1
|
Ren L, Luo M, Cui J, Gao X, Zhang H, Wu P, Wei Z, Tai Y, Li M, Luo K, Liu S. Variation and Interaction of Distinct Subgenomes Contribute to Growth Diversity in Intergeneric Hybrid Fish. GENOMICS, PROTEOMICS & BIOINFORMATICS 2025; 22:qzae055. [PMID: 39042151 PMCID: PMC11810642 DOI: 10.1093/gpbjnl/qzae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/27/2024] [Accepted: 06/18/2024] [Indexed: 07/24/2024]
Abstract
Intergeneric hybridization greatly reshapes regulatory interactions among allelic and non-allelic genes. However, their effects on growth diversity remain poorly understood in animals. In this study, we conducted whole-genome sequencing and RNA sequencing analyses in diverse hybrid varieties resulting from the intergeneric hybridization of goldfish (Carassius auratus red var.) and common carp (Cyprinus carpio). These hybrid individuals were characterized by distinct mitochondrial genomes and copy number variations. Through a weighted gene correlation network analysis, we identified 3693 genes as candidate growth-regulating genes. Among them, the expression of 3672 genes in subgenome R (originating from goldfish) displayed negative correlations with body weight, whereas 20 genes in subgenome C (originating from common carp) exhibited positive correlations. Notably, we observed intriguing expression patterns of solute carrier family 2 member 12 (slc2a12) in subgenome C, showing opposite correlations with body weight that changed with water temperatures, suggesting differential interactions between feeding activity and weight gain in response to seasonal changes for hybrid animals. In 40.30% of alleles, we observed dominant trans-regulatory effects in the regulatory interactions between distinct alleles from subgenomes R and C. Integrating analyses of allele-specific expression and DNA methylation data revealed that DNA methylation on both subgenomes shaped the relative contribution of allelic expression to the growth rate. These findings provide novel insights into the interactions of distinct subgenomes that underlie heterosis in growth traits and contribute to a better understanding of multiple allelic traits in animals.
Collapse
Affiliation(s)
- Li Ren
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Mengxue Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Jialin Cui
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Xin Gao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Hong Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Ping Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Zehong Wei
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Yakui Tai
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Mengdan Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Kaikun Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
2
|
Ren L, Tu X, Luo M, Liu Q, Cui J, Gao X, Zhang H, Tai Y, Zeng Y, Li M, Wu C, Li W, Wang J, Wu D, Liu S. Genomes reveal pervasive distant hybridization in nature among cyprinid fishes. Gigascience 2025; 14:giae117. [PMID: 39880407 PMCID: PMC11779505 DOI: 10.1093/gigascience/giae117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 10/12/2024] [Accepted: 12/09/2024] [Indexed: 01/31/2025] Open
Abstract
BACKGROUND Genomic data have unveiled a fascinating aspect of the evolutionary past, showing that the mingling of different species through hybridization has left its mark on the histories of numerous life forms. However, the relationship between hybridization events and the origins of cyprinid fishes remains unclear. RESULTS In this study, we generated de novo assembled genomes of 8 cyprinid fishes and conducted phylogenetic analyses on 24 species. Widespread allele sharing across species boundaries was observed within 7 subfamilies of cyprinid fishes. Based on a systematic analysis of multiple tissues, we found that the testis exhibited a conserved pattern of divergence between the herbivorous Megalobrama amblycephala and the carnivorous Culter alburnus, suggesting a potential link to incomplete reproductive isolation. Significant differences in the expression of 4 genes (dpp2, ctrl, psb7, and ppce) in the liver and intestine, accompanied by variations in enzyme activities, indicated swift divergence in digestive enzyme secretion. Moreover, we identified introgressed genes linked to organ development in sympatric fishes with analogous feeding habits within the Cultrinae and Leuciscinae subfamilies. CONCLUSIONS Our findings highlight the significant role played by incomplete reproductive isolation and frequent gene flow events, particularly those associated with the development of digestive organs, in driving speciation among cyprinid fishes in diverse freshwater ecosystems.
