1
|
Qin X, Liu M, Liu G. ResCNNT-fold: Combining residual convolutional neural network and Transformer for protein fold recognition from language model embeddings. Comput Biol Med 2023; 166:107571. [PMID: 37864911 DOI: 10.1016/j.compbiomed.2023.107571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/30/2023] [Accepted: 10/11/2023] [Indexed: 10/23/2023]
Abstract
A comprehensive understanding of protein functions holds significant promise for disease research and drug development, and proteins with analogous tertiary structures tend to exhibit similar functions. Protein fold recognition stands as a classical approach in the realm of protein structure investigation. Despite significant advancements made by researchers in this field, the continuous updating of protein databases presents an ongoing challenge in accurately identifying protein fold types. In this study, we introduce a predictor, ResCNNT-fold, for protein fold recognition and employ the LE dataset for testing purpose. ResCNNT-fold leverages a pre-trained language model to obtain embedding representations for protein sequences, which are then processed by the ResCNNT feature extractor, a combination of residual convolutional neural network and Transformer, to derive fold-specific features. Subsequently, the query protein is paired with each protein whose structure is known in the template dataset. For each pair, the similarity score of their fold-specific features is calculated. Ultimately, the query protein is identified as the fold type of the template protein in the pair with the highest similarity score. To further validate the utility and efficacy of the proposed ResCNNT-fold predictor, we conduct a 2-fold cross-validation experiment on the fold level of the LE dataset. Remarkably, this rigorous evaluation yields an exceptional accuracy of 91.57%, which surpasses the best result among other state-of-the-art protein fold recognition methods by an approximate margin of 10%. The excellent performance unequivocally underscores the compelling advantages inherent to our proposed ResCNNT-fold predictor in the realm of protein fold recognition. The source code and data of ResCNNT-fold can be downloaded from https://github.com/Bioinformatics-Laboratory/ResCNNT-fold.
Collapse
Affiliation(s)
- Xinyi Qin
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China.
| | - Min Liu
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China.
| | - Guangzhong Liu
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China.
| |
Collapse
|
2
|
Liu N, Zhang Z, Wu Y, Wang Y, Liang Y. CRBSP:Prediction of CircRNA-RBP Binding Sites Based on Multimodal Intermediate Fusion. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:2898-2906. [PMID: 37130249 DOI: 10.1109/tcbb.2023.3272400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Circular RNA (CircRNA) is widely expressed and has physiological and pathological significance, regulating post-transcriptional processes via its protein-binding activity. However, whereas much work has been done on linear RNA and RNA binding protein (RBP), little is known about the binding sites of CircRNA. The current report is on the development of a medium-term multimodal data fusion strategy, CRBSP, to predict CircRNA-RBP binding sites. CRBSP represents the CircRNA trinucleotide semantic, location, composition and frequency information as the corresponding coding methods of Word to vector (Word2vec), Position-specific trinucleotide propensity (PSTNP), Pseudo trinucleotide composition (PseTNC) and Trinucleotide nucleotide composition (TNC), respectively. CNN (Convolution Neural Networks) was used to extract global information and BiLSTM (bidirectional Long- and Short-Term Memory network) encoder and LSTM (Long- and Short-Term Memory network) decoder for local sequence information. Enhancement of the contributions of key features by the self-attention mechanism was followed by mid-term fusion of the four enhanced features. Logistic Regression (LR) classifier showed that CRBSP gives a mean AUC value of 0.9362 through 5-fold Cross Validation of all 37 datasets, a performance which is superior to five current state-of-the-art models. Similar evaluation of linear RNA-RBP binding sites gave an AUC value of 0.7615 which is also higher than other prediction methods, demonstrating the robustness of CRBSP.
Collapse
|
3
|
Wang C, Zou Q, Ju Y, Shi H. Enhancer-FRL: Improved and Robust Identification of Enhancers and Their Activities Using Feature Representation Learning. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:967-975. [PMID: 36063523 DOI: 10.1109/tcbb.2022.3204365] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Enhancers are crucial for precise regulation of gene expression, while enhancer identification and strength prediction are challenging because of their free distribution and tremendous number of similar fractions in the genome. Although several bioinformatics tools have been developed, shortfalls in these models remain, and their performances need further improvement. In the present study, a two-layer predictor called Enhancer-FRL was proposed for identifying enhancers (enhancers or nonenhancers) and their activities (strong and weak). More specifically, to build an efficient model, the feature representation learning scheme was applied to generate a 50D probabilistic vector based on 10 feature encodings and five machine learning algorithms. Subsequently, the multiview probabilistic features were integrated to construct the final prediction model. Compared with the single feature-based model, Enhancer-FRL showed significant performance improvement and model robustness. Performance assessment on the independent test dataset indicated that the proposed model outperformed state-of-the-art available toolkits. The webserver Enhancer-FRL is freely accessible at http://lab.malab.cn/∼wangchao/softwares/Enhancer-FRL/, The code and datasets can be downloaded at the webserver page or at the Github https://github.com/wangchao-malab/Enhancer-FRL/.
Collapse
|
4
|
Ali Z, Alturise F, Alkhalifah T, Khan YD. IGPred-HDnet: Prediction of Immunoglobulin Proteins Using Graphical Features and the Hierarchal Deep Learning-Based Approach. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2023; 2023:2465414. [PMID: 36744119 PMCID: PMC9891831 DOI: 10.1155/2023/2465414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/16/2022] [Accepted: 10/12/2022] [Indexed: 01/26/2023]
Abstract
Motivation. Immunoglobulin proteins (IGP) (also called antibodies) are glycoproteins that act as B-cell receptors against external or internal antigens like viruses and bacteria. IGPs play a significant role in diverse cellular processes ranging from adhesion to cell recognition. IGP identifications via the in-silico approach are faster and more cost-effective than wet-lab technological methods. Methods. In this study, we developed an intelligent theoretical deep learning framework, "IGPred-HDnet" for the discrimination of IGPs and non-IGPs. Three types of promising descriptors are feature extraction based on graphical and statistical features (FEGS), amphiphilic pseudo-amino acid composition (Amp-PseAAC), and dipeptide composition (DPC) to extract the graphical, physicochemical, and sequential features. Next, the extracted attributes are evaluated through machine learning, i.e., decision tree (DT), support vector machine (SVM), k-nearest neighbour (KNN), and hierarchical deep network (HDnet) classifiers. The proposed predictor IGPred-HDnet was trained and tested using a 10-fold cross-validation and independent test. Results and Conclusion. The success rates in terms of accuracy (ACC) and Matthew's correlation coefficient (MCC) of IGPred-HDnet on training and independent dataset (Dtrain Dtest) are ACC = 98.00%, 99.10%, and MCC = 0.958, and 0.980 points, respectively. The empirical outcomes demonstrate that the IGPred-HDnet model efficacy on both datasets using the novel FEGS feature and HDnet algorithm achieved superior predictions to other existing computational models. We hope this research will provide great insights into the large-scale identification of IGPs and pharmaceutical companies in new drug design.
