1
|
Nourani E, Koutrouli M, Xie Y, Vagiaki D, Pyysalo S, Nastou K, Brunak S, Jensen LJ. Lifestyle factors in the biomedical literature: an ontology and comprehensive resources for named entity recognition. Bioinformatics 2024; 40:btae613. [PMID: 39412443 PMCID: PMC11543612 DOI: 10.1093/bioinformatics/btae613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/26/2024] [Accepted: 10/15/2024] [Indexed: 11/09/2024] Open
Abstract
MOTIVATION Despite lifestyle factors (LSFs) being increasingly acknowledged in shaping individual health trajectories, particularly in chronic diseases, they have still not been systematically described in the biomedical literature. This is in part because no named entity recognition (NER) system exists, which can comprehensively detect all types of LSFs in text. The task is challenging due to their inherent diversity, lack of a comprehensive LSF classification for dictionary-based NER, and lack of a corpus for deep learning-based NER. RESULTS We present a novel lifestyle factor ontology (LSFO), which we used to develop a dictionary-based system for recognition and normalization of LSFs. Additionally, we introduce a manually annotated corpus for LSFs (LSF200) suitable for training and evaluation of NER systems, and use it to train a transformer-based system. Evaluating the performance of both NER systems on the corpus revealed an F-score of 64% for the dictionary-based system and 76% for the transformer-based system. Large-scale application of these systems on PubMed abstracts and PMC Open Access articles identified over 300 million mentions of LSF in the biomedical literature. AVAILABILITY AND IMPLEMENTATION LSFO, the annotated LSF200 corpus, and the detected LSFs in PubMed and PMC-OA articles using both NER systems, are available under open licenses via the following GitHub repository: https://github.com/EsmaeilNourani/LSFO-expansion. This repository contains links to two associated GitHub repositories and a Zenodo project related to the study. LSFO is also available at BioPortal: https://bioportal.bioontology.org/ontologies/LSFO.
Collapse
Affiliation(s)
- Esmaeil Nourani
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
- Faculty of Information Technology and Computer Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Mikaela Koutrouli
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Yijia Xie
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Danai Vagiaki
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Sampo Pyysalo
- TurkuNLP Group, Department of Computing, Faculty of Technology, University of Turku, Turku 20014, Finland
| | - Katerina Nastou
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Lars Juhl Jensen
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
| |
Collapse
|
2
|
Liu S, Wang A, Xiu X, Zhong M, Wu S. Evaluating Medical Entity Recognition in Health Care: Entity Model Quantitative Study. JMIR Med Inform 2024; 12:e59782. [PMID: 39419501 PMCID: PMC11528166 DOI: 10.2196/59782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/09/2024] [Accepted: 09/15/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Named entity recognition (NER) models are essential for extracting structured information from unstructured medical texts by identifying entities such as diseases, treatments, and conditions, enhancing clinical decision-making and research. Innovations in machine learning, particularly those involving Bidirectional Encoder Representations From Transformers (BERT)-based deep learning and large language models, have significantly advanced NER capabilities. However, their performance varies across medical datasets due to the complexity and diversity of medical terminology. Previous studies have often focused on overall performance, neglecting specific challenges in medical contexts and the impact of macrofactors like lexical composition on prediction accuracy. These gaps hinder the development of optimized NER models for medical applications. OBJECTIVE This study aims to meticulously evaluate the performance of various NER models in the context of medical text analysis, focusing on how complex medical terminology affects entity recognition accuracy. Additionally, we explored the influence of macrofactors on model performance, seeking to provide insights for refining NER models and enhancing their reliability for medical applications. METHODS This study comprehensively evaluated 7 NER models-hidden Markov models, conditional random fields, BERT for Biomedical Text Mining, Big Transformer Models for Efficient Long-Sequence Attention, Decoding-enhanced BERT with Disentangled Attention, Robustly Optimized BERT Pretraining Approach, and Gemma-across 3 medical datasets: Revised Joint Workshop on Natural Language Processing in Biomedicine and its Applications (JNLPBA), BioCreative V CDR, and Anatomical Entity Mention (AnatEM). The evaluation focused on prediction accuracy, resource use (eg, central processing unit and graphics processing unit use), and the impact of fine-tuning hyperparameters. The macrofactors affecting model performance were also screened using the multilevel factor elimination algorithm. RESULTS The fine-tuned BERT for Biomedical Text Mining, with balanced resource use, generally achieved the highest prediction accuracy across the Revised JNLPBA and AnatEM datasets, with microaverage (AVG_MICRO) scores of 0.932 and 0.8494, respectively, highlighting its superior proficiency in identifying medical entities. Gemma, fine-tuned using the low-rank adaptation technique, achieved the highest accuracy on the BioCreative V CDR dataset with an AVG_MICRO score of 0.9962 but exhibited variability across the other datasets (AVG_MICRO scores of 0.9088 on the Revised JNLPBA and 0.8029 on AnatEM), indicating a need for further optimization. In addition, our analysis revealed that 2 macrofactors, entity phrase length and the number of entity words in each entity phrase, significantly influenced model performance. CONCLUSIONS This study highlights the essential role of NER models in medical informatics, emphasizing the imperative for model optimization via precise data targeting and fine-tuning. The insights from this study will notably improve clinical decision-making and facilitate the creation of more sophisticated and effective medical NER models.