Collapse
Affiliation(s)
- Li Ren
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Xiaolong Tu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming 650204, China
| | - Mengxue Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Qizhi Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Jialin Cui
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Xin Gao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Hong Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Yakui Tai
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Yiyan Zeng
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Mengdan Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Chang Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Wuhui Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Jing Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Dongdong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
3
|
Hong Y, Dai R, Li X, Xu H, Wei C. Polycomb protein RYBP facilitates super-enhancer activity. Mol Med 2024; 30:236. [PMID: 39604829 PMCID: PMC11603947 DOI: 10.1186/s10020-024-01006-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Polycomb proteins are conventionally known as global repressors in cell fate determination. However, recent observations have shown their involvement in transcriptional activation, the mechanisms of which need further investigation. METHODS Herein, multiple data from ChIP-seq, RNA-seq and HiChIP before or after RYBP depletion in embryonic stem cell (ESC), epidermal progenitor (EPC) and mesodermal cell (MEC) were analyzed. RESULTS We found that Polycomb protein RYBP occupies super-enhancer (SE) in ESCs, where core Polycomb group (PcG) components such as RING1B and EZH2 are minimally enriched. Depletion of RYBP results in impaired deposition of H3K27ac, decreased expression of SE-associated genes, and reducing the transcription of enhancer RNA at SE regions (seRNA). Regarding the mechanism of seRNA transcription, the Trithorax group (TrxG) component WDR5 co-localizes with RYBP at SEs, and is required for seRNA expression. RYBP depletion reduces WDR5 deposition at SE regions. In addition, TrxG-associated H3K4me3 tends to be enriched at SEs with high levels of seRNA transcription, and RYBP deficiency impairs the deposition of H3K4me3 at SEs. Structurally, RYBP is involved in both intra- and inter-SE interactions. Finally, RYBP generally localizes at SEs in both in vitro cell lines and in vivo tissue-derived cells, dysfunction of RYBP is associated with various cancers and developmental diseases. CONCLUSION RYBP cooperates with TrxG component to regulate SE activity. Dysfunction of RYBP relates to various diseases. The findings provide new insights into the transcriptionally active function of Polycomb protein in cell fate determination.
Collapse
Affiliation(s)
- Yu Hong
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ranran Dai
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xinlan Li
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - He Xu
- Center of Translational Medicine, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Chao Wei
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
4
|
Luo K, Zhao X, Shan Y, Wang X, Xu Y, Chen M, Wang Q, Song Y. GABA regulates the proliferation and apoptosis of head and neck squamous cell carcinoma cells by promoting the expression of CCND2 and BCL2L1. Life Sci 2023; 334:122191. [PMID: 37866807 DOI: 10.1016/j.lfs.2023.122191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 10/09/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
Gamma-aminobutyric acid (GABA) is a multifunctional molecule that is widely present in the nervous system and nonneuronal tissues. It plays pivotal roles in neurotransmission, regulation of secretion, cell differentiation, proliferation, and tumorigenesis. However, the exact mechanisms of GABA in head and neck squamous cell carcinomas (HNSCCs) are unknown. We took advantage of RNA sequencing in this work and uncovered the potential gene expression profiles of the GABA-treated HNSCC cell line HN4-2. We found that the expression of CCND2 and BCL2L1 was significantly upregulated. Furthermore, GABA treatment inhibited the cell apoptosis induced by cisplatin and regulated the cell cycle after treatment with cisplatin in HN4-2 cells. Moreover, we also found that GABA could upregulate the expression of CCND2 and BCL2L1 after treatment with cisplatin. Our results not only reveal the potential pro-tumorigenic effect of GABA on HNSCCs but also provide a novel therapeutic target for HNSCC treatment.