Collapse
Affiliation(s)
- Zakir Ali
- Department of Computer Science, School of Science and Technology, University of Management and Technology, Lahore, Pakistan
| | - Fahad Alturise
- Department of Computer, College of Science and Arts in Ar Rass, Qassim University, Ar Rass, Qassim, Saudi Arabia
| | - Tamim Alkhalifah
- Department of Computer, College of Science and Arts in Ar Rass, Qassim University, Ar Rass, Qassim, Saudi Arabia
| | - Yaser Daanial Khan
- Department of Computer Science, School of Science and Technology, University of Management and Technology, Lahore, Pakistan
| |
Collapse
|
5
|
Gao W, Xu D, Li H, Du J, Wang G, Li D. Identification of adaptor proteins by incorporating deep learning and PSSM profiles. Methods 2023; 209:10-17. [PMID: 36427763 DOI: 10.1016/j.ymeth.2022.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/25/2022] [Accepted: 11/02/2022] [Indexed: 11/23/2022] Open
Abstract
Adaptor proteins, also known as signal transduction adaptor proteins, are important proteins in signal transduction pathways, and play a role in connecting signal proteins for signal transduction between cells. Studies have shown that adaptor proteins are closely related to some diseases, such as tumors and diabetes. Therefore, it is very meaningful to construct a relevant model to accurately identify adaptor proteins. In recent years, many studies have used a position-specific scoring matrix (PSSM) and neural network methods to identify adaptor proteins. However, ordinary neural network models cannot correlate the contextual information in PSSM profiles well, so these studies usually process 20×N (N > 20) PSSM into 20×20 dimensions, which results in the loss of a large amount of protein information; This research proposes an efficient method that combines one-dimensional convolution (1-D CNN) and a bidirectional long short-term memory network (biLSTM) to identify adaptor proteins. The complete PSSM profiles are the input of the model, and the complete information of the protein is retained during the training process. We perform cross-validation during model training and test the performance of the model on an independent test set; in the data set with 1224 adaptor proteins and 11,078 non-adaptor proteins, five indicators including specificity, sensitivity, accuracy, area under the receiver operating characteristic curve (AUC) metric and Matthews correlation coefficient (MCC), were employed to evaluate model performance. On the independent test set, the specificity, sensitivity, accuracy and MCC were 0.817, 0.865, 0.823 and 0.465, respectively. Those results show that our method is better than the state-of-the art methods. This study is committed to improve the accuracy of adaptor protein identification, and laid a foundation for further research on diseases related to adaptor protein. This research provided a new idea for the application of deep learning related models in bioinformatics and computational biology.
Collapse
Affiliation(s)
- Wentao Gao
- College of Information and Computer Engineering, Northeast Forestry University, Harbin 150000, China
| | - Dali Xu
- College of Information and Computer Engineering, Northeast Forestry University, Harbin 150000, China
| | - Hongfei Li
- College of Information and Computer Engineering, Northeast Forestry University, Harbin 150000, China
| | - Junping Du
- Beijing Key Laboratory of Intelligent Telecommunication Software and Multimedia, School of Computer Science, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Guohua Wang
- College of Information and Computer Engineering, Northeast Forestry University, Harbin 150000, China.
| | - Dan Li
- College of Information and Computer Engineering, Northeast Forestry University, Harbin 150000, China.
| |
Collapse
|
6
|
Zhu GY, Liu Y, Wang PH, Yang X, Yu DJ. Learning Protein Embedding to Improve Protein Fold Recognition Using Deep Metric Learning. J Chem Inf Model 2022; 62:4283-4291. [PMID: 36017565 DOI: 10.1021/acs.jcim.2c00959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein fold recognition refers to predicting the most likely fold type of the query protein and is a critical step of protein structure and function prediction. With the popularity of deep learning in bioinformatics, protein fold recognition has obtained impressive progress. In this study, to extract the fold-specific feature to improve protein fold recognition, we proposed a unified deep metric learning framework based on a joint loss function, termed NPCFold. In addition, we also proposed an integrated machine learning model based on the similarity of proteins in various properties, termed NPCFoldpro. Benchmark experiments show both NPCFold and NPCFoldpro outperform existing protein fold recognition methods at the fold level, indicating that our proposed strategies of fusing loss functions and fusing features could improve the fold recognition level.
