1
|
Liu S, Athreya A, Lao Z, Zhang B. From Nucleosomes to Compartments: Physicochemical Interactions Underlying Chromatin Organization. Annu Rev Biophys 2024; 53:221-245. [PMID: 38346246 PMCID: PMC11369498 DOI: 10.1146/annurev-biophys-030822-032650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Chromatin organization plays a critical role in cellular function by regulating access to genetic information. However, understanding chromatin folding is challenging due to its complex, multiscale nature. Significant progress has been made in studying in vitro systems, uncovering the structure of individual nucleosomes and their arrays, and elucidating the role of physicochemical forces in stabilizing these structures. Additionally, remarkable advancements have been achieved in characterizing chromatin organization in vivo, particularly at the whole-chromosome level, revealing important features such as chromatin loops, topologically associating domains, and nuclear compartments. However, bridging the gap between in vitro and in vivo studies remains challenging. The resemblance between in vitro and in vivo chromatin conformations and the relevance of internucleosomal interactions for chromatin folding in vivo are subjects of debate. This article reviews experimental and computational studies conducted at various length scales, highlighting the significance of intrinsic interactions between nucleosomes and their roles in chromatin folding in vivo.
Collapse
Affiliation(s)
- Shuming Liu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - Advait Athreya
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - Zhuohan Lao
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| |
Collapse
|
2
|
Nitsch S, Schneider R. Native ChIP: Studying the Genome-Wide Distribution of Histone Modifications in Cells and Tissue. Methods Mol Biol 2024; 2846:1-16. [PMID: 39141226 DOI: 10.1007/978-1-0716-4071-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
For the genome-wide mapping of histone modifications, chromatin immunoprecipitation (ChIP) followed by high-throughput sequencing remains the benchmark method. While crosslinked ChIP can be used for all kinds of targets, native ChIP is predominantly used for strong and direct DNA interactors like histones and their modifications. Here we describe a native ChIP protocol that can be used for cells and tissue material.
Collapse
Affiliation(s)
- Sandra Nitsch
- Institute of Functional Epigenetics (IFE), Helmholtz Zentrum München, Neuherberg, Germany.
| | - Robert Schneider
- Institute of Functional Epigenetics (IFE), Helmholtz Zentrum München, Neuherberg, Germany
- Faculty of Biology, Ludwigs-Maximilians Universität München, Planegg-Martinsried, Munich, Germany
| |
Collapse
|
3
|
Aditama R, Tanjung ZA, Aprilyanto V, Sudania WM, Utomo C, Liwang T. Identification of oil palm cis-regulatory elements based on DNA free energy and single nucleotide polymorphism density. Comput Biol Chem 2023; 106:107931. [PMID: 37481844 DOI: 10.1016/j.compbiolchem.2023.107931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/29/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023]
Abstract
Transcription control through cis-regulatory elements (CREs) is one of important regulators of gene expression. This study aimed to identify the location of CREs in oil palm (Elaeis guineensis Jacq.) using the combination of DNA free energy and single nucleotide polymorphism (SNP) density approaches. Promoter region sequences were extracted oil palm genome spanning from 1500 nucleotides (nt) upstream to 1000 nt downstream of every annotated transcription start sites (TSS). Free energy profiles of each promoter region were calculated using PromPredict software. Raw reads from the deep sequencing of 59 oil palm origins were used to calculate SNP density of each promoter region. The result showed that the average free energy (AFE) on the upstream region of TSS is about 1.5 kcal/mol higher compared to the downstream region. Using DNA free energy method, 16,281 regions of CREs were predicted. Most of predicted CREs was located between 1 and 500 nt upstream of TSS. Anti-correlation pattern between free energy and SNP density was observed on the predicted regions of CREs. This anti-correlated pattern was also observed on an experimentally determined promoter of the oil palm metallothionein gene, EgMSP1. Considering the increasing use of promoter information on plant biotechnology, an easy and accurate promoter prediction using the combination of free energy and SNP density method could be recommended.