Collapse
Affiliation(s)
- Kunliang Luo
- Department of Dentistry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; Department of Oral and Maxillofacial Surgery, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105 Kiel, Germany
| | - Xiangtong Zhao
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yidan Shan
- Department of Oral and Maxillofacial Surgery, The Second Affiliate Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xuewen Wang
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Yaohan Xu
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Ming Chen
- Department of Medical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Qingqing Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Yinjing Song
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
| |
Collapse
|
5
|
Zuo X, Chen M, Zhang X, Guo A, Cheng S, Zhang R. Transcriptomic and metabolomic analyses to study the key role by which Ralstonia insidiosa induces Listeria monocytogenes to form suspended aggregates. Front Microbiol 2023; 14:1260909. [PMID: 37901811 PMCID: PMC10601645 DOI: 10.3389/fmicb.2023.1260909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/14/2023] [Indexed: 10/31/2023] Open
Abstract
Ralstonia insidiosa can survive in a wide range of aqueous environments, including food processing areas, and is harmful to humans. It can induce Listeria monocytogenes to form suspended aggregates, resulting from the co-aggregation of two bacteria, which allows for more persistent survival and increases the risk of L. monocytogenes contamination. In our study, different groups of aggregates were analyzed and compared using Illumina RNA sequencing technology. These included R. insidiosa under normal and barren nutrient conditions and in the presence or absence of L. monocytogenes as a way to screen for differentially expressed genes (DEGs) in the process of aggregate formation. In addition, sterile supernatants of R. insidiosa were analyzed under different nutrient conditions using metabolomics to investigate the effect of nutrient-poor conditions on metabolite production by R. insidiosa. We also undertook a combined analysis of transcriptome and metabolome data to further investigate the induction effect of R. insidiosa on L. monocytogenes in a barren environment. The results of the functional annotation analysis on the surface of DEGs and qPCR showed that under nutrient-poor conditions, the acdx, puuE, and acs genes of R. insidiosa were significantly upregulated in biosynthetic processes such as carbon metabolism, metabolic pathways, and biosynthesis of secondary metabolites, with Log2FC reaching 4.39, 3.96, and 3.95 respectively. In contrast, the Log2FC of cydA, cyoB, and rpsJ in oxidative phosphorylation and ribosomal pathways reached 3.74, 3.87, and 4.25, respectively. Thirty-one key components were identified while screening for differential metabolites, which mainly included amino acids and their metabolites, enriched to the pathways of biosynthesis of amino acids, phenylalanine metabolism, and methionine metabolism. Of these, aminomalonic acid and Proximicin B were the special components of R. insidiosa that were metabolized under nutrient-poor conditions.
Collapse
Affiliation(s)
- Xifeng Zuo
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Meilin Chen
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xinshuai Zhang
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ailing Guo
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Si Cheng
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Rong Zhang
- Liunan District Modern Agricultural Industry Service Center of Liuzhou City, Liuzhou, Guangxi, China
| |
Collapse
|
6
|
Spencer N, Łukasik P, Meyer M, Veloso C, McCutcheon JP. No Transcriptional Compensation for Extreme Gene Dosage Imbalance in Fragmented Bacterial Endosymbionts of Cicadas. Genome Biol Evol 2023; 15:evad100. [PMID: 37267326 PMCID: PMC10287537 DOI: 10.1093/gbe/evad100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/04/2023] Open
Abstract
Bacteria that form long-term intracellular associations with host cells lose many genes, a process that often results in tiny, gene-dense, and stable genomes. Paradoxically, the some of the same evolutionary processes that drive genome reduction and simplification may also cause genome expansion and complexification. A bacterial endosymbiont of cicadas, Hodgkinia cicadicola, exemplifies this paradox. In many cicada species, a single Hodgkinia lineage with a tiny, gene-dense genome has split into several interdependent cell and genome lineages. Each new Hodgkinia lineage encodes a unique subset of the ancestral unsplit genome in a complementary way, such that the collective gene contents of all lineages match the total found in the ancestral single genome. This splitting creates genetically distinct Hodgkinia cells that must function together to carry out basic cellular processes. It also creates a gene dosage problem where some genes are encoded by only a small fraction of cells while others are much more abundant. Here, by sequencing DNA and RNA of Hodgkinia from different cicada species with different amounts of splitting-along with its structurally stable, unsplit partner endosymbiont Sulcia muelleri-we show that Hodgkinia does not transcriptionally compensate to rescue the wildly unbalanced gene and genome ratios that result from lineage splitting. We also find that Hodgkinia has a reduced capacity for basic transcriptional control independent of the splitting process. Our findings reveal another layer of degeneration further pushing the limits of canonical molecular and cell biology in Hodgkinia and may partially explain its propensity to go extinct through symbiont replacement.