Collapse
Affiliation(s)
- Guan-Yu Zhu
- School of Computer Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing 210094, P. R. China
| | - Yan Liu
- School of Computer Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing 210094, P. R. China
| | - Peng-Hao Wang
- School of Computer Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing 210094, P. R. China
| | - Xibei Yang
- School of Computer, Jiangsu University of Science and Technology, Zhenjiang 212100, P. R. China
| | - Dong-Jun Yu
- School of Computer Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing 210094, P. R. China
| |
Collapse
|
7
|
Liu P, Ding Y, Rong Y, Chen D. Prediction of cell penetrating peptides and their uptake efficiency using random forest‐based feature selections. AIChE J 2022. [DOI: 10.1002/aic.17781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Peng Liu
- Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu China
- Institute of Yangtze Delta Region (Quzhou) University of Electronic Science and Technology of China Quzhou China
| | - Yijie Ding
- Institute of Yangtze Delta Region (Quzhou) University of Electronic Science and Technology of China Quzhou China
| | - Ying Rong
- Beidahuang Industry Group General Hospital Harbin China
| | - Dong Chen
- College of Electrical and Information Engineering, Quzhou University Quzhou China
| |
Collapse
|
8
|
Newton MAH, Rahman J, Zaman R, Sattar A. Enhancing Protein Contact Map Prediction Accuracy via Ensembles of Inter-Residue Distance Predictors. Comput Biol Chem 2022; 99:107700. [DOI: 10.1016/j.compbiolchem.2022.107700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 11/03/2022]
|
9
|
Han K, Liu Y, Xu J, Song J, Yu DJ. Performing protein fold recognition by exploiting a stack convolutional neural network with the attention mechanism. Anal Biochem 2022; 651:114695. [PMID: 35487269 DOI: 10.1016/j.ab.2022.114695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 11/01/2022]
Abstract
Protein fold recognition is a critical step in protein structure and function prediction, and aims to ascertain the most likely fold type of the query protein. As a typical pattern recognition problem, designing a powerful feature extractor and metric function to extract relevant and representative fold-specific features from protein sequences is the key to improving protein fold recognition. In this study, we propose an effective sequence-based approach, called RattnetFold, to identify protein fold types. The basic concept of RattnetFold is to employ a stack convolutional neural network with the attention mechanism that acts as a feature extractor to extract fold-specific features from protein residue-residue contact maps. Moreover, based on the fold-specific features, we leverage metric learning to project fold-specific features into a subspace where similar proteins are closer together and name this approach RattnetFoldPro. Benchmarking experiments illustrate that RattnetFold and RattnetFoldPro enable the convolutional neural networks to efficiently learn the underlying subtle patterns in residue-residue contact maps, thereby improving the performance of protein fold recognition. An online web server of RattnetFold and the benchmark datasets are freely available at http://csbio.njust.edu.cn/bioinf/rattnetfold/.
Collapse
Affiliation(s)
- Ke Han
- School of Computer Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing, 210094, China
| | - Yan Liu
- School of Computer Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing, 210094, China
| | - Jian Xu
- School of Computer Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing, 210094, China
| | - Jiangning Song
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, 3800, Australia; Monash Centre for Data Science, Faculty of Information Technology, Monash University, Melbourne, Victoria, 3800, Australia.
| | - Dong-Jun Yu
- School of Computer Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing, 210094, China.
| |
Collapse
|
10
|
Villegas-Morcillo A, Gomez AM, Sanchez V. An analysis of protein language model embeddings for fold prediction. Brief Bioinform 2022; 23:6571527. [PMID: 35443054 DOI: 10.1093/bib/bbac142] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/21/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
The identification of the protein fold class is a challenging problem in structural biology. Recent computational methods for fold prediction leverage deep learning techniques to extract protein fold-representative embeddings mainly using evolutionary information in the form of multiple sequence alignment (MSA) as input source. In contrast, protein language models (LM) have reshaped the field thanks to their ability to learn efficient protein representations (protein-LM embeddings) from purely sequential information in a self-supervised manner. In this paper, we analyze a framework for protein fold prediction using pre-trained protein-LM embeddings as input to several fine-tuning neural network models, which are supervisedly trained with fold labels. In particular, we compare the performance of six protein-LM embeddings: the long short-term memory-based UniRep and SeqVec, and the transformer-based ESM-1b, ESM-MSA, ProtBERT and ProtT5; as well as three neural networks: Multi-Layer Perceptron, ResCNN-BGRU (RBG) and Light-Attention (LAT). We separately evaluated the pairwise fold recognition (PFR) and direct fold classification (DFC) tasks on well-known benchmark datasets. The results indicate that the combination of transformer-based embeddings, particularly those obtained at amino acid level, with the RBG and LAT fine-tuning models performs remarkably well in both tasks. To further increase prediction accuracy, we propose several ensemble strategies for PFR and DFC, which provide a significant performance boost over the current state-of-the-art results. All this suggests that moving from traditional protein representations to protein-LM embeddings is a very promising approach to protein fold-related tasks.
Collapse
Affiliation(s)
- Amelia Villegas-Morcillo
- Department of Signal Theory, Telematics and Communications, University of Granada, Granada, Spain
| | - Angel M Gomez
- Department of Signal Theory, Telematics and Communications, University of Granada, Granada, Spain
| | - Victoria Sanchez
- Department of Signal Theory, Telematics and Communications, University of Granada, Granada, Spain
| |
Collapse
|
11
|
Jiao S, Chen Z, Zhang L, Zhou X, Shi L. ATGPred-FL: sequence-based prediction of autophagy proteins with feature representation learning. Amino Acids 2022; 54:799-809. [PMID: 35286461 DOI: 10.1007/s00726-022-03145-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 01/28/2022] [Indexed: 11/26/2022]
Abstract
Autophagy plays an important role in biological evolution and is regulated by many autophagy proteins. Accurate identification of autophagy proteins is crucially important to reveal their biological functions. Due to the expense and labor cost of experimental methods, it is urgent to develop automated, accurate and reliable sequence-based computational tools to enable the identification of novel autophagy proteins among numerous proteins and peptides. For this purpose, a new predictor named ATGPred-FL was proposed for the efficient identification of autophagy proteins. We investigated various sequence-based feature descriptors and adopted the feature learning method to generate corresponding, more informative probability features. Then, a two-step feature selection strategy based on accuracy was utilized to remove irrelevant and redundant features, leading to the most discriminative 14-dimensional feature set. The final predictor was built using a support vector machine classifier, which performed favorably on both the training and testing sets with accuracy values of 94.40% and 90.50%, respectively. ATGPred-FL is the first ATG machine learning predictor based on protein primary sequences. We envision that ATGPred-FL will be an effective and useful tool for autophagy protein identification, and it is available for free at http://lab.malab.cn/~acy/ATGPred-FL , the source code and datasets are accessible at https://github.com/jiaoshihu/ATGPred .
