1
|
Guntur AR, Smith JE, Brahmandam A, DeBauche P, Cronmiller C, Lundell MJ. ZFH-2 is required for Drosophila ovarian follicle development and is expressed at the band/interband boundaries of polytene chromosomes. Dev Biol 2023; 504:1-11. [PMID: 37666353 DOI: 10.1016/j.ydbio.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
The transcription factor ZFH-2 has well-documented roles in Drosophila neurogenesis and other developmental processes. Here we provide the first evidence that ZFH-2 has a role in oogenesis. We demonstrate that ZFH-2 is expressed in the wild-type ovary and that a loss of zfh-2 function produces a mutant ovary phenotype where egg chambers are reduced in number and fused. We also show that a loss of zfh-2 function can suppress a daughterless loss-of-function ovary phenotype suggesting a possible genetic relationship between these two genes in the ovary. We also show that ZFH-2 is located at the boundary between bands and interbands on polytene chromosomes and that at a subset of these sites ZFH-2 colocalizes with the insulator/promoter cofactor CP190.
Collapse
Affiliation(s)
- Ananya R Guntur
- Department of Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - John E Smith
- Department of Biology, University of Virginia, P.O. Box 400328, Charlottesville, VA, 22904, USA
| | - Archana Brahmandam
- Department of Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Phillip DeBauche
- Department of Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Claire Cronmiller
- Department of Biology, University of Virginia, P.O. Box 400328, Charlottesville, VA, 22904, USA
| | - Martha J Lundell
- Department of Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA.
| |
Collapse
|
2
|
Porrati F, Grewe D, Seybert A, Frangakis AS, Eltsov M. FIB-SEM imaging properties of Drosophila melanogaster tissues embedded in Lowicryl HM20. J Microsc 2018; 273:91-104. [PMID: 30417390 DOI: 10.1111/jmi.12764] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 09/17/2018] [Accepted: 10/12/2018] [Indexed: 11/27/2022]
Abstract
Lowicryl resins enable processing of biological material for electron microscopy at the lowest temperatures compatible with resin embedding. When combined with high-pressure freezing and freeze-substitution, Lowicryl embedding supports preservation of fine structural details and fluorescent markers. Here, we analysed the applicability of Lowicryl HM20 embedding for focused ion beam (FIB) scanning electron microscopy (SEM) tomography of Drosophila melanogaster embryonic and larval model systems. We show that the freeze-substitution with per-mill concentrations of uranyl acetate provided sufficient contrast and an image quality of SEM imaging in the range of similar samples analysed by transmission electron microscopy (TEM). Preservation of genetically encoded fluorescent proteins allowed correlative localization of regions of interest (ROI) within the embedded tissue block. TEM on sections cut from the block face enabled evaluation of structural preservation to allow ROI ranking and thus targeted, time-efficient FIB-SEM tomography data collection. The versatility of Lowicryl embedding opens new perspectives for designing hybrid SEM-TEM workflows to comprehensively analyse biological structures. LAY DESCRIPTION: Focused ion beam scanning electron microscopy is becoming a widely used technique for the three-dimensional analysis of biological samples at fine structural details beyond levels feasible for light microscopy. To withstand the abrasion of material by the ion beam and the imaging by the scanning electron beam, biological samples have to be embedded into resins, most commonly these are very dense epoxy-based plastics. However, dense resins generate electron scattering which interferes with the signal from the biological specimen. Furthermore, to improve the imaging contrast, epoxy embedding requires chemical treatments with e.g. heavy metals, which deteriorate the ultrastructure of the biological specimen. In this study we explored the applicability of an electron lucent resin, Lowicryl HM 20, for focused ion beam scanning electron microscopy. The Lowicryl embedding workflow operates at milder chemical treatments and lower temperatures, thus preserving the sub-cellular and sub-organellar organization, as well as fluorescent markers visible by light microscopy. Here we show that focus ion beam scanning electron microscopy of Lowicryl-embedded fruit flies tissues provides reliable imaging revealing fine structural details. Our workflow benefited from use of transmission electron microscopy for the quality control of the ultrastructural preservation and fluorescent light microscopy for localization of regions of interest. The versatility of Lowicryl embedding opens up new perspectives for designing hybrid workflows combining fluorescent light, scanning, and transmission electron microscopy techniques to comprehensively analyze biological structures.