Collapse
Affiliation(s)
- Noah Spencer
- Biodesign Center for Mechanisms of Evolution and School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Piotr Łukasik
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Mariah Meyer
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Claudio Veloso
- Department of Ecological Sciences, Science Faculty, University of Chile, Santiago, Chile
| | - John P McCutcheon
- Biodesign Center for Mechanisms of Evolution and School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| |
Collapse
|
7
|
Fu C, Fu X, Li F, Li Z, Wang A, Jiang S, Liu C, Wang H. Integrated microRNA-mRNA analysis reveals a possible molecular mechanism of enteritis susceptibility in Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2023; 136:108699. [PMID: 36935044 DOI: 10.1016/j.fsi.2023.108699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/06/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
Enteritis is one of the main diseases affecting Pacific whiteleg shrimp (Litopenaeus vannamei) in recent years, and it has resulted in huge losses to the aquaculture industry. Prior to this study, the molecular mechanism underlying enteritis in L. vannamei was unclear, and comprehensive multi-omics analysis had not been conducted. In this study, 1209 differentially expressed genes (DEGs) were identified from the hepatopancreas of L. vannamei with and without enteritis. Kyoto Encyclopedia of Genes and Genomes analysis showed that genes were significantly enriched in immune, metabolic, and endocrine regulatory pathways. Forty-eight significantly different microRNAs (miRNAs) were identified in the miRNA-Seq analysis. Further functional annotation analysis showed that the regulatory pathway of target gene enrichment of differentially expressed miRNAs was consistent with DEGs. Through miRNA-mRNA integration analysis, 47 meaningful miRNA-mRNA pairs were obtained, of which melanogenesis and pancreatic secretion were considered key pathways. Subsequent miRNA-mRNA interaction network analysis revealed that mja-miR-6493-3p, Mja-miR-6494, novel-198, novel-272, novel-261, novel-200, novel-183, novel-184, novel-237, and novel-192 may be key miRNAs involved in the regulation of these two signaling pathways. Finally, the RAS signaling pathway was found to inhibit the translation level of proteins in the hepatopancreas. These results suggest that target gene integration analysis of mRNA-miRNA can reveal the molecular mechanism underlying enteritis in L. vannamei and also provide valuable new insights for resisting enteritis.
Collapse
Affiliation(s)
- Chunpeng Fu
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang, 262700, China.