Collapse
Affiliation(s)
- Shihu Jiao
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| | - Zheng Chen
- School of Applied Chemistry and Biological Technology, Shenzhen Polytechnic, 7098 Liuxian Street, Shenzhen, 518055, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, No.4 Block 2 North Jianshe Road, Chengdu, 61005, China
| | - Lichao Zhang
- School of Intelligent Manufacturing and Equipment, Shenzhen Institute of Information Technology, Shenzhen, 518172, China
| | - Xun Zhou
- Beidahuang Industry Group General Hospital, Harbin, 150001, China.
| | - Lei Shi
- Department of Spine Surgery, Changzheng Hospital, Naval Medical University, No 415, Fengyang Road, Huangpu District, Shanghai, 210000, China.
| |
Collapse
|
12
|
Meng C, Ju Y, Shi H. TMPpred: A support vector machine-based thermophilic protein identifier. Anal Biochem 2022; 645:114625. [PMID: 35218736 DOI: 10.1016/j.ab.2022.114625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022]
Abstract
MOTIVATION The thermostability of proteins will cause them to break the temperature binding and play more functions. Using machine learning, we explored the mechanism of and reasons for protein thermostability characteristics. RESULTS Different from other methods that only pursue the performance of models, we aim to find important features so as to provide a powerful reference for in vitro experiments. We transformed this problem into a binary classification problem, that is, the distinction between thermophilic proteins and nonthermophilic proteins. Using support vector machine-based model construction and analysis, we inferred that Gly, Ala, Ser and Thr may be the most important components at the residue level that determine the thermal stability of proteins. It is also noteworthy that our proposed model obtains an Sn of 0.892, an Sp of 0.857, an ACC of 0.87566 and an AUC of 0.874. To facilitate other researchers, we wrapped our model and deployed it as a web server, which is accessible at http://112.124.26.17:7000/TMPpred/index.html.
Collapse
Affiliation(s)
- Chaolu Meng
- College of Computer and Information Engineering, Inner Mongolia Agricultural University, Hohhot, China; Inner Mongolia Autonomous Region Key Laboratory of Big Data Research and Application for Agriculture and Animal Husbandry, Hohhot, China
| | - Ying Ju
- School of Informatics, Xiamen University, Xiamen, China.
| | - Hua Shi
- School of Opto-electronic and Communication Engineering, Xiamen University of Technology, Xiamen, China.
| |
Collapse
|
13
|
Chen Z, Jiao S, Zhao D, Zou Q, Xu L, Zhang L, Su X. The Characterization of Structure and Prediction for Aquaporin in Tumour Progression by Machine Learning. Front Cell Dev Biol 2022; 10:845622. [PMID: 35178393 PMCID: PMC8844512 DOI: 10.3389/fcell.2022.845622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/17/2022] [Indexed: 11/21/2022] Open
Abstract
Recurrence and new cases of cancer constitute a challenging human health problem. Aquaporins (AQPs) can be expressed in many types of tumours, including the brain, breast, pancreas, colon, skin, ovaries, and lungs, and the histological grade of cancer is positively correlated with AQP expression. Therefore, the identification of aquaporins is an area to explore. Computational tools play an important role in aquaporin identification. In this research, we propose reliable, accurate and automated sequence predictor iAQPs-RF to identify AQPs. In this study, the feature extraction method was 188D (global protein sequence descriptor, GPSD). Six common classifiers, including random forest (RF), NaiveBayes (NB), support vector machine (SVM), XGBoost, logistic regression (LR) and decision tree (DT), were used for AQP classification. The classification results show that the random forest (RF) algorithm is the most suitable machine learning algorithm, and the accuracy was 97.689%. Analysis of Variance (ANOVA) was used to analyse these characteristics. Feature rank based on the ANOVA method and IFS strategy was applied to search for the optimal features. The classification results suggest that the 26th feature (neutral/hydrophobic) and 21st feature (hydrophobic) are the two most powerful and informative features that distinguish AQPs from non-AQPs. Previous studies reported that plasma membrane proteins have hydrophobic characteristics. Aquaporin subcellular localization prediction showed that all aquaporins were plasma membrane proteins with highly conserved transmembrane structures. In addition, the 3D structure of aquaporins was consistent with the localization results. Therefore, these studies confirmed that aquaporins possess hydrophobic properties. Although aquaporins are highly conserved transmembrane structures, the phylogenetic tree shows the diversity of aquaporins during evolution. The PCA showed that positive and negative samples were well separated by 54D features, indicating that the 54D feature can effectively classify aquaporins. The online prediction server is accessible at http://lab.malab.cn/∼acy/iAQP.
Collapse
Affiliation(s)
- Zheng Chen
- School of Applied Chemistry and Biological Technology, Shenzhen Polytechnic, Shenzhen, China.,Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Shihu Jiao
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| | - Da Zhao
- School of Applied Chemistry and Biological Technology, Shenzhen Polytechnic, Shenzhen, China.,Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China.,Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| | - Lei Xu
- School of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen, China
| | - Lijun Zhang
- School of Applied Chemistry and Biological Technology, Shenzhen Polytechnic, Shenzhen, China
| | - Xi Su
- Foshan Maternal and Child Health Hospital, Foshan, China
| |
Collapse
|
14
|
Maximal Information Coefficient-Based Testing to Identify Epistasis in Case-Control Association Studies. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:7843990. [PMID: 35211187 PMCID: PMC8863443 DOI: 10.1155/2022/7843990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/12/2022] [Accepted: 01/27/2022] [Indexed: 12/18/2022]
Abstract
Interactions between genetic variants (epistasis) are ubiquitous in the model system and can significantly affect evolutionary adaptation, genetic mapping, and precision medical efforts. In this paper, we proposed a method for epistasis detection, called EpiMIC (epistasis detection through a maximal information coefficient (MIC)). MIC is a promising bivariate dependence measure explicitly designed for rapidly exploring various function types equally and for interpreting and comparing them on the same scale. Most epistasis detection approaches make assumptions about the form of the association between genetic variants, resulting in limited statistical performance. Based on the notion that if two SNPs do not interact, their joint distribution in all samples and in only cases should not be substantially different. We developed a statistic that utilizes the difference of MIC as a signal of epistasis and combined it with a permutation resampling strategy to estimate the empirical distribution of our statistic. Results of simulation and real-world data set showed that EpiMIC outperformed previous approaches for identifying epistasis at varying degrees of heredity.