Collapse
Affiliation(s)
- Shengyu Liu
- Department of Medical Data Sharing, Institute of Medical Information & Library, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Anran Wang
- Department of Medical Data Sharing, Institute of Medical Information & Library, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaolei Xiu
- Department of Medical Data Sharing, Institute of Medical Information & Library, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ming Zhong
- Department of Medical Data Sharing, Institute of Medical Information & Library, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Sizhu Wu
- Department of Medical Data Sharing, Institute of Medical Information & Library, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Turki H, Dossou BFP, Emezue CC, Owodunni AT, Hadj Taieb MA, Ben Aouicha M, Ben Hassen H, Masmoudi A. MeSH2Matrix: combining MeSH keywords and machine learning for biomedical relation classification based on PubMed. J Biomed Semantics 2024; 15:18. [PMID: 39354632 PMCID: PMC11445994 DOI: 10.1186/s13326-024-00319-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 08/31/2024] [Indexed: 10/03/2024] Open
Abstract
Biomedical relation classification has been significantly improved by the application of advanced machine learning techniques on the raw texts of scholarly publications. Despite this improvement, the reliance on large chunks of raw text makes these algorithms suffer in terms of generalization, precision, and reliability. The use of the distinctive characteristics of bibliographic metadata can prove effective in achieving better performance for this challenging task. In this research paper, we introduce an approach for biomedical relation classification using the qualifiers of co-occurring Medical Subject Headings (MeSH). First of all, we introduce MeSH2Matrix, our dataset consisting of 46,469 biomedical relations curated from PubMed publications using our approach. Our dataset includes a matrix that maps associations between the qualifiers of subject MeSH keywords and those of object MeSH keywords. It also specifies the corresponding Wikidata relation type and the superclass of semantic relations for each relation. Using MeSH2Matrix, we build and train three machine learning models (Support Vector Machine [SVM], a dense model [D-Model], and a convolutional neural network [C-Net]) to evaluate the efficiency of our approach for biomedical relation classification. Our best model achieves an accuracy of 70.78% for 195 classes and 83.09% for five superclasses. Finally, we provide confusion matrix and extensive feature analyses to better examine the relationship between the MeSH qualifiers and the biomedical relations being classified. Our results will hopefully shed light on developing better algorithms for biomedical ontology classification based on the MeSH keywords of PubMed publications. For reproducibility purposes, MeSH2Matrix, as well as all our source codes, are made publicly accessible at https://github.com/SisonkeBiotik-Africa/MeSH2Matrix .
Collapse
Affiliation(s)
- Houcemeddine Turki
- Data Engineering and Semantics Research Unit, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia.
| | | | - Chris Chinenye Emezue
- Mila Quebec AI Institute, Montreal, Canada
- Technical University of Munich, Munich, Germany
| | | | - Mohamed Ali Hadj Taieb
- Data Engineering and Semantics Research Unit, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Mohamed Ben Aouicha
- Data Engineering and Semantics Research Unit, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Hanen Ben Hassen
- Laboratory of Probability and Statistics, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Afif Masmoudi
- Laboratory of Probability and Statistics, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
4
|
Lai PT, Coudert E, Aimo L, Axelsen K, Breuza L, de Castro E, Feuermann M, Morgat A, Pourcel L, Pedruzzi I, Poux S, Redaschi N, Rivoire C, Sveshnikova A, Wei CH, Leaman R, Luo L, Lu Z, Bridge A. EnzChemRED, a rich enzyme chemistry relation extraction dataset. Sci Data 2024; 11:982. [PMID: 39251610 PMCID: PMC11384730 DOI: 10.1038/s41597-024-03835-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/23/2024] [Indexed: 09/11/2024] Open
Abstract
Expert curation is essential to capture knowledge of enzyme functions from the scientific literature in FAIR open knowledgebases but cannot keep pace with the rate of new discoveries and new publications. In this work we present EnzChemRED, for Enzyme Chemistry Relation Extraction Dataset, a new training and benchmarking dataset to support the development of Natural Language Processing (NLP) methods such as (large) language models that can assist enzyme curation. EnzChemRED consists of 1,210 expert curated PubMed abstracts where enzymes and the chemical reactions they catalyze are annotated using identifiers from the protein knowledgebase UniProtKB and the chemical ontology ChEBI. We show that fine-tuning language models with EnzChemRED significantly boosts their ability to identify proteins and chemicals in text (86.30% F1 score) and to extract the chemical conversions (86.66% F1 score) and the enzymes that catalyze those conversions (83.79% F1 score). We apply our methods to abstracts at PubMed scale to create a draft map of enzyme functions in literature to guide curation efforts in UniProtKB and the reaction knowledgebase Rhea.