| | - Xiaopeng Fu
- Marine and Fishery Supervision Detachment of Rizhao City, Rizhao, 276800, China
| | - Fajun Li
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang, 262700, China
| | - Zongzhen Li
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang, 262700, China
| | - Aili Wang
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang, 262700, China
| | - ShanShan Jiang
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang, 262700, China
| | - Chunqiao Liu
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang, 262700, China
| | - Hui Wang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, 271018, China
| |
Collapse
|
8
|
Alsamman AM, Abdelsattar M, El Allali A, Radwan KH, Nassar AE, Mousa KH, Hussein A, Mokhtar MM, Abd El-Maksoud MM, Istanbuli T, Kehel Z, Hamwieh A. Genome-wide identification, characterization, and validation of the bHLH transcription factors in grass pea. Front Genet 2023; 14:1128992. [PMID: 37021003 PMCID: PMC10067732 DOI: 10.3389/fgene.2023.1128992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/02/2023] [Indexed: 03/22/2023] Open
Abstract
Background: The basic helix-loop-helix (bHLH) transcription factor is a vital component in plant biology, with a significant impact on various aspects of plant growth, cell development, and physiological processes. Grass pea is a vital agricultural crop that plays a crucial role in food security. However, the lack of genomic information presents a major challenge to its improvement and development. This highlights the urgency for deeper investigation into the function of bHLH genes in grass pea to improve our understanding of this important crop.Results: The identification of bHLH genes in grass pea was performed on a genome-wide scale using genomic and transcriptomic screening. A total of 122 genes were identified as having conserved bHLH domains and were functionally and fully annotated. The LsbHLH proteins could be classified into 18 subfamilies. There were variations in intron-exon distribution, with some genes lacking introns. The cis-element and gene enrichment analyses showed that the LsbHLHs were involved in various plant functions, including response to phytohormones, flower and fruit development, and anthocyanin synthesis. A total of 28 LsbHLHs were found to have cis-elements associated with light response and endosperm expression biosynthesis. Ten conserved motifs were identified across the LsbHLH proteins. The protein-protein interaction analysis showed that all LsbHLH proteins interacted with each other, and nine of them displayed high levels of interaction. RNA-seq analysis of four Sequence Read Archive (SRA) experiments showed high expression levels of LsbHLHs across a range of environmental conditions. Seven highly expressed genes were selected for qPCR validation, and their expression patterns in response to salt stress showed that LsbHLHD4, LsbHLHD5, LsbHLHR6, LsbHLHD8, LsbHLHR14, LsbHLHR68, and LsbHLHR86 were all expressed in response to salt stress.Conclusion: The study provides an overview of the bHLH family in the grass pea genome and sheds light on the molecular mechanisms underlying the growth and evolution of this crop. The report covers the diversity in gene structure, expression patterns, and potential roles in regulating plant growth and response to environmental stress factors in grass pea. The identified candidate LsbHLHs could be utilized as a tool to enhance the resilience and adaptation of grass pea to environmental stress.
Collapse
Affiliation(s)
- Alsamman M. Alsamman
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| | - Mohamed Abdelsattar
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| | - Achraf El Allali
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
- *Correspondence: Achraf El Allali, ; Aladdin Hamwieh,
| | - Khaled H. Radwan
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
- National Biotechnology Network of Expertise, ASRT, Cairo, Egypt
| | - Ahmed E. Nassar
- International Center for Agricultural Research in the Dry Areas (ICARDA), Giza, Egypt
| | - Khaled H. Mousa
- International Center for Agricultural Research in the Dry Areas (ICARDA), Giza, Egypt
| | - Ahmed Hussein
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| | - Morad M. Mokhtar
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | | | - Tawffiq Istanbuli
- International Center for Agricultural Research in the Dry Areas (ICARDA), Terbol, Lebanon
| | - Zakaria Kehel
- Biodiversity and Crop Improvement Program, International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - Aladdin Hamwieh
- International Center for Agricultural Research in the Dry Areas (ICARDA), Giza, Egypt
- *Correspondence: Achraf El Allali, ; Aladdin Hamwieh,
| |
Collapse
|
9
|
Analyzing Prokaryotic Transcriptomics in the Light of Genome Data with the MicroScope Platform. Methods Mol Biol 2022; 2605:241-270. [PMID: 36520398 DOI: 10.1007/978-1-0716-2871-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Large-scale genome sequencing and the increasingly massive use of high-throughput approaches produce a vast amount of new information that completely transforms our understanding of thousands of microbial species occurring in our environment. However, despite the development of powerful bioinformatics approaches, full interpretation of the content of these genomes remains a difficult task. To address this challenge, the MicroScope platform has been developed. It is an integrated Web platform for management, annotation, comparative analysis, and visualization of microbial genomes ( https://mage.genoscope.cns.fr/microscope ). Launched in 2005, the platform has been under continuous development and provides analyzes for complete and ongoing genome projects together with metabolic network reconstruction and transcriptomic experiments allowing users to improve the understanding of gene functions. MicroScope platform is widely used by microbiologists from academia and industry all around the world for collaborative studies and expert annotation. It enables collaborative work in a rich comparative genomic context and improves community-based curation efforts. Here, we describe the protocol to follow for the integration and analysis of transcriptomics data in the Microscope platform. The chapter reviews each key step from the experimental design to the analysis and interpretation of the experiment data and results. The integration of transcriptomics data gives a dynamic view of the genome by allowing the users to improve the understanding of gene functions by interpreting them in the light of regulatory cell processes. Moreover, they can also contribute to the refinement of genome annotation through the discovery of new genes and help to fill metabolic gaps.