Collapse
Affiliation(s)
- F Porrati
- Buchmann Institute for Molecular Life Sciences and Institute for Biophysics, Goethe-University, Frankfurt am Main, Germany
| | - D Grewe
- Buchmann Institute for Molecular Life Sciences and Institute for Biophysics, Goethe-University, Frankfurt am Main, Germany
| | - A Seybert
- Buchmann Institute for Molecular Life Sciences and Institute for Biophysics, Goethe-University, Frankfurt am Main, Germany
| | - A S Frangakis
- Buchmann Institute for Molecular Life Sciences and Institute for Biophysics, Goethe-University, Frankfurt am Main, Germany
| | - M Eltsov
- Buchmann Institute for Molecular Life Sciences and Institute for Biophysics, Goethe-University, Frankfurt am Main, Germany
| |
Collapse
|
3
|
Kolesnikova TD. Banding Pattern of Polytene Chromosomes as a Representation of Universal Principles of Chromatin Organization into Topological Domains. BIOCHEMISTRY (MOSCOW) 2018; 83:338-349. [PMID: 29626921 DOI: 10.1134/s0006297918040053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Drosophila polytene chromosomes are widely used as a model of eukaryotic interphase chromosomes. The most noticeable feature of polytene chromosome is transverse banding associated with alternation of dense stripes (dark or black bands) and light diffuse areas that encompass alternating less compact gray bands and interbands visible with an electron microscope. In recent years, several approaches have been developed to predict location of morphological structures of polytene chromosomes based on the distribution of proteins on the molecular map of Drosophila genome. Comparison of these structures with the results of analysis of the three-dimensional chromatin organization by the Hi-C method indicates that the morphology of polytene chromosomes represents direct visualization of the interphase nucleus spatial organization into topological domains. Compact black bands correspond to the extended topological domains of inactive chromatin, while interbands are the barriers between the adjacent domains. Here, we discuss the prospects of using polytene chromosomes to study mechanisms of spatial organization of interphase chromosomes, as well as their dynamics and evolution.
Collapse
Affiliation(s)
- T D Kolesnikova
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| |
Collapse
|
4
|
Kolesnikova TD, Goncharov FP, Zhimulev IF. Similarity in replication timing between polytene and diploid cells is associated with the organization of the Drosophila genome. PLoS One 2018; 13:e0195207. [PMID: 29659604 PMCID: PMC5902040 DOI: 10.1371/journal.pone.0195207] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 03/19/2018] [Indexed: 12/21/2022] Open
Abstract
Morphologically, polytene chromosomes of Drosophila melanogaster consist of compact “black” bands alternating with less compact “grey” bands and interbands. We developed a comprehensive approach that combines cytological mapping data of FlyBase-annotated genes and novel tools for predicting cytogenetic features of chromosomes on the basis of their protein composition and determined the genomic coordinates for all black bands of polytene chromosome 2R. By a PCNA immunostaining assay, we obtained the replication timetable for all the bands mapped. The results allowed us to compare replication timing between polytene chromosomes in salivary glands and chromosomes from cultured diploid cell lines and to observe a substantial similarity in the global replication patterns at the band resolution level. In both kinds of chromosomes, the intervals between black bands correspond to early replication initiation zones. Black bands are depleted of replication initiation events and are characterized by a gradient of replication timing; therefore, the time of replication completion correlates with the band length. The bands are characterized by low gene density, contain predominantly tissue-specific genes, and are represented by silent chromatin types in various tissues. The borders of black bands correspond well to the borders of topological domains as well as to the borders of the zones showing H3K27me3, SUUR, and LAMIN enrichment. In conclusion, the characteristic pattern of polytene chromosomes reflects partitioning of the Drosophila genome into two global types of domains with contrasting properties. This partitioning is conserved in different tissues and determines replication timing in Drosophila.