Collapse
Grants
- U24 HG007822 NHGRI NIH HHS
- NIH Intramural Research Program, National Library of Medicine
- Expert curation and evaluation of EnzChemRED at Swiss-Prot were supported by the Swiss Federal Government through the State Secretariat for Education, Research and Innovation (SERI) and the National Human Genome Research Institute (NHGRI), Office of Director [OD/DPCPSI/ODSS], National Institute of Allergy and Infectious Diseases (NIAID), National Institute on Aging (NIA), National Institute of General Medical Sciences (NIGMS), National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Eye Institute (NEI), National Cancer Institute (NCI), National Heart, Lung, and Blood Institute (NHLBI) of the National Institutes of Health [U24HG007822], and by the European Union's Horizon Europe Framework Programme (grant number 101080997), supported in Switzerland through the State Secretariat for Education, Research and Innovation (SERI).
- Fundamental Research Funds for the Central Universities [DUT23RC(3)014 to L.L.]
Collapse
Affiliation(s)
- Po-Ting Lai
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, MD, 20894, USA
| | - Elisabeth Coudert
- Swiss-Prot group, SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, CH-1211, Geneva, 4, Switzerland
| | - Lucila Aimo
- Swiss-Prot group, SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, CH-1211, Geneva, 4, Switzerland
| | - Kristian Axelsen
- Swiss-Prot group, SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, CH-1211, Geneva, 4, Switzerland
| | - Lionel Breuza
- Swiss-Prot group, SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, CH-1211, Geneva, 4, Switzerland
| | - Edouard de Castro
- Swiss-Prot group, SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, CH-1211, Geneva, 4, Switzerland
| | - Marc Feuermann
- Swiss-Prot group, SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, CH-1211, Geneva, 4, Switzerland
| | - Anne Morgat
- Swiss-Prot group, SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, CH-1211, Geneva, 4, Switzerland
| | - Lucille Pourcel
- Swiss-Prot group, SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, CH-1211, Geneva, 4, Switzerland
| | - Ivo Pedruzzi
- Swiss-Prot group, SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, CH-1211, Geneva, 4, Switzerland
| | - Sylvain Poux
- Swiss-Prot group, SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, CH-1211, Geneva, 4, Switzerland
| | - Nicole Redaschi
- Swiss-Prot group, SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, CH-1211, Geneva, 4, Switzerland
| | - Catherine Rivoire
- Swiss-Prot group, SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, CH-1211, Geneva, 4, Switzerland
| | - Anastasia Sveshnikova
- Swiss-Prot group, SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, CH-1211, Geneva, 4, Switzerland
| | - Chih-Hsuan Wei
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, MD, 20894, USA
| | - Robert Leaman
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, MD, 20894, USA
| | - Ling Luo
- School of Computer Science and Technology, Dalian University of Technology, 116024, Dalian, China
| | - Zhiyong Lu
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, MD, 20894, USA.
| | - Alan Bridge
- Swiss-Prot group, SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, CH-1211, Geneva, 4, Switzerland.
| |
Collapse
|
5
|
Jonker RAA, Almeida T, Antunes R, Almeida JR, Matos S. Multi-head CRF classifier for biomedical multi-class named entity recognition on Spanish clinical notes. Database (Oxford) 2024; 2024:baae068. [PMID: 39083461 PMCID: PMC11290360 DOI: 10.1093/database/baae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/15/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024]
Abstract
The identification of medical concepts from clinical narratives has a large interest in the biomedical scientific community due to its importance in treatment improvements or drug development research. Biomedical named entity recognition (NER) in clinical texts is crucial for automated information extraction, facilitating patient record analysis, drug development, and medical research. Traditional approaches often focus on single-class NER tasks, yet recent advancements emphasize the necessity of addressing multi-class scenarios, particularly in complex biomedical domains. This paper proposes a strategy to integrate a multi-head conditional random field (CRF) classifier for multi-class NER in Spanish clinical documents. Our methodology overcomes overlapping entity instances of different types, a common challenge in traditional NER methodologies, by using a multi-head CRF model. This architecture enhances computational efficiency and ensures scalability for multi-class NER tasks, maintaining high performance. By combining four diverse datasets, SympTEMIST, MedProcNER, DisTEMIST, and PharmaCoNER, we expand the scope of NER to encompass five classes: symptoms, procedures, diseases, chemicals, and proteins. To the best of our knowledge, these datasets combined create the largest Spanish multi-class dataset focusing on biomedical entity recognition and linking for clinical notes, which is important to train a biomedical model in Spanish. We also provide entity linking to the multi-lingual Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) vocabulary, with the eventual goal of performing biomedical relation extraction. Through experimentation and evaluation of Spanish clinical documents, our strategy provides competitive results against single-class NER models. For NER, our system achieves a combined micro-averaged F1-score of 78.73, with clinical mentions normalized to SNOMED CT with an end-to-end F1-score of 54.51. The code to run our system is publicly available at https://github.com/ieeta-pt/Multi-Head-CRF. Database URL: https://github.com/ieeta-pt/Multi-Head-CRF.