Collapse
|
15
|
Zhao Z, Yang W, Zhai Y, Liang Y, Zhao Y. Identify DNA-Binding Proteins Through the Extreme Gradient Boosting Algorithm. Front Genet 2022; 12:821996. [PMID: 35154264 PMCID: PMC8837382 DOI: 10.3389/fgene.2021.821996] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/07/2021] [Indexed: 12/13/2022] Open
Abstract
The exploration of DNA-binding proteins (DBPs) is an important aspect of studying biological life activities. Research on life activities requires the support of scientific research results on DBPs. The decline in many life activities is closely related to DBPs. Generally, the detection method for identifying DBPs is achieved through biochemical experiments. This method is inefficient and requires considerable manpower, material resources and time. At present, several computational approaches have been developed to detect DBPs, among which machine learning (ML) algorithm-based computational techniques have shown excellent performance. In our experiments, our method uses fewer features and simpler recognition methods than other methods and simultaneously obtains satisfactory results. First, we use six feature extraction methods to extract sequence features from the same group of DBPs. Then, this feature information is spliced together, and the data are standardized. Finally, the extreme gradient boosting (XGBoost) model is used to construct an effective predictive model. Compared with other excellent methods, our proposed method has achieved better results. The accuracy achieved by our method is 78.26% for PDB2272 and 85.48% for PDB186. The accuracy of the experimental results achieved by our strategy is similar to that of previous detection methods.
Collapse
Affiliation(s)
- Ziye Zhao
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Wen Yang
- International Medical Center, Shenzhen University General Hospital, Shenzhen, China
| | - Yixiao Zhai
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Yingjian Liang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Yingjian Liang, ; Yuming Zhao,
| | - Yuming Zhao
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
- *Correspondence: Yingjian Liang, ; Yuming Zhao,
| |
Collapse
|
16
|
Ma D, Chen Z, He Z, Huang X. A SNARE Protein Identification Method Based on iLearnPlus to Efficiently Solve the Data Imbalance Problem. Front Genet 2022; 12:818841. [PMID: 35154261 PMCID: PMC8832978 DOI: 10.3389/fgene.2021.818841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022] Open
Abstract
Machine learning has been widely used to solve complex problems in engineering applications and scientific fields, and many machine learning-based methods have achieved good results in different fields. SNAREs are key elements of membrane fusion and required for the fusion process of stable intermediates. They are also associated with the formation of some psychiatric disorders. This study processes the original sequence data with the synthetic minority oversampling technique (SMOTE) to solve the problem of data imbalance and produces the most suitable machine learning model with the iLearnPlus platform for the identification of SNARE proteins. Ultimately, a sensitivity of 66.67%, specificity of 93.63%, accuracy of 91.33%, and MCC of 0.528 were obtained in the cross-validation dataset, and a sensitivity of 66.67%, specificity of 93.63%, accuracy of 91.33%, and MCC of 0.528 were obtained in the independent dataset (the adaptive skip dipeptide composition descriptor was used for feature extraction, and LightGBM with proper parameters was used as the classifier). These results demonstrate that this combination can perform well in the classification of SNARE proteins and is superior to other methods.
Collapse
|
17
|
Wan H, Zhang J, Ding Y, Wang H, Tian G. Immunoglobulin Classification Based on FC* and GC* Features. Front Genet 2022; 12:827161. [PMID: 35140745 PMCID: PMC8819591 DOI: 10.3389/fgene.2021.827161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
Immunoglobulins have a pivotal role in disease regulation. Therefore, it is vital to accurately identify immunoglobulins to develop new drugs and research related diseases. Compared with utilizing high-dimension features to identify immunoglobulins, this research aimed to examine a method to classify immunoglobulins and non-immunoglobulins using two features, FC* and GC*. Classification of 228 samples (109 immunoglobulin samples and 119 non-immunoglobulin samples) revealed that the overall accuracy was 80.7% in 10-fold cross-validation using the J48 classifier implemented in Weka software. The FC* feature identified in this study was found in the immunoglobulin subtype domain, which demonstrated that this extracted feature could represent functional and structural properties of immunoglobulins for forecasting.
Collapse
Affiliation(s)
- Hao Wan
- Institute of Advanced Cross-field Science, College of Life Science, Qingdao University, Qingdao, China
| | - Jina Zhang
- Geneis (Beijing) Co., Ltd., Beijing, China
| | - Yijie Ding
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| | - Hetian Wang
- Beidahuang Industry Group General Hospital, Harbin, China
- *Correspondence: Hetian Wang, ; Geng Tian,
| | - Geng Tian
- Geneis (Beijing) Co., Ltd., Beijing, China
- *Correspondence: Hetian Wang, ; Geng Tian,
| |
Collapse
|
18
|
Gong Y, Dong B, Zhang Z, Zhai Y, Gao B, Zhang T, Zhang J. VTP-Identifier: Vesicular Transport Proteins Identification Based on PSSM Profiles and XGBoost. Front Genet 2022; 12:808856. [PMID: 35047020 PMCID: PMC8762342 DOI: 10.3389/fgene.2021.808856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Vesicular transport proteins are related to many human diseases, and they threaten human health when they undergo pathological changes. Protein function prediction has been one of the most in-depth topics in bioinformatics. In this work, we developed a useful tool to identify vesicular transport proteins. Our strategy is to extract transition probability composition, autocovariance transformation and other information from the position-specific scoring matrix as feature vectors. EditedNearesNeighbours (ENN) is used to address the imbalance of the data set, and the Max-Relevance-Max-Distance (MRMD) algorithm is adopted to reduce the dimension of the feature vector. We used 5-fold cross-validation and independent test sets to evaluate our model. On the test set, VTP-Identifier presented a higher performance compared with GRU. The accuracy, Matthew's correlation coefficient (MCC) and area under the ROC curve (AUC) were 83.6%, 0.531 and 0.873, respectively.