Collapse
Affiliation(s)
- Tatyana D. Kolesnikova
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
- * E-mail:
| | - Fedor P. Goncharov
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russia
| | - Igor F. Zhimulev
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
5
|
Pokholkova GV, Demakov SA, Andreenkov OV, Andreenkova NG, Volkova EI, Belyaeva ES, Zhimulev IF. Tethering of CHROMATOR and dCTCF proteins results in decompaction of condensed bands in the Drosophila melanogaster polytene chromosomes but does not affect their transcription and replication timing. PLoS One 2018; 13:e0192634. [PMID: 29608600 PMCID: PMC5880345 DOI: 10.1371/journal.pone.0192634] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/26/2018] [Indexed: 01/20/2023] Open
Abstract
Instulator proteins are central to domain organization and gene regulation in the genome. We used ectopic tethering of CHROMATOR (CHRIZ/CHRO) and dCTCF to pre-defined regions of the genome to dissect the influence of these proteins on local chromatin organization, to analyze their interaction with other key chromatin proteins and to evaluate the effects on transcription and replication. Specifically, using UAS-GAL4DBD system, CHRO and dCTCF were artificially recruited into highly compacted polytene chromosome bands that share the features of silent chromatin type known as intercalary heterochromatin (IH). This led to local chromatin decondensation, formation of novel DHSes and recruitment of several "open chromatin" proteins. CHRO tethering resulted in the recruitment of CP190 and Z4 (PZG), whereas dCTCF tethering attracted CHRO, CP190, and Z4. Importantly, formation of a local stretch of open chromatin did not result in the reactivation of silent marker genes yellow and mini-white immediately adjacent to the targeting region (UAS), nor did RNA polII become recruited into this chromatin. The decompacted region retained late replicated, similarly to the wild-type untargeted region.
Collapse
Affiliation(s)
- Galina V. Pokholkova
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences (IMCB RAS), Novosibirsk, Russia
| | - Sergei A. Demakov
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences (IMCB RAS), Novosibirsk, Russia
- Novosibirsk State University (NSU), Novosibirsk, Russia
| | - Oleg V. Andreenkov
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences (IMCB RAS), Novosibirsk, Russia
| | - Natalia G. Andreenkova
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences (IMCB RAS), Novosibirsk, Russia
| | - Elena I. Volkova
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences (IMCB RAS), Novosibirsk, Russia
| | - Elena S. Belyaeva
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences (IMCB RAS), Novosibirsk, Russia
| | - Igor F. Zhimulev
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences (IMCB RAS), Novosibirsk, Russia
- Novosibirsk State University (NSU), Novosibirsk, Russia
- * E-mail:
| |
Collapse
|
6
|
Zykova TY, Levitsky VG, Belyaeva ES, Zhimulev IF. Polytene Chromosomes - A Portrait of Functional Organization of the Drosophila Genome. Curr Genomics 2018; 19:179-191. [PMID: 29606905 PMCID: PMC5850506 DOI: 10.2174/1389202918666171016123830] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 04/01/2016] [Accepted: 09/26/2017] [Indexed: 12/15/2022] Open
Abstract
This mini-review is devoted to the problem genetic meaning of main polytene chromosome structures – bands and interbands. Generally, densely packed chromatin forms black bands, moderately condensed regions form grey loose bands, whereas decondensed regions of the genome appear as interbands. Recent progress in the annotation of the Drosophila genome and epigenome has made it possible to compare the banding pattern and the structural organization of genes, as well as their activity. This was greatly aided by our ability to establish the borders of bands and interbands on the physical map, which allowed to perform comprehensive side-by-side comparisons of cytology, genetic and epigenetic maps and to uncover the association between the morphological structures and the functional domains of the genome. These studies largely conclude that interbands 5’-ends of housekeeping genes that are active across all cell types. Interbands are enriched with proteins involved in transcription and nucleosome remodeling, as well as with active histone modifications. Notably, most of the replication origins map to interband regions. As for grey loose bands adjacent to interbands, they typically host the bodies of house-keeping genes. Thus, the bipartite structure composed of an interband and an adjacent grey band functions as a standalone genetic unit. Finally, black bands harbor tissue-specific genes with narrow temporal and tissue expression profiles. Thus, the uniform and permanent activity of interbands combined with the inactivity of genes in bands forms the basis of the universal banding pattern observed in various Drosophila tissues.