Collapse
|
10
|
Guan W, Shan J, Gao M, Guo J, Wu D, Zhang Q, Wang J, Chen R, Du B, Zhu L, He G. Bulked Segregant RNA Sequencing Revealed Difference Between Virulent and Avirulent Brown Planthoppers. FRONTIERS IN PLANT SCIENCE 2022; 13:843227. [PMID: 35498688 PMCID: PMC9047503 DOI: 10.3389/fpls.2022.843227] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
The brown planthopper (Nilaparvata lugens Stål, BPH) is one of the most devastating insect pests of rice (Oryza sativa L.), but BPH populations have varying degrees of virulence to rice varieties carrying different resistance genes. To help efforts to characterize these variations we applied bulked segregant RNA sequencing (BSR-seq) to identify differentially expressed genes (DEGs) and genetic loci associated with BPH virulence to YHY15 rice plants carrying the resistance gene Bph15. BPHs that are highly virulent or avirulent to these plants were selected from an F2 population to form two contrasting bulks, and BSR-seq identified 751 DEGs between the bulks. Genes associated with carbohydrate, amino acid and nucleotide metabolism, the endocrine system, and signal transduction were upregulated in the avirulent insects when they fed on these plants. The results also indicated that shifts in lipid metabolism and digestive system pathways were crucial for the virulent BPHs' adaptation to the resistant rice. We identified 24 single-nucleotide polymorphisms (SNPs) in 21 genes linked with BPH virulence. Possible roles of genes apparently linked to BPH virulence are discussed. Our results provide potentially valuable information for further studies of BPH virulence mechanisms and development of robust control strategies.
Collapse
|
11
|
Signal B, Kahlke T. how_are_we_stranded_here: quick determination of RNA-Seq strandedness. BMC Bioinformatics 2022; 23:49. [PMID: 35065593 PMCID: PMC8783475 DOI: 10.1186/s12859-022-04572-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 01/10/2022] [Indexed: 11/07/2022] Open
Abstract
Background Quality control checks are the first step in RNA-Sequencing analysis, which enable the identification of common issues that occur in the sequenced reads. Checks for sequence quality, contamination, and complexity are commonplace, and allow users to implement steps downstream which can account for these issues. Strand-specificity of reads is frequently overlooked and is often unavailable even in published data, yet when unknown or incorrectly specified can have detrimental effects on the reproducibility and accuracy of downstream analyses. Results To address these issues, we developed how_are_we_stranded_here, a Python library that helps to quickly infer strandedness of paired-end RNA-Sequencing data. Testing on both simulated and real RNA-Sequencing reads showed that it correctly measures strandedness, and measures outside the normal range may indicate sample contamination. Conclusions how_are_we_stranded_here is fast and user friendly, making it easy to implement in quality control pipelines prior to analysing RNA-Sequencing data. how_are_we_stranded_here is freely available at https://github.com/betsig/how_are_we_stranded_here. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-022-04572-7.
Collapse
|