Collapse
Affiliation(s)
- Yue Gong
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Benzhi Dong
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Zixiao Zhang
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Yixiao Zhai
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Bo Gao
- Department of Radiology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Tianjiao Zhang
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Jingyu Zhang
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
19
|
Zhang Z, Gong Y, Gao B, Li H, Gao W, Zhao Y, Dong B. SNAREs-SAP: SNARE Proteins Identification With PSSM Profiles. Front Genet 2022; 12:809001. [PMID: 34987554 PMCID: PMC8721734 DOI: 10.3389/fgene.2021.809001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/15/2021] [Indexed: 12/20/2022] Open
Abstract
Soluble N-ethylmaleimide sensitive factor activating protein receptor (SNARE) proteins are a large family of transmembrane proteins located in organelles and vesicles. The important roles of SNARE proteins include initiating the vesicle fusion process and activating and fusing proteins as they undergo exocytosis activity, and SNARE proteins are also vital for the transport regulation of membrane proteins and non-regulatory vesicles. Therefore, there is great significance in establishing a method to efficiently identify SNARE proteins. However, the identification accuracy of the existing methods such as SNARE CNN is not satisfied. In our study, we developed a method based on a support vector machine (SVM) that can effectively recognize SNARE proteins. We used the position-specific scoring matrix (PSSM) method to extract features of SNARE protein sequences, used the support vector machine recursive elimination correlation bias reduction (SVM-RFE-CBR) algorithm to rank the importance of features, and then screened out the optimal subset of feature data based on the sorted results. We input the feature data into the model when building the model, used 10-fold crossing validation for training, and tested model performance by using an independent dataset. In independent tests, the ability of our method to identify SNARE proteins achieved a sensitivity of 68%, specificity of 94%, accuracy of 92%, area under the curve (AUC) of 84%, and Matthew’s correlation coefficient (MCC) of 0.48. The results of the experiment show that the common evaluation indicators of our method are excellent, indicating that our method performs better than other existing classification methods in identifying SNARE proteins.
Collapse
Affiliation(s)
- Zixiao Zhang
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Yue Gong
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Bo Gao
- Department of Radiology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Hongfei Li
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Wentao Gao
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Yuming Zhao
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Benzhi Dong
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| |
Collapse
|
20
|
Niu M, Zou Q, Lin C. CRBPDL: Identification of circRNA-RBP interaction sites using an ensemble neural network approach. PLoS Comput Biol 2022; 18:e1009798. [PMID: 35051187 PMCID: PMC8806072 DOI: 10.1371/journal.pcbi.1009798] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/01/2022] [Accepted: 01/02/2022] [Indexed: 02/06/2023] Open
Abstract
Circular RNAs (circRNAs) are non-coding RNAs with a special circular structure produced formed by the reverse splicing mechanism. Increasing evidence shows that circular RNAs can directly bind to RNA-binding proteins (RBP) and play an important role in a variety of biological activities. The interactions between circRNAs and RBPs are key to comprehending the mechanism of posttranscriptional regulation. Accurately identifying binding sites is very useful for analyzing interactions. In past research, some predictors on the basis of machine learning (ML) have been presented, but prediction accuracy still needs to be ameliorated. Therefore, we present a novel calculation model, CRBPDL, which uses an Adaboost integrated deep hierarchical network to identify the binding sites of circular RNA-RBP. CRBPDL combines five different feature encoding schemes to encode the original RNA sequence, uses deep multiscale residual networks (MSRN) and bidirectional gating recurrent units (BiGRUs) to effectively learn high-level feature representations, it is sufficient to extract local and global context information at the same time. Additionally, a self-attention mechanism is employed to train the robustness of the CRBPDL. Ultimately, the Adaboost algorithm is applied to integrate deep learning (DL) model to improve prediction performance and reliability of the model. To verify the usefulness of CRBPDL, we compared the efficiency with state-of-the-art methods on 37 circular RNA data sets and 31 linear RNA data sets. Moreover, results display that CRBPDL is capable of performing universal, reliable, and robust. The code and data sets are obtainable at https://github.com/nmt315320/CRBPDL.git. More and more evidences show that circular RNA can directly bind to proteins and participate in countless different biological processes. The calculation method can quickly and accurately predict the binding site of circular RNA and RBP. In order to identify the interaction of circRNA with 37 different types of circRNA binding proteins, we developed an integrated deep learning network based on hierarchical network, called CRBPDL. It can effectively learn high-level feature representations. The performance of the model was verified through comparative experiments of different feature extraction algorithms, different deep learning models and classifier models. Moreover, the CRBPDL model was applied to 31 linear RNAs, and the effectiveness of our method was proved by comparison with the results of current excellent algorithms. It is expected that the CRBPDL model can effectively predict the binding site of circular RNA-RBP and provide reliable candidates for further biological experiments.
Collapse
Affiliation(s)
- Mengting Niu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang, China
| | - Chen Lin
- School of Informatics, Xiamen University, Xiamen, China
- * E-mail:
| |
Collapse
|
21
|
Teng Z, Zhao Z, Li Y, Tian Z, Guo M, Lu Q, Wang G. i6mA-Vote: Cross-Species Identification of DNA N6-Methyladenine Sites in Plant Genomes Based on Ensemble Learning With Voting. FRONTIERS IN PLANT SCIENCE 2022; 13:845835. [PMID: 35237293 PMCID: PMC8882731 DOI: 10.3389/fpls.2022.845835] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/24/2022] [Indexed: 05/17/2023]
Abstract
DNA N6-Methyladenine (6mA) is a common epigenetic modification, which plays some significant roles in the growth and development of plants. It is crucial to identify 6mA sites for elucidating the functions of 6mA. In this article, a novel model named i6mA-vote is developed to predict 6mA sites of plants. Firstly, DNA sequences were coded into six feature vectors with diverse strategies based on density, physicochemical properties, and position of nucleotides, respectively. To find the best coding strategy, the feature vectors were compared on several machine learning classifiers. The results suggested that the position of nucleotides has a significant positive effect on 6mA sites identification. Thus, the dinucleotide one-hot strategy which can describe position characteristics of nucleotides well was employed to extract DNA features in our method. Secondly, DNA sequences of Rosaceae were divided into a training dataset and a test dataset randomly. Finally, i6mA-vote was constructed by combining five different base-classifiers under a majority voting strategy and trained on the Rosaceae training dataset. The i6mA-vote was evaluated on the task of predicting 6mA sites from the genome of the Rosaceae, Rice, and Arabidopsis separately. In Rosaceae, the performances of i6mA-vote were 0.955 on accuracy (ACC), 0.909 on Matthew correlation coefficients (MCC), 0.955 on sensitivity (SN), and 0.954 on specificity (SP). Those indicators, in the order of ACC, MCC, SN, SP, were 0.882, 0.774, 0.961, and 0.803 on Rice while they were 0.798, 0.617, 0.666, and 0.929 on Arabidopsis. According to the indicators, our method was effectiveness and better than other concerned methods. The results also illustrated that i6mA-vote does not only well in 6mA sites prediction of intraspecies but also interspecies plants. Moreover, it can be seen that the specificity is distinctly lower than the sensitivity in Rice while it is just the opposite in Arabidopsis. It may be resulted from sequence similarity among Rosaceae, Rice and Arabidopsis.