Collapse
Affiliation(s)
- Redi Aditama
- Biotechnology Department, Plant Production and Biotechnology Division, PT SMART Tbk., Bogor 16810, Indonesia
| | - Zulfikar Achmad Tanjung
- Biotechnology Department, Plant Production and Biotechnology Division, PT SMART Tbk., Bogor 16810, Indonesia
| | - Victor Aprilyanto
- Biotechnology Department, Plant Production and Biotechnology Division, PT SMART Tbk., Bogor 16810, Indonesia
| | - Widyartini Made Sudania
- Biotechnology Department, Plant Production and Biotechnology Division, PT SMART Tbk., Bogor 16810, Indonesia
| | - Condro Utomo
- Biotechnology Department, Plant Production and Biotechnology Division, PT SMART Tbk., Bogor 16810, Indonesia.
| | - Tony Liwang
- Biotechnology Department, Plant Production and Biotechnology Division, PT SMART Tbk., Bogor 16810, Indonesia
| |
Collapse
|
4
|
Bartlett DA, Dileep V, Handa T, Ohkawa Y, Kimura H, Henikoff S, Gilbert DM. High-throughput single-cell epigenomic profiling by targeted insertion of promoters (TIP-seq). J Cell Biol 2021; 220:e202103078. [PMID: 34783858 PMCID: PMC8600797 DOI: 10.1083/jcb.202103078] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 09/15/2021] [Accepted: 10/27/2021] [Indexed: 12/16/2022] Open
Abstract
Chromatin profiling in single cells has been extremely challenging and almost exclusively limited to histone proteins. In cases where single-cell methods have shown promise, many require highly specialized equipment or cell type-specific protocols and are relatively low throughput. Here, we combine the advantages of tagmentation, linear amplification, and combinatorial indexing to produce a high-throughput single-cell DNA binding site mapping method that is simple, inexpensive, and capable of multiplexing several independent samples per experiment. Targeted insertion of promoters sequencing (TIP-seq) uses Tn5 fused to proteinA to insert a T7 RNA polymerase promoter adjacent to a chromatin protein of interest. Linear amplification of flanking DNA with T7 polymerase before sequencing library preparation provides ∼10-fold higher unique reads per single cell compared with other methods. We applied TIP-seq to map histone modifications, RNA polymerase II (RNAPII), and transcription factor CTCF binding sites in single human and mouse cells.
Collapse
Affiliation(s)
- Daniel A. Bartlett
- Department of Biological Science, Florida State University, Tallahassee, FL
- San Diego Biomedical Research Institute, La Jolla, CA
| | - Vishnu Dileep
- Department of Biological Science, Florida State University, Tallahassee, FL
| | - Tetsuya Handa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Steven Henikoff
- Basic Sciences Division and Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - David M. Gilbert
- Department of Biological Science, Florida State University, Tallahassee, FL
- San Diego Biomedical Research Institute, La Jolla, CA
| |
Collapse
|
5
|
Liehrmann A, Rigaill G, Hocking TD. Increased peak detection accuracy in over-dispersed ChIP-seq data with supervised segmentation models. BMC Bioinformatics 2021; 22:323. [PMID: 34126932 PMCID: PMC8201703 DOI: 10.1186/s12859-021-04221-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/19/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Histone modification constitutes a basic mechanism for the genetic regulation of gene expression. In early 2000s, a powerful technique has emerged that couples chromatin immunoprecipitation with high-throughput sequencing (ChIP-seq). This technique provides a direct survey of the DNA regions associated to these modifications. In order to realize the full potential of this technique, increasingly sophisticated statistical algorithms have been developed or adapted to analyze the massive amount of data it generates. Many of these algorithms were built around natural assumptions such as the Poisson distribution to model the noise in the count data. In this work we start from these natural assumptions and show that it is possible to improve upon them. RESULTS Our comparisons on seven reference datasets of histone modifications (H3K36me3 & H3K4me3) suggest that natural assumptions are not always realistic under application conditions. We show that the unconstrained multiple changepoint detection model with alternative noise assumptions and supervised learning of the penalty parameter reduces the over-dispersion exhibited by count data. These models, implemented in the R package CROCS ( https://github.com/aLiehrmann/CROCS ), detect the peaks more accurately than algorithms which rely on natural assumptions. CONCLUSION The segmentation models we propose can benefit researchers in the field of epigenetics by providing new high-quality peak prediction tracks for H3K36me3 and H3K4me3 histone modifications.