Collapse
Affiliation(s)
- Richard A A Jonker
- IEETA/DETI, LASI, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Tiago Almeida
- IEETA/DETI, LASI, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Rui Antunes
- IEETA/DETI, LASI, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - João R Almeida
- IEETA/DETI, LASI, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Sérgio Matos
- IEETA/DETI, LASI, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| |
Collapse
|
6
|
Hou G, Jian Y, Zhao Q, Quan X, Zhang H. Language model based on deep learning network for biomedical named entity recognition. Methods 2024; 226:71-77. [PMID: 38641084 DOI: 10.1016/j.ymeth.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/22/2023] [Accepted: 04/16/2024] [Indexed: 04/21/2024] Open
Abstract
Biomedical Named Entity Recognition (BioNER) is one of the most basic tasks in biomedical text mining, which aims to automatically identify and classify biomedical entities in text. Recently, deep learning-based methods have been applied to Biomedical Named Entity Recognition and have shown encouraging results. However, many biological entities are polysemous and ambiguous, which is one of the main obstacles to the task of biomedical named entity recognition. Deep learning methods require large amounts of training data, so the lack of data also affect the performance of model recognition. To solve the problem of polysemous words and insufficient data, for the task of biomedical named entity recognition, we propose a multi-task learning framework fused with language model based on the BiLSTM-CRF architecture. Our model uses a language model to design a differential encoding of the context, which could obtain dynamic word vectors to distinguish words in different datasets. Moreover, we use a multi-task learning method to collectively share the dynamic word vector of different types of entities to improve the recognition performance of each type of entity. Experimental results show that our model reduces the false positives caused by polysemous words through differentiated coding, and improves the performance of each subtask by sharing information between different entity data. Compared with other state-of-the art methods, our model achieved superior results in four typical training sets, and achieved the best results in F1 values.
Collapse
Affiliation(s)
- Guan Hou
- College of Artificial Intelligence, Nankai University, Tianjin, China
| | - Yuhao Jian
- College of Artificial Intelligence, Nankai University, Tianjin, China
| | - Qingqing Zhao
- College of Artificial Intelligence, Nankai University, Tianjin, China
| | - Xiongwen Quan
- College of Artificial Intelligence, Nankai University, Tianjin, China
| | - Han Zhang
- College of Artificial Intelligence, Nankai University, Tianjin, China.
| |
Collapse
|
7
|
Huang MS, Han JC, Lin PY, You YT, Tsai RTH, Hsu WL. Surveying biomedical relation extraction: a critical examination of current datasets and the proposal of a new resource. Brief Bioinform 2024; 25:bbae132. [PMID: 38609331 PMCID: PMC11014787 DOI: 10.1093/bib/bbae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/06/2023] [Accepted: 03/02/2023] [Indexed: 04/14/2024] Open
Abstract
Natural language processing (NLP) has become an essential technique in various fields, offering a wide range of possibilities for analyzing data and developing diverse NLP tasks. In the biomedical domain, understanding the complex relationships between compounds and proteins is critical, especially in the context of signal transduction and biochemical pathways. Among these relationships, protein-protein interactions (PPIs) are of particular interest, given their potential to trigger a variety of biological reactions. To improve the ability to predict PPI events, we propose the protein event detection dataset (PEDD), which comprises 6823 abstracts, 39 488 sentences and 182 937 gene pairs. Our PEDD dataset has been utilized in the AI CUP Biomedical Paper Analysis competition, where systems are challenged to predict 12 different relation types. In this paper, we review the state-of-the-art relation extraction research and provide an overview of the PEDD's compilation process. Furthermore, we present the results of the PPI extraction competition and evaluate several language models' performances on the PEDD. This paper's outcomes will provide a valuable roadmap for future studies on protein event detection in NLP. By addressing this critical challenge, we hope to enable breakthroughs in drug discovery and enhance our understanding of the molecular mechanisms underlying various diseases.