Collapse
Affiliation(s)
- Zhixia Teng
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Zhengnan Zhao
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Yanjuan Li
- College of Electrical and Information Engineering, Quzhou University, Quzhou, China
| | - Zhen Tian
- College of Information Engineering, Zhengzhou University, Zhengzhou, China
| | - Maozu Guo
- College of Electrical and Information Engineering, Beijing University of Civil Engineering and Architecture, Beijing, China
| | - Qianzi Lu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- *Correspondence: Qianzi Lu,
| | - Guohua Wang
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
- Guohua Wang,
| |
Collapse
|
22
|
Zhao D, Teng Z, Li Y, Chen D. iAIPs: Identifying Anti-Inflammatory Peptides Using Random Forest. Front Genet 2021; 12:773202. [PMID: 34917130 PMCID: PMC8669811 DOI: 10.3389/fgene.2021.773202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/08/2021] [Indexed: 12/25/2022] Open
Abstract
Recently, several anti-inflammatory peptides (AIPs) have been found in the process of the inflammatory response, and these peptides have been used to treat some inflammatory and autoimmune diseases. Therefore, identifying AIPs accurately from a given amino acid sequences is critical for the discovery of novel and efficient anti-inflammatory peptide-based therapeutics and the acceleration of their application in therapy. In this paper, a random forest-based model called iAIPs for identifying AIPs is proposed. First, the original samples were encoded with three feature extraction methods, including g-gap dipeptide composition (GDC), dipeptide deviation from the expected mean (DDE), and amino acid composition (AAC). Second, the optimal feature subset is generated by a two-step feature selection method, in which the feature is ranked by the analysis of variance (ANOVA) method, and the optimal feature subset is generated by the incremental feature selection strategy. Finally, the optimal feature subset is inputted into the random forest classifier, and the identification model is constructed. Experiment results showed that iAIPs achieved an AUC value of 0.822 on an independent test dataset, which indicated that our proposed model has better performance than the existing methods. Furthermore, the extraction of features for peptide sequences provides the basis for evolutionary analysis. The study of peptide identification is helpful to understand the diversity of species and analyze the evolutionary history of species.
Collapse
Affiliation(s)
- Dongxu Zhao
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Zhixia Teng
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Yanjuan Li
- College of Electrical and Information Engineering, Quzhou University, Quzhou, China
| | - Dong Chen
- College of Electrical and Information Engineering, Quzhou University, Quzhou, China
| |
Collapse
|
23
|
Guo Y, Wu C, Yuan Z, Wang Y, Liang Z, Wang Y, Zhang Y, Xu L. Gene-Based Testing of Interactions Using XGBoost in Genome-Wide Association Studies. Front Cell Dev Biol 2021; 9:801113. [PMID: 34977040 PMCID: PMC8716787 DOI: 10.3389/fcell.2021.801113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 11/23/2021] [Indexed: 11/30/2022] Open
Abstract
Among the myriad of statistical methods that identify gene–gene interactions in the realm of qualitative genome-wide association studies, gene-based interactions are not only powerful statistically, but also they are interpretable biologically. However, they have limited statistical detection by making assumptions on the association between traits and single nucleotide polymorphisms. Thus, a gene-based method (GGInt-XGBoost) originated from XGBoost is proposed in this article. Assuming that log odds ratio of disease traits satisfies the additive relationship if the pair of genes had no interactions, the difference in error between the XGBoost model with and without additive constraint could indicate gene–gene interaction; we then used a permutation-based statistical test to assess this difference and to provide a statistical p-value to represent the significance of the interaction. Experimental results on both simulation and real data showed that our approach had superior performance than previous experiments to detect gene–gene interactions.
Collapse
Affiliation(s)
- Yingjie Guo
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
- School of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen, China
| | - Chenxi Wu
- Department of Mathematics, University of Wisconsin-Madison, Madison, WI, United States
| | - Zhian Yuan
- Research Institute of Big Data Science and Industry, Shanxi University, Taiyuan, China
| | - Yansu Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
- School of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen, China
| | - Zhen Liang
- School of Life Science, Shanxi University, Taiyuan, China
| | - Yang Wang
- School of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen, China
| | - Yi Zhang
- Beidahuang Industry Group General Hospital, Harbin, China
- *Correspondence: Yi Zhang, ; Lei Xu,
| | - Lei Xu
- School of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen, China
- *Correspondence: Yi Zhang, ; Lei Xu,
| |
Collapse
|
24
|
Jiao S, Zou Q, Guo H, Shi L. iTTCA-RF: a random forest predictor for tumor T cell antigens. J Transl Med 2021; 19:449. [PMID: 34706730 PMCID: PMC8554859 DOI: 10.1186/s12967-021-03084-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/16/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Cancer is one of the most serious diseases threatening human health. Cancer immunotherapy represents the most promising treatment strategy due to its high efficacy and selectivity and lower side effects compared with traditional treatment. The identification of tumor T cell antigens is one of the most important tasks for antitumor vaccines development and molecular function investigation. Although several machine learning predictors have been developed to identify tumor T cell antigen, more accurate tumor T cell antigen identification by existing methodology is still challenging. METHODS In this study, we used a non-redundant dataset of 592 tumor T cell antigens (positive samples) and 393 tumor T cell antigens (negative samples). Four types feature encoding methods have been studied to build an efficient predictor, including amino acid composition, global protein sequence descriptors and grouped amino acid and peptide composition. To improve the feature representation ability of the hybrid features, we further employed a two-step feature selection technique to search for the optimal feature subset. The final prediction model was constructed using random forest algorithm. RESULTS Finally, the top 263 informative features were selected to train the random forest classifier for detecting tumor T cell antigen peptides. iTTCA-RF provides satisfactory performance, with balanced accuracy, specificity and sensitivity values of 83.71%, 78.73% and 88.69% over tenfold cross-validation as well as 73.14%, 62.67% and 83.61% over independent tests, respectively. The online prediction server was freely accessible at http://lab.malab.cn/~acy/iTTCA . CONCLUSIONS We have proven that the proposed predictor iTTCA-RF is superior to the other latest models, and will hopefully become an effective and useful tool for identifying tumor T cell antigens presented in the context of major histocompatibility complex class I.