Collapse
Affiliation(s)
- Tatyana Yu Zykova
- Institute of Molecular and Cellular Biology of the Russian Academy of Sciences, Novosibirsk630090, Russian Federation
| | - Victor G Levitsky
- Institute of Cytology and Genetics of the Russian Academy of Sciences, Novosibirsk630090, Russian Federation.,Novoisibirsk State University, Novosibirsk630090, Russian Federation
| | - Elena S Belyaeva
- Institute of Molecular and Cellular Biology of the Russian Academy of Sciences, Novosibirsk630090, Russian Federation
| | - Igor F Zhimulev
- Institute of Molecular and Cellular Biology of the Russian Academy of Sciences, Novosibirsk630090, Russian Federation.,Novoisibirsk State University, Novosibirsk630090, Russian Federation
| |
Collapse
|
7
|
Khoroshko VA, Levitsky VG, Zykova TY, Antonenko OV, Belyaeva ES, Zhimulev IF. Chromatin Heterogeneity and Distribution of Regulatory Elements in the Late-Replicating Intercalary Heterochromatin Domains of Drosophila melanogaster Chromosomes. PLoS One 2016; 11:e0157147. [PMID: 27300486 PMCID: PMC4907538 DOI: 10.1371/journal.pone.0157147] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 05/25/2016] [Indexed: 12/28/2022] Open
Abstract
Late-replicating domains (intercalary heterochromatin) in the Drosophila genome display a number of features suggesting their organization is quite unique. Typically, they are quite large and encompass clusters of functionally unrelated tissue-specific genes. They correspond to the topologically associating domains and conserved microsynteny blocks. Our study aims at exploring further details of molecular organization of intercalary heterochromatin and has uncovered surprising heterogeneity of chromatin composition in these regions. Using the 4HMM model developed in our group earlier, intercalary heterochromatin regions were found to host chromatin fragments with a particular epigenetic profile. Aquamarine chromatin fragments (spanning 0.67% of late-replicating regions) are characterized as a class of sequences that appear heterogeneous in terms of their decompactization. These fragments are enriched with enhancer sequences and binding sites for insulator proteins. They likely mark the chromatin state that is related to the binding of cis-regulatory proteins. Malachite chromatin fragments (11% of late-replicating regions) appear to function as universal transitional regions between two contrasting chromatin states. Namely, they invariably delimit intercalary heterochromatin regions from the adjacent active chromatin of interbands. Malachite fragments also flank aquamarine fragments embedded in the repressed chromatin of late-replicating regions. Significant enrichment of insulator proteins CP190, SU(HW), and MOD2.2 was observed in malachite chromatin. Neither aquamarine nor malachite chromatin types appear to correlate with the positions of highly conserved non-coding elements (HCNE) that are typically replete in intercalary heterochromatin. Malachite chromatin found on the flanks of intercalary heterochromatin regions tends to replicate earlier than the malachite chromatin embedded in intercalary heterochromatin. In other words, there exists a gradient of replication progressing from the flanks of intercalary heterochromatin regions center-wise. The peculiar organization and features of replication in large late-replicating regions are discussed as possible factors shaping the evolutionary stability of intercalary heterochromatin.