Collapse
Affiliation(s)
- Ming-Siang Huang
- Intelligent Agent Systems Laboratory, Department of Computer Science and Information Engineering, Asia University, New Taipei City, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
- Department of Computer Science and Information Engineering, College of Information and Electrical Engineering, Asia University, Taichung, Taiwan
| | - Jen-Chieh Han
- Intelligent Information Service Research Laboratory, Department of Computer Science and Information Engineering, National Central University, Taoyuan, Taiwan
| | - Pei-Yen Lin
- Intelligent Agent Systems Laboratory, Department of Computer Science and Information Engineering, Asia University, New Taipei City, Taiwan
| | - Yu-Ting You
- Intelligent Agent Systems Laboratory, Department of Computer Science and Information Engineering, Asia University, New Taipei City, Taiwan
| | - Richard Tzong-Han Tsai
- Intelligent Information Service Research Laboratory, Department of Computer Science and Information Engineering, National Central University, Taoyuan, Taiwan
- Center for Geographic Information Science, Research Center for Humanities and Social Sciences, Academia Sinica, Taipei, Taiwan
| | - Wen-Lian Hsu
- Intelligent Agent Systems Laboratory, Department of Computer Science and Information Engineering, Asia University, New Taipei City, Taiwan
- Department of Computer Science and Information Engineering, College of Information and Electrical Engineering, Asia University, Taichung, Taiwan
| |
Collapse
|
8
|
Feng J, Zhang R, Chen D, Shi L. A Visualization Method of Knowledge Graphs for the Computation and Comprehension of Ultrasound Reports. Biomimetics (Basel) 2023; 8:560. [PMID: 38132500 PMCID: PMC10741754 DOI: 10.3390/biomimetics8080560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/30/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Knowledge graph visualization in ultrasound reports is essential for enhancing medical decision making and the efficiency and accuracy of computer-aided analysis tools. This study aims to propose an intelligent method for analyzing ultrasound reports through knowledge graph visualization. Firstly, we provide a novel method for extracting key term networks from the narrative text in ultrasound reports with high accuracy, enabling the identification and annotation of clinical concepts within the report. Secondly, a knowledge representation framework based on ultrasound reports is proposed, which enables the structured and intuitive visualization of ultrasound report knowledge. Finally, we propose a knowledge graph completion model to address the lack of entities in physicians' writing habits and improve the accuracy of visualizing ultrasound knowledge. In comparison to traditional methods, our proposed approach outperforms the extraction of knowledge from complex ultrasound reports, achieving a significantly higher extraction index (η) of 2.69, surpassing the general pattern-matching method (2.12). In comparison to other state-of-the-art methods, our approach achieves the highest P (0.85), R (0.89), and F1 (0.87) across three testing datasets. The proposed method can effectively utilize the knowledge embedded in ultrasound reports to obtain relevant clinical information and improve the accuracy of using ultrasound knowledge.
Collapse
Affiliation(s)
- Jiayi Feng
- Department of Information Management, Beijing Jiaotong University, Beijing 100044, China;
| | - Runtong Zhang
- Department of Information Management, Beijing Jiaotong University, Beijing 100044, China;
| | - Donghua Chen
- Department of Information Management, University of International Business and Economics, Beijing 100029, China;
| | - Lei Shi
- School of Computing, Newcastle University, Newcastle upon Tyne NE4 5TG, UK;
| |
Collapse
|
9
|
Liang T, Xia C, Zhao Z, Jiang Y, Yin Y, Yu PS. Transferring From Textual Entailment to Biomedical Named Entity Recognition. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:2577-2586. [PMID: 37018664 DOI: 10.1109/tcbb.2023.3236477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Biomedical Named Entity Recognition (BioNER) aims at identifying biomedical entities such as genes, proteins, diseases, and chemical compounds in the given textual data. However, due to the issues of ethics, privacy, and high specialization of biomedical data, BioNER suffers from the more severe problem of lacking in quality labeled data than the general domain especially for the token-level. Facing the extremely limited labeled biomedical data, this work studies the problem of gazetteer-based BioNER, which aims at building a BioNER system from scratch. It needs to identify the entities in the given sentences when we have zero token-level annotations for training. Previous works usually use sequential labeling models to solve the NER or BioNER task and obtain weakly labeled data from gazetteers when we don't have full annotations. However, these labeled data are quite noisy since we need the labels for each token and the entity coverage of the gazetteers is limited. Here we propose to formulate the BioNER task as a Textual Entailment problem and solve the task via Textual Entailment with Dynamic Contrastive learning (TEDC). TEDC not only alleviates the noisy labeling issue, but also transfers the knowledge from pre-trained textual entailment models. Additionally, the dynamic contrastive learning framework contrasts the entities and non-entities in the same sentence and improves the model's discrimination ability. Experiments on two real-world biomedical datasets show that TEDC can achieve state-of-the-art performance for gazetteer-based BioNER.
Collapse
|
10
|
Kumar A, Sharaff A. ABEE: automated bio entity extraction from biomedical text documents. DATA TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1108/dta-04-2022-0151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
PurposeThe purpose of this study was to design a multitask learning model so that biomedical entities can be extracted without having any ambiguity from biomedical texts.Design/methodology/approachIn the proposed automated bio entity extraction (ABEE) model, a multitask learning model has been introduced with the combination of single-task learning models. Our model used Bidirectional Encoder Representations from Transformers to train the single-task learning model. Then combined model's outputs so that we can find the verity of entities from biomedical text.FindingsThe proposed ABEE model targeted unique gene/protein, chemical and disease entities from the biomedical text. The finding is more important in terms of biomedical research like drug finding and clinical trials. This research aids not only to reduce the effort of the researcher but also to reduce the cost of new drug discoveries and new treatments.Research limitations/implicationsAs such, there are no limitations with the model, but the research team plans to test the model with gigabyte of data and establish a knowledge graph so that researchers can easily estimate the entities of similar groups.Practical implicationsAs far as the practical implication concerned, the ABEE model will be helpful in various natural language processing task as in information extraction (IE), it plays an important role in the biomedical named entity recognition and biomedical relation extraction and also in the information retrieval task like literature-based knowledge discovery.Social implicationsDuring the COVID-19 pandemic, the demands for this type of our work increased because of the increase in the clinical trials at that time. If this type of research has been introduced previously, then it would have reduced the time and effort for new drug discoveries in this area.Originality/valueIn this work we proposed a novel multitask learning model that is capable to extract biomedical entities from the biomedical text without any ambiguity. The proposed model achieved state-of-the-art performance in terms of precision, recall and F1 score.
