1
|
Palaniswamy R, Kambale R, Mohanavel V, Rajagopalan VR, Manickam S, Muthurajan R. Identifying molecular targets for modulating carotenoid accumulation in rice grains. Biochem Biophys Rep 2024; 40:101815. [PMID: 39290348 PMCID: PMC11406064 DOI: 10.1016/j.bbrep.2024.101815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/07/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Carotenoids are potential antioxidants offering extensive human health benefits including protection against chronic diseases. Augmenting the supply of health-benefiting compounds/metabolites through dietary supplements is the most sustainable way for a healthy life. Our study compares the traditional rice cultivar Kavuni and the white rice variety ASD 16. RNA-Seq analysis was carried out in the maturing panicles of Kavuni, which are enriched with antioxidants such as the therapeutic carotenoid lutein, polyphenols, and anthocyanins, along with "ASD 16", a popularly eaten white rice variety, to elucidate the molecular networks regulating accumulation of health benefiting compounds. Systematic analysis of transcriptome data identified preferential up-regulation of carotenoid precursors (OsDXS, OsGGPS) and key carotenoid biosynthetic genes (OsPSY1, OsZ-ISO) in the maturing grains of Kavuni. Our study also identified enhanced expression of OsLYC-E, OsCYP97A, and OsCYP97C transcripts involved in the alpha-carotenoid biosynthetic pathway and thereby leading to elevated lutein content in the grains of Kavuni. Kavuni grains showed preferential down-regulation of negative regulators of carotenoid metabolism viz., AP2 and HY5 and preferential up-regulation of positive modulators of carotenoid metabolism viz., Orange, OsDjB7, and OsSET29, thus creating a favorable molecular framework for carotenoid accumulation. Our study has unearthed valuable gene control points for precise manipulation of carotenoid profiles through CRISPR-based gene editing in rice grains. Perturbation of carotenoid biosynthesis holds unprecedented potential for the rapid development of the next generation of 'Golden rice'.
Collapse
Affiliation(s)
- Rakshana Palaniswamy
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Rohit Kambale
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Vignesh Mohanavel
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Veera Ranjani Rajagopalan
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Sudha Manickam
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Raveendran Muthurajan
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
2
|
Sobrino-Mengual G, Alvarez D, Twyman RM, Gerrish C, Fraser PD, Capell T, Christou P. Activation of the native PHYTOENE SYNTHASE 1 promoter by modifying near-miss cis-acting elements induces carotenoid biosynthesis in embryogenic rice callus. PLANT CELL REPORTS 2024; 43:118. [PMID: 38632121 PMCID: PMC11024007 DOI: 10.1007/s00299-024-03199-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/13/2024] [Indexed: 04/19/2024]
Abstract
KEY MESSAGE Modification of silent latent endosperm-enabled promoters (SLEEPERs) allows the ectopic activation of non-expressed metabolic genes in rice callus Metabolic engineering in plants typically involves transgene expression or the mutation of endogenous genes. An alternative is promoter modification, where small changes in the promoter sequence allow genes to be switched on or off in particular tissues. To activate silent genes in rice endosperm, we screened native promoters for near-miss cis-acting elements that can be converted to endosperm-active regulatory motifs. We chose rice PHYTOENE SYNTHASE 1 (PSY1), encoding the enzyme responsible for the first committed step in the carotenoid biosynthesis pathway, because it is not expressed in rice endosperm. We identified six motifs within a 120-bp region, upstream of the transcriptional start site, which differed from endosperm-active elements by up to four nucleotides. We mutated four motifs to match functional elements in the endosperm-active BCH2 promoter, and this promoter was able to drive GFP expression in callus and in seeds of regenerated plants. The 4 M promoter was not sufficient to drive PSY1 expression, so we mutated the remaining two elements and used the resulting 6 M promoter to drive PSY1 expression in combination with a PDS transgene. This resulted in deep orange callus tissue indicating the accumulation of carotenoids, which was subsequently confirmed by targeted metabolomics analysis. PSY1 expression driven by the uncorrected or 4 M variants of the promoter plus a PDS transgene produced callus that lacked carotenoids. These results confirm that the adjustment of promoter elements can facilitate the ectopic activation of endogenous plant promoters in rice callus and endosperm and most likely in other tissues and plant species.