Collapse
Affiliation(s)
| | - Viktor G. Levitsky
- Novosibirsk State University, Novosibirsk, Russia
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Tatyana Yu. Zykova
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russia
| | | | - Elena S. Belyaeva
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russia
| | - Igor F. Zhimulev
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
8
|
Slattery M, Ma L, Spokony RF, Arthur RK, Kheradpour P, Kundaje A, Nègre N, Crofts A, Ptashkin R, Zieba J, Ostapenko A, Suchy S, Victorsen A, Jameel N, Grundstad AJ, Gao W, Moran JR, Rehm EJ, Grossman RL, Kellis M, White KP. Diverse patterns of genomic targeting by transcriptional regulators in Drosophila melanogaster. Genome Res 2015; 24:1224-35. [PMID: 24985916 PMCID: PMC4079976 DOI: 10.1101/gr.168807.113] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Annotation of regulatory elements and identification of the transcription-related factors (TRFs) targeting these elements are key steps in understanding how cells interpret their genetic blueprint and their environment during development, and how that process goes awry in the case of disease. One goal of the modENCODE (model organism ENCyclopedia of DNA Elements) Project is to survey a diverse sampling of TRFs, both DNA-binding and non-DNA-binding factors, to provide a framework for the subsequent study of the mechanisms by which transcriptional regulators target the genome. Here we provide an updated map of the Drosophila melanogaster regulatory genome based on the location of 84 TRFs at various stages of development. This regulatory map reveals a variety of genomic targeting patterns, including factors with strong preferences toward proximal promoter binding, factors that target intergenic and intronic DNA, and factors with distinct chromatin state preferences. The data also highlight the stringency of the Polycomb regulatory network, and show association of the Trithorax-like (Trl) protein with hotspots of DNA binding throughout development. Furthermore, the data identify more than 5800 instances in which TRFs target DNA regions with demonstrated enhancer activity. Regions of high TRF co-occupancy are more likely to be associated with open enhancers used across cell types, while lower TRF occupancy regions are associated with complex enhancers that are also regulated at the epigenetic level. Together these data serve as a resource for the research community in the continued effort to dissect transcriptional regulatory mechanisms directing Drosophila development.
Collapse
Affiliation(s)
- Matthew Slattery
- Institute for Genomics & Systems Biology, Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Lijia Ma
- Institute for Genomics & Systems Biology, Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Rebecca F Spokony
- Institute for Genomics & Systems Biology, Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Robert K Arthur
- Institute for Genomics & Systems Biology, Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Pouya Kheradpour
- Computer Science and Artificial Intelligence Laboratory (CSAIL), Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA
| | - Anshul Kundaje
- Computer Science and Artificial Intelligence Laboratory (CSAIL), Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA
| | - Nicolas Nègre
- Institute for Genomics & Systems Biology, Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA; Université de Montpellier II and INRA, UMR1333 DGIMI, F-34095 Montpellier, France
| | - Alex Crofts
- Institute for Genomics & Systems Biology, Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Ryan Ptashkin
- Institute for Genomics & Systems Biology, Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Jennifer Zieba
- Institute for Genomics & Systems Biology, Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Alexander Ostapenko
- Institute for Genomics & Systems Biology, Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Sarah Suchy
- Institute for Genomics & Systems Biology, Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Alec Victorsen
- Institute for Genomics & Systems Biology, Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Nader Jameel
- Institute for Genomics & Systems Biology, Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - A Jason Grundstad
- Institute for Genomics & Systems Biology, Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Wenxuan Gao
- Institute for Genomics & Systems Biology, Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Jennifer R Moran