Collapse
|
11
|
Asaad C, Ghogho M. AsthmaKGxE: An asthma-environment interaction knowledge graph leveraging public databases and scientific literature. Comput Biol Med 2022; 148:105933. [DOI: 10.1016/j.compbiomed.2022.105933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/11/2022] [Accepted: 07/30/2022] [Indexed: 11/03/2022]
|
12
|
Manifold biomedical text sentence embedding. Neurocomputing 2022. [DOI: 10.1016/j.neucom.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Almeida T, Antunes R, F. Silva J, Almeida JR, Matos S. Chemical identification and indexing in PubMed full-text articles using deep learning and heuristics. Database (Oxford) 2022; 2022:6625810. [PMID: 35776534 PMCID: PMC9248917 DOI: 10.1093/database/baac047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/13/2022] [Accepted: 06/06/2022] [Indexed: 11/14/2022]
Abstract
Abstract
The identification of chemicals in articles has attracted a large interest in the biomedical scientific community, given its importance in drug development research. Most of previous research have focused on PubMed abstracts, and further investigation using full-text documents is required because these contain additional valuable information that must be explored. The manual expert task of indexing Medical Subject Headings (MeSH) terms to these articles later helps researchers find the most relevant publications for their ongoing work. The BioCreative VII NLM-Chem track fostered the development of systems for chemical identification and indexing in PubMed full-text articles. Chemical identification consisted in identifying the chemical mentions and linking these to unique MeSH identifiers. This manuscript describes our participation system and the post-challenge improvements we made. We propose a three-stage pipeline that individually performs chemical mention detection, entity normalization and indexing. Regarding chemical identification, we adopted a deep-learning solution that utilizes the PubMedBERT contextualized embeddings followed by a multilayer perceptron and a conditional random field tagging layer. For the normalization approach, we use a sieve-based dictionary filtering followed by a deep-learning similarity search strategy. Finally, for the indexing we developed rules for identifying the more relevant MeSH codes for each article. During the challenge, our system obtained the best official results in the normalization and indexing tasks despite the lower performance in the chemical mention recognition task. In a post-contest phase we boosted our results by improving our named entity recognition model with additional techniques. The final system achieved 0.8731, 0.8275 and 0.4849 in the chemical identification, normalization and indexing tasks, respectively. The code to reproduce our experiments and run the pipeline is publicly available.
Database URL
https://github.com/bioinformatics-ua/biocreativeVII_track2
Collapse
Affiliation(s)
- Tiago Almeida
- Department of Electronics, Telecommunications and Informatics (DETI), Institute of Electronics and Informatics Engineering of Aveiro (IEETA), University of Aveiro , Aveiro, Portugal
| | - Rui Antunes
- Department of Electronics, Telecommunications and Informatics (DETI), Institute of Electronics and Informatics Engineering of Aveiro (IEETA), University of Aveiro , Aveiro, Portugal
| | - João F. Silva
- Department of Electronics, Telecommunications and Informatics (DETI), Institute of Electronics and Informatics Engineering of Aveiro (IEETA), University of Aveiro , Aveiro, Portugal
| | - João R Almeida
- Department of Electronics, Telecommunications and Informatics (DETI), Institute of Electronics and Informatics Engineering of Aveiro (IEETA), University of Aveiro , Aveiro, Portugal
- Department of Information and Communications Technologies, University of A Coruña , A Coruña, Spain
| | - Sérgio Matos
- Department of Electronics, Telecommunications and Informatics (DETI), Institute of Electronics and Informatics Engineering of Aveiro (IEETA), University of Aveiro , Aveiro, Portugal
| |
Collapse
|
14
|
Sousa D, Couto FM. Biomedical Relation Extraction with Knowledge Graph-based Recommendations. IEEE J Biomed Health Inform 2022; 26:4207-4217. [PMID: 35536818 DOI: 10.1109/jbhi.2022.3173558] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Biomedical Relation Extraction (RE) systems identify and classify relations between biomedical entities to enhance our knowledge of biological and medical processes. Most state-of-the-art systems use deep learning approaches, mainly to target relations between entities of the same type, such as proteins or pharmacological substances. However, these systems are mostly restricted to what they directly identify on the text and ignore specialized domain knowledge bases, such as ontologies, that formalize and integrate biomedical information typically structured as direct acyclic graphs. On the other hand, Knowledge Graph (KG)-based recommendation systems already showed the importance of integrating KGs to add additional features to items. Typical systems have users as people and items that can range from movies to books, which people saw or read and classified according to their satisfaction rate. This work proposes to integrate KGs into biomedical RE through a recommendation model to further improve their range of action. We developed a new RE system, named K-BiOnt, by integrating a baseline state-of-the-art deep biomedical RE system with an existing KG-based recommendation state-of-the-art system. Our results show that adding recommendations from KG-based recommendation improves the system's ability to identify true relations that the baseline deep RE model could not extract from the text. All the software and data supporting our work will be made publicly available upon acceptance of this manuscript.
