three emergent properties of the networks-social specialization (the extent to which a network is partitioned into exclusive partnerships), network stability (the overall persistence of partnerships through time) and behavioural assortment (the tendency for like to associate with like). All three properties are expected to promote the evolution of cooperation. As the predictor, we analysed the collective testosterone of males within each social network. Social networks that were composed of high-testosterone dominant males were less specialized, less stable and had more negative behavioural assortment, after accounting for other factors. These results support our main hypothesis that individual-level hormone physiology can predict group-level network dynamics. We also observed that larger leks with more interacting individuals had more positive behavioural assortment, suggesting that small groups may constrain the processes of homophily and behaviour-matching. Overall, these results provide evidence that hormone-mediated behaviour can shape the broader architecture of social groups. Groups with high average testosterone exhibit social network properties that are predicted to impede the evolution of cooperation.
Collapse
Affiliation(s)
- Roslyn Dakin
- Migratory Bird Center, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA.,Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Ignacio T Moore
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Brent M Horton
- Department of Biology, Millersville University, Millersville, PA, USA
| | - Ben J Vernasco
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - T Brandt Ryder
- Migratory Bird Center, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA.,Bird Conservancy of the Rockies, Fort Collins, CO, USA
| |
Collapse
|
8
|
Vernasco BJ, Moore IT. Testosterone as a mediator of the tradeoff between cooperation and competition in the context of cooperative reproductive behaviors. Gen Comp Endocrinol 2020; 288:113369. [PMID: 31857075 DOI: 10.1016/j.ygcen.2019.113369] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/18/2019] [Accepted: 12/13/2019] [Indexed: 11/20/2022]
Abstract
Behavioral tradeoffs occur when the expression of one behavior detracts from the expression of another. Understanding the proximate mediators of behavioral tradeoffs is important as these tradeoffs can act as potential constraints on evolutionary responses to selection. Here, we describe the tradeoff between cooperation and competition faced by species that exhibit cooperative reproductive behaviors and propose that testosterone is a key hormonal mediator of the tradeoff. Cooperative reproductive behaviors occur when multiple individuals coordinate their efforts to gain a reproductive advantage over other individuals and/or those individuals attempting to reproduce in absence of cooperation. We propose that testosterone, a sex steroid known to mediate a number of physiological and behavioral actions associated with reproductive competition, is involved in mediating the tradeoff between cooperation and competition. To support this proposition, we first describe the importance of individual variation in behavior to the evolution of cooperative behaviors. We then describe how proximate mechanisms represent a prominent source of individual variation in social behaviors and highlight evidence suggesting testosterone mediates variation in cooperative behaviors. Two case studies in which the relationship between testosterone and cooperative behaviors have been investigated in detail are then summarized. Throughout we highlight the importance of studying individual variation to understand the mechanistic basis of behaviors, behavioral tradeoffs, and the evolution of cooperative reproductive behaviors more broadly.
Collapse
Affiliation(s)
- Ben J Vernasco
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA; School of Biological Sciences, Washington State University, Pullman, WA, USA.
| | - Ignacio T Moore
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|