Collapse
Affiliation(s)
- Guillermo Sobrino-Mengual
- Applied Plant Biotechnology Group, Department of Agricultural and Forest Sciences and Engineering, University of Lleida-Agrotecnio CERCA Center, Lleida, Spain
| | - Derry Alvarez
- Applied Plant Biotechnology Group, Department of Agricultural and Forest Sciences and Engineering, University of Lleida-Agrotecnio CERCA Center, Lleida, Spain
- Division of Biological and Environmental Sciences and Engineering, Center for Desert Agriculture, BioActives Lab, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | | | - Christopher Gerrish
- Department of Biological Sciences, Royal Holloway University of London, Egham Hill, Egham, Surrey, TW20 0EX, UK
| | - Paul D Fraser
- Department of Biological Sciences, Royal Holloway University of London, Egham Hill, Egham, Surrey, TW20 0EX, UK
| | - Teresa Capell
- Applied Plant Biotechnology Group, Department of Agricultural and Forest Sciences and Engineering, University of Lleida-Agrotecnio CERCA Center, Lleida, Spain
| | - Paul Christou
- Applied Plant Biotechnology Group, Department of Agricultural and Forest Sciences and Engineering, University of Lleida-Agrotecnio CERCA Center, Lleida, Spain.
- ICREA, Catalan Institute for Research and Advanced Studies, Barcelona, Spain.
| |
Collapse
|
3
|
Song W, Wei F, Gao S, Dong C, Hao J, Jin L, Li F, Wei P, Guo J, Wang R. Functional characterization and comparison of lycopene epsilon-cyclase genes in Nicotiana tabacum. BMC PLANT BIOLOGY 2022; 22:252. [PMID: 35597910 PMCID: PMC9123772 DOI: 10.1186/s12870-022-03634-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Lycopene epsilon-cyclase (ε-LCY) is a key enzyme in the carotenoid biosynthetic pathway (CBP) of higher plants. In previous work, we cloned two Ntε-LCY genes from allotetraploid tobacco (Nicotiana tabacum), Ntε-LCY2 and Ntε-LCY1, and demonstrated the overall effect of Ntε-LCY genes on carotenoid biosynthesis and stress resistance. However, their genetic and functional characteristics require further research in polyploid plants. RESULTS Here, we used CRISPR/Cas9 to obtain Ntε-LCY2 and Ntε-LCY1 mutants in allotetraploid N.tabacum K326. Ntε-LCY2 and Ntε-LCY1 had similar promoter cis-acting elements, including light-responsive elements. The Ntε-LCY genes were expressed in roots, stems, leaves, flowers, and young fruit, and their highest expression levels were found in leaves. Ntε-LCY2 and Ntε-LCY1 genes responded differently to normal light and high light stress. Both the Ntε-LCY2 and the Ntε-LCY1 mutants had a more rapid leaf growth rate, especially ntε-lcy2-1. The expression levels of CBP genes were increased in the ntε-lcy mutants, and their total carotenoid content was higher. Under both normal light and high light stress, the ntε-lcy mutants had higher photosynthetic capacities and heat dissipation levels than the wild type, and this was especially true of ntε-lcy2-1. The reactive oxygen species content was lower in leaves of the ntε-lcy mutants. CONCLUSION In summary, the expression patterns and biological functions of the Ntε-LCY genes Ntε-LCY1 and Ntε-LCY2 differed in several respects. The mutation of Ntε-LCY2 was associated with a greater increase in the content of chlorophyll and various carotenoid components, and it enhanced the stress resistance of tobacco plants under high light.
Collapse
Affiliation(s)
- Weina Song
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Fang Wei
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Shuwen Gao
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475001, Henan, China
| | - Chen Dong
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, Henan, China
| | - Jianfeng Hao
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Lifeng Jin
- Zhengzhou Tobacco Research Institute, Zhengzhou, 450001, Henan, China
| | - Feng Li
- Zhengzhou Tobacco Research Institute, Zhengzhou, 450001, Henan, China
| | - Pan Wei
- Zhengzhou Tobacco Research Institute, Zhengzhou, 450001, Henan, China
| | - Jinggong Guo
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475001, Henan, China
| | - Ran Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China.
| |
Collapse
|