Collapse
|
15
|
Yan S, Luo L, Lai PT, Veltri D, Oler AJ, Xirasagar S, Ghosh R, Similuk M, Robinson PN, Lu Z. PhenoRerank: A re-ranking model for phenotypic concept recognition pre-trained on human phenotype ontology. J Biomed Inform 2022; 129:104059. [PMID: 35351638 PMCID: PMC11040548 DOI: 10.1016/j.jbi.2022.104059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/23/2022] [Accepted: 03/22/2022] [Indexed: 11/29/2022]
Abstract
The study aims at developing a neural network model to improve the performance of Human Phenotype Ontology (HPO) concept recognition tools. We used the terms, definitions, and comments about the phenotypic concepts in the HPO database to train our model. The document to be analyzed is first split into sentences and annotated with a base method to generate candidate concepts. The sentences, along with the candidate concepts, are then fed into the pre-trained model for re-ranking. Our model comprises the pre-trained BlueBERT and a feature selection module, followed by a contrastive loss. We re-ranked the results generated by three robust HPO annotation tools and compared the performance against most of the existing approaches. The experimental results show that our model can improve the performance of the existing methods. Significantly, it boosted 3.0% and 5.6% in F1 score on the two evaluated datasets compared with the base methods. It removed more than 80% of the false positives predicted by the base methods, resulting in up to 18% improvement in precision. Our model utilizes the descriptive data in the ontology and the contextual information in the sentences for re-ranking. The results indicate that the additional information and the re-ranking model can significantly enhance the precision of HPO concept recognition compared with the base method.
Collapse
Affiliation(s)
- Shankai Yan
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Ling Luo
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Po-Ting Lai
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Daniel Veltri
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew J Oler
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sandhya Xirasagar
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rajarshi Ghosh
- Centralized Sequencing Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Morgan Similuk
- Centralized Sequencing Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter N Robinson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Zhiyong Lu
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
16
|
Learning with joint cross-document information via multi-task learning for named entity recognition. Inf Sci (N Y) 2021. [DOI: 10.1016/j.ins.2021.08.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Song B, Li F, Liu Y, Zeng X. Deep learning methods for biomedical named entity recognition: a survey and qualitative comparison. Brief Bioinform 2021; 22:6326536. [PMID: 34308472 DOI: 10.1093/bib/bbab282] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/07/2021] [Accepted: 07/02/2021] [Indexed: 11/13/2022] Open
Abstract
The biomedical literature is growing rapidly, and the extraction of meaningful information from the large amount of literature is increasingly important. Biomedical named entity (BioNE) identification is one of the critical and fundamental tasks in biomedical text mining. Accurate identification of entities in the literature facilitates the performance of other tasks. Given that an end-to-end neural network can automatically extract features, several deep learning-based methods have been proposed for BioNE recognition (BioNER), yielding state-of-the-art performance. In this review, we comprehensively summarize deep learning-based methods for BioNER and datasets used in training and testing. The deep learning methods are classified into four categories: single neural network-based, multitask learning-based, transfer learning-based and hybrid model-based methods. They can be applied to BioNER in multiple domains, and the results are determined by the dataset size and type. Lastly, we discuss the future development and opportunities of BioNER methods.