Collapse
Affiliation(s)
- Arnaud Liehrmann
- Institut des Sciences des Plantes de Paris-Saclay (IPS2), Université Paris-Saclay, Université Evry, CNRS, INRAE, 91405 Orsay, France
- Laboratoire de Mathématiques et Modélisation d’Evry (LAMME), Université Paris-Saclay, Université Evry, CNRS, 91037 Evry, France
| | - Guillem Rigaill
- Institut des Sciences des Plantes de Paris-Saclay (IPS2), Université Paris-Saclay, Université Evry, CNRS, INRAE, 91405 Orsay, France
- Laboratoire de Mathématiques et Modélisation d’Evry (LAMME), Université Paris-Saclay, Université Evry, CNRS, 91037 Evry, France
| | - Toby Dylan Hocking
- School of Informatics, Computing, and Cyber Systems (SICCS), Northern Arizona University, 86011 Flagstaff, AZ USA
| |
Collapse
|
6
|
Exploring Beyond the DNA Sequence: A Review of Epigenomic Studies of DNA and Histone Modifications in Dementia. CURRENT GENETIC MEDICINE REPORTS 2020. [DOI: 10.1007/s40142-020-00190-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
Purpose of Review
Although genome-scale studies have identified many genetic variants associated with dementia, these do not account for all of disease incidence and so recently attention has turned to studying mechanisms of genome regulation. Epigenetic processes such as modifications to the DNA and histones alter transcriptional activity and have been hypothesized to be involved in the etiology of dementia. Here, we review the growing body of literature on dementia epigenomics, with a focus on novel discoveries, current limitations, and future directions for the field.
Recent Findings
It is through advances in genomic technology that large-scale quantification of epigenetic modifications is now possible in dementia. Most of the literature in the field has primarily focussed on exploring DNA modifications, namely DNA methylation, in postmortem brain samples from individuals with Alzheimer’s disease. However, recent studies have now begun to explore other epigenetic marks, such as histone modifications, investigating these signatures in both the brain and blood, and in a range of other dementias.
Summary
There is still a demand for more epigenomic studies to be conducted in the dementia field, particularly those assessing chromatin dynamics and a broader range of histone modifications. The field faces limitations in sample accessibility with many studies lacking power. Furthermore, the frequent use of heterogeneous bulk tissue containing multiple cell types further hinders data interpretation. Looking to the future, multi-omic studies, integrating many different epigenetic marks, with matched genetic, transcriptomic, and proteomic data, will be vital, particularly when undertaken in isolated cell populations, or ideally at the level of the single cell. Ultimately these studies could identify novel dysfunctional pathways and biomarkers for disease, which could lead to new therapeutic avenues.
Collapse
|
7
|
Chaparian RR, van Kessel JC. Promoter Pull-Down Assay: A Biochemical Screen for DNA-Binding Proteins. Methods Mol Biol 2020; 2346:165-172. [PMID: 32803537 DOI: 10.1007/7651_2020_307] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Transcription factors are ubiquitous proteins that associate with promoter DNA and regulate gene expression through a variety of mechanisms. Understanding transcriptional control mechanisms requires in-depth investigation of the binding of transcription factors to the promoters they regulate. There are many in vivo and in vitro methods for testing the binding of a known protein to a promoter, such as chromatin immunoprecipitation and electrophoretic mobility shift assays. However, for these experiments, one must have a protein candidate to test and is not able to identify unknown proteins bound to a particular promoter. Thus, the promoter pull-down assay was developed to fill this void. This method uses DNA as bait to capture proteins that bind to a specific promoter, such as transcription factors, from cellular lysates. Coupled with other experiments, the promoter pull-down assay vastly improves the repertoire of methods available for defining regulatory complexes that influence transcription.
Collapse
|