- Institute for Genomics & Systems Biology, Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - E Jay Rehm
- Institute for Genomics & Systems Biology, Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Robert L Grossman
- Institute for Genomics & Systems Biology, Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Manolis Kellis
- Computer Science and Artificial Intelligence Laboratory (CSAIL), Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA; Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Kevin P White
- Institute for Genomics & Systems Biology, Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
9
|
Tao H, Yang JJ, Shi KH. Non-coding RNAs as direct and indirect modulators of epigenetic mechanism regulation of cardiac fibrosis. Expert Opin Ther Targets 2015; 19:707-16. [PMID: 25652534 DOI: 10.1517/14728222.2014.1001740] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Cardiac fibroblast activation is a pivotal cellular event in cardiac fibrosis. Numerous studies have indicated that epigenetic modifications control cardiac fibroblast activation. Greater knowledge of the role of epigenetic modifications could improve understanding of the cardiac fibrosis pathogenesis. AREAS COVERED The aim of this review is to describe the present knowledge about the important role of non-coding RNA (ncRNA) transcripts in epigenetic gene regulation in cardiac fibrosis and looks ahead on new perspectives of epigenetic modification research. Furthermore, we will discuss examples of ncRNAs that interact with histone modification or DNA methylation to regulate gene expression. EXPERT OPINION MicroRNAs (miRNAs) and long ncRNAs (lncRNAs) modulate several important aspects of function. Recently, some studies continue to find novel pathways, including the important role of ncRNA transcripts in epigenetic gene regulation. Targeting the miRNAs and lncRNAs can be a promising direction in cardiac fibrosis treatment. We discuss new perspectives of ncRNAs that interact with histone modification or DNA methylation to regulate gene expression, others that are targets of these epigenetic mechanisms. The emerging recognition of the diverse functions of ncRNAs in regulating gene expression by epigenetic mechanisms suggests that they may represent new targets for therapeutic intervention.
Collapse
Affiliation(s)
- Hui Tao
- The Second Hospital of Anhui Medical University, Department of Cardiothoracic Surgery , Fu Rong Road, Hefei 230601, Anhui Province , China +86 551 63869531 ; +86 551 63869531 ;
| | | | | |
Collapse
|
10
|
Zhimulev IF, Zykova TY, Goncharov FP, Khoroshko VA, Demakova OV, Semeshin VF, Pokholkova GV, Boldyreva LV, Demidova DS, Babenko VN, Demakov SA, Belyaeva ES. Genetic organization of interphase chromosome bands and interbands in Drosophila melanogaster. PLoS One 2014; 9:e101631. [PMID: 25072930 PMCID: PMC4114487 DOI: 10.1371/journal.pone.0101631] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 06/09/2014] [Indexed: 12/18/2022] Open
Abstract
Drosophila melanogaster polytene chromosomes display specific banding pattern; the underlying genetic organization of this pattern has remained elusive for many years. In the present paper, we analyze 32 cytology-mapped polytene chromosome interbands. We estimated molecular locations of these interbands, described their molecular and genetic organization and demonstrate that polytene chromosome interbands contain the 5' ends of housekeeping genes. As a rule, interbands display preferential "head-to-head" orientation of genes. They are enriched for "broad" class promoters characteristic of housekeeping genes and associate with open chromatin proteins and Origin Recognition Complex (ORC) components. In two regions, 10A and 100B, coding sequences of genes whose 5'-ends reside in interbands map to constantly loosely compacted, early-replicating, so-called "grey" bands. Comparison of expression patterns of genes mapping to late-replicating dense bands vs genes whose promoter regions map to interbands shows that the former are generally tissue-specific, whereas the latter are represented by ubiquitously active genes. Analysis of RNA-seq data (modENCODE-FlyBase) indicates that transcripts from interband-mapping genes are present in most tissues and cell lines studied, across most developmental stages and upon various treatment conditions. We developed a special algorithm to computationally process protein localization data generated by the modENCODE project and show that Drosophila genome has about 5700 sites that demonstrate all the features shared by the interbands cytologically mapped to date.