Collapse
Affiliation(s)
- Bosheng Song
- College of Information Science and Engineering, Hunan University, 2 Lushan S Rd, Yuelu District, 410086, Changsha, China
| | - Fen Li
- College of Information Science and Engineering, Hunan University, 2 Lushan S Rd, Yuelu District, 410086, Changsha, China
| | - Yuansheng Liu
- College of Information Science and Engineering, Hunan University, 2 Lushan S Rd, Yuelu District, 410086, Changsha, China
| | - Xiangxiang Zeng
- College of Information Science and Engineering, Hunan University, 2 Lushan S Rd, Yuelu District, 410086, Changsha, China
| |
Collapse
|
18
|
Thieu T, Maldonado JC, Ho PS, Ding M, Marr A, Brandt D, Newman-Griffis D, Zirikly A, Chan L, Rasch E. A comprehensive study of mobility functioning information in clinical notes: Entity hierarchy, corpus annotation, and sequence labeling. Int J Med Inform 2021; 147:104351. [PMID: 33401169 PMCID: PMC8104034 DOI: 10.1016/j.ijmedinf.2020.104351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 08/10/2020] [Accepted: 11/22/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND Secondary use of Electronic Health Records (EHRs) has mostly focused on health conditions (diseases and drugs). Function is an important health indicator in addition to morbidity and mortality. Nevertheless, function has been overlooked in accessing patients' health status. The World Health Organization (WHO)'s International Classification of Functioning, Disability and Health (ICF) is considered the international standard for describing and coding function and health states. We pioneer the first comprehensive analysis and identification of functioning concepts in the Mobility domain of the ICF. RESULTS Using physical therapy notes at the National Institutes of Health's Clinical Center, we induced a hierarchical order of mobility-related entities including 5 entities types, 3 relations, 8 attributes, and 33 attribute values. Two domain experts manually curated a gold standard corpus of 14,281 nested entity mentions from 400 clinical notes. Inter-annotator agreement (IAA) of exact matching averaged 92.3 % F1-score on mention text spans, and 96.6 % Cohen's kappa on attributes assignments. A high-performance Ensemble machine learning model for named entity recognition (NER) was trained and evaluated using the gold standard corpus. Average F1-score on exact entity matching of our Ensemble method (84.90 %) outperformed popular NER methods: Conditional Random Field (80.4 %), Recurrent Neural Network (81.82 %), and Bidirectional Encoder Representations from Transformers (82.33 %). CONCLUSIONS The results of this study show that mobility functioning information can be reliably captured from clinical notes once adequate resources are provided for sequence labeling methods. We expect that functioning concepts in other domains of the ICF can be identified in similar fashion.
Collapse
Affiliation(s)
- Thanh Thieu
- Oklahoma State University, Stillwater, OK, United States.
| | | | - Pei-Shu Ho
- National Institutes of Health Clinical Center, Bethesda, MD, United States
| | - Min Ding
- National Institute of Standards and Technology, Gaithersburg, MD, United States
| | - Alex Marr
- National Institutes of Health Clinical Center, Bethesda, MD, United States
| | - Diane Brandt
- Social Security Advisory Board, Washington, DC, United States
| | - Denis Newman-Griffis
- National Institutes of Health Clinical Center, Bethesda, MD, United States; Ohio State University, Columbus, OH, United States
| | - Ayah Zirikly
- National Institutes of Health Clinical Center, Bethesda, MD, United States
| | - Leighton Chan
- National Institutes of Health Clinical Center, Bethesda, MD, United States
| | - Elizabeth Rasch
- National Institutes of Health Clinical Center, Bethesda, MD, United States
| |
Collapse
|
19
|
Biziukova N, Tarasova O, Ivanov S, Poroikov V. Automated Extraction of Information From Texts of Scientific Publications: Insights Into HIV Treatment Strategies. Front Genet 2021; 11:618862. [PMID: 33414815 PMCID: PMC7783389 DOI: 10.3389/fgene.2020.618862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 11/26/2020] [Indexed: 12/16/2022] Open
Abstract
Text analysis can help to identify named entities (NEs) of small molecules, proteins, and genes. Such data are very important for the analysis of molecular mechanisms of disease progression and development of new strategies for the treatment of various diseases and pathological conditions. The texts of publications represent a primary source of information, which is especially important to collect the data of the highest quality due to the immediate obtaining information, in comparison with databases. In our study, we aimed at the development and testing of an approach to the named entity recognition in the abstracts of publications. More specifically, we have developed and tested an algorithm based on the conditional random fields, which provides recognition of NEs of (i) genes and proteins and (ii) chemicals. Careful selection of abstracts strictly related to the subject of interest leads to the possibility of extracting the NEs strongly associated with the subject. To test the applicability of our approach, we have applied it for the extraction of (i) potential HIV inhibitors and (ii) a set of proteins and genes potentially responsible for viremic control in HIV-positive patients. The computational experiments performed provide the estimations of evaluating the accuracy of recognition of chemical NEs and proteins (genes). The precision of the chemical NEs recognition is over 0.91; recall is 0.86, and the F1-score (harmonic mean of precision and recall) is 0.89; the precision of recognition of proteins and genes names is over 0.86; recall is 0.83; while F1-score is above 0.85. Evaluation of the algorithm on two case studies related to HIV treatment confirms our suggestion about the possibility of extracting the NEs strongly relevant to (i) HIV inhibitors and (ii) a group of patients i.e., the group of HIV-positive individuals with an ability to maintain an undetectable HIV-1 viral load overtime in the absence of antiretroviral therapy. Analysis of the results obtained provides insights into the function of proteins that can be responsible for viremic control. Our study demonstrated the applicability of the developed approach for the extraction of useful data on HIV treatment.
Collapse
Affiliation(s)
- Nadezhda Biziukova
- Laboratory of Structure-Function Based Drug Design, Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow, Russia
| | - Olga Tarasova
- Laboratory of Structure-Function Based Drug Design, Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow, Russia
| | - Sergey Ivanov
- Laboratory of Structure-Function Based Drug Design, Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow, Russia.,Department of Bioinformatics, Faculty of Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Vladimir Poroikov
- Laboratory of Structure-Function Based Drug Design, Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|