Collapse
Affiliation(s)
- Igor F. Zhimulev
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
- * E-mail:
| | - Tatyana Yu. Zykova
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Fyodor P. Goncharov
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Varvara A. Khoroshko
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Olga V. Demakova
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Valeriy F. Semeshin
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Galina V. Pokholkova
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Lidiya V. Boldyreva
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Darya S. Demidova
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Vladimir N. Babenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Sergey A. Demakov
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Elena S. Belyaeva
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
11
|
Gregor T, Garcia HG, Little SC. The embryo as a laboratory: quantifying transcription in Drosophila. Trends Genet 2014; 30:364-75. [PMID: 25005921 DOI: 10.1016/j.tig.2014.06.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 06/08/2014] [Accepted: 06/16/2014] [Indexed: 11/16/2022]
Abstract
Transcriptional regulation of gene expression is fundamental to most cellular processes, including determination of cellular fates. Quantitative studies of transcription in cultured cells have led to significant advances in identifying mechanisms underlying transcriptional control. Recent progress allowed implementation of these same quantitative methods in multicellular organisms to ask how transcriptional regulation unfolds both in vivo and at the single molecule level in the context of embryonic development. Here we review some of these advances in early Drosophila development, which bring the embryo on par with its single celled counterparts. In particular, we discuss progress in methods to measure mRNA and protein distributions in fixed and living embryos, and we highlight some initial applications that lead to fundamental new insights about molecular transcription processes. We end with an outlook on how to further exploit the unique advantages that come with investigating transcriptional control in the multicellular context of development.
Collapse
Affiliation(s)
- Thomas Gregor
- Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ 085444, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA.
| | - Hernan G Garcia
- Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ 085444, USA
| | - Shawn C Little
- Department of Molecular Biology, Howard Hughes Medical Institute, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
12
|
Razin SV, Gavrilov AA. Chromatin without the 30-nm fiber: constrained disorder instead of hierarchical folding. Epigenetics 2014; 9:653-7. [PMID: 24561903 PMCID: PMC4063823 DOI: 10.4161/epi.28297] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Several hierarchical levels of DNA packaging are believed to exist in chromatin, starting from a 10-nm chromatin fiber that is further packed into a 30-nm fiber. Transitions between the 30-nm and 10-nm fibers are thought to be essential for the control of chromatin transcriptional status. However, recent studies demonstrate that in the nuclei, DNA is packed in tightly associated 10-nm fibers that are not compacted into 30-nm fibers. Additionally, the accessibility of DNA in chromatin depends on the local mobility of nucleosomes rather than on decompaction of chromosome regions. These findings argue for reconsidering the hierarchical model of chromatin packaging and some of the basic definitions of chromatin. In particular, chromatin domains should be considered as three-dimensional objects, which may include genomic regions that do not necessarily constitute a continuous domain on the DNA chain.
Collapse
Affiliation(s)
- Sergey V Razin
- Institute of Gene Biology of the Russian Academy of Sciences; Moscow, Russia; Faculty of Biology; M.V. Lomonosov Moscow State University; Moscow, Russia; LIA 1066 French-Russian Joint Cancer Research Laboratory; Moscow, Russia
| | - Alexey A Gavrilov
- Institute of Gene Biology of the Russian Academy of Sciences; Moscow, Russia; LIA 1066 French-Russian Joint Cancer Research Laboratory; Moscow, Russia
| |
Collapse
|
13
|
Nora EP, Dekker J, Heard E. Segmental folding of chromosomes: a basis for structural and regulatory chromosomal neighborhoods? Bioessays 2013; 35:818-28. [PMID: 23832846 PMCID: PMC3874840 DOI: 10.1002/bies.201300040] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We discuss here a series of testable hypotheses concerning the role of chromosome folding into topologically associating domains (TADs). Several lines of evidence suggest that segmental packaging of chromosomal neighborhoods may underlie features of chromatin that span large domains, such as heterochromatin blocks, association with the nuclear lamina and replication timing. By defining which DNA elements preferentially contact each other, the segmentation of chromosomes into TADs may also underlie many properties of long-range transcriptional regulation. Several observations suggest that TADs can indeed provide a structural basis to regulatory landscapes, by controlling enhancer sharing and allocation. We also discuss how TADs may shape the evolution of chromosomes, by causing maintenance of synteny over large chromosomal segments. Finally we suggest a series of experiments to challenge these ideas and provide concrete examples illustrating how they could be practically applied.
Collapse
|