Collapse
Affiliation(s)
- Shihu Jiao
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| | - Quan Zou
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Huannan Guo
- Department of Oncology, General Hospital of Heilongjiang Province Land Reclamation Bureau, Harbin, China.
| | - Lei Shi
- Department of Spine Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
25
|
Shao J, Chen J, Liu B. ProtRe-CN: Protein Remote Homology Detection by Combining Classification Methods and Network Methods via Learning to Rank. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; PP:1-1. [PMID: 34460380 DOI: 10.1109/tcbb.2021.3108168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Protein remote homology detection is one of fundamental research tasks for downstream analysis (i.e., protein structure and function prediction). Many advanced methods are proposed from different views with complementary detection ability, such as the classification method, the network method, and the ranking method. A framework integrating these heterogeneous methods is urgently desired to reduce the false positive rate and predictive bias. We propose a novel ranking method called ProtRe-CN by fusing the classification methods and network methods via Learning to Rank. Experimental results on the benchmark dataset and the independent dataset show that ProtRe-CN outperforms other existing state-of-the-art predictors. ProtRe-CN improves the detective performance via correcting the false positives in the ranking list by combining the heterogeneous methods. The web server of ProtRe-CN can be accessed at http://bliulab.net/ProtRe-CN.
Collapse
|
26
|
Zhu W, Guo Y, Zou Q. Prediction of presynaptic and postsynaptic neurotoxins based on feature extraction. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:5943-5958. [PMID: 34517517 DOI: 10.3934/mbe.2021297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A neurotoxin is essentially a protein that mainly acts on the nervous system; it has a selective toxic effect on the central nervous system and neuromuscular nodes, can cause muscle paralysis and respiratory paralysis, and has strong lethality. According to their principle of action, neurotoxins are divided into presynaptic neurotoxins and postsynaptic neurotoxins. Correctly identifying presynaptic and postsynaptic nerve toxins provides important clues for future drug development and the discovery of drug targets. Therefore, a predictive model, Neu_LR, was constructed in this paper. The monoMonokGap method was used to extract the frequency characteristics of presynaptic and postsynaptic neurotoxin sequences and carry out feature selection, then, based on the important features obtained after dimensionality reduction, the prediction model Neu_LR was constructed using a logistic regression algorithm, and ten-fold cross-validation and independent test set validation were used. The final accuracy rates were 99.6078 and 94.1176%, respectively, which proved that the Neu_LR model had good predictive performance and robustness, and could meet the prediction requirements of presynaptic and postsynaptic neurotoxins. The data and source code of the model can be freely download from https://github.com/gyx123681/.
Collapse
Affiliation(s)
- Wen Zhu
- Key Laboratory of Computational Science and Application of Hainan Province, Haikou, China
- Key Laboratory of Data Science and Intelligence Education, Hainan Normal University, Ministry of Education, Haikou, China
- School of Mathematics and Statistics, Hainan Normal University, Haikou, China
| | - Yuxin Guo
- Key Laboratory of Computational Science and Application of Hainan Province, Haikou, China
- Key Laboratory of Data Science and Intelligence Education, Hainan Normal University, Ministry of Education, Haikou, China
- School of Mathematics and Statistics, Hainan Normal University, Haikou, China
| | - Quan Zou
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| |
Collapse
|
27
|
i4mC-EL: Identifying DNA N4-Methylcytosine Sites in the Mouse Genome Using Ensemble Learning. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5515342. [PMID: 34159192 PMCID: PMC8187051 DOI: 10.1155/2021/5515342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/21/2021] [Indexed: 12/03/2022]
Abstract
As one of important epigenetic modifications, DNA N4-methylcytosine (4mC) plays a crucial role in controlling gene replication, expression, cell cycle, DNA replication, and differentiation. The accurate identification of 4mC sites is necessary to understand biological functions. In the paper, we use ensemble learning to develop a model named i4mC-EL to identify 4mC sites in the mouse genome. Firstly, a multifeature encoding scheme consisting of Kmer and EIIP was adopted to describe the DNA sequences. Secondly, on the basis of the multifeature encoding scheme, we developed a stacked ensemble model, in which four machine learning algorithms, namely, BayesNet, NaiveBayes, LibSVM, and Voted Perceptron, were utilized to implement an ensemble of base classifiers that produce intermediate results as input of the metaclassifier, Logistic. The experimental results on the independent test dataset demonstrate that the overall rate of predictive accurate of i4mC-EL is 82.19%, which is better than the existing methods. The user-friendly website implementing i4mC-EL can be accessed freely at the following.
Collapse
|
28
|
Lv Y, Huang S, Zhang T, Gao B. Application of Multilayer Network Models in Bioinformatics. Front Genet 2021; 12:664860. [PMID: 33868392 PMCID: PMC8044439 DOI: 10.3389/fgene.2021.664860] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 02/26/2021] [Indexed: 11/24/2022] Open
Abstract
Multilayer networks provide an efficient tool for studying complex systems, and with current, dramatic development of bioinformatics tools and accumulation of data, researchers have applied network concepts to all aspects of research problems in the field of biology. Addressing the combination of multilayer networks and bioinformatics, through summarizing the applications of multilayer network models in bioinformatics, this review classifies applications and presents a summary of the latest results. Among them, we classify the applications of multilayer networks according to the object of study. Furthermore, because of the systemic nature of biology, we classify the subjects into several hierarchical categories, such as cells, tissues, organs, and groups, according to the hierarchical nature of biological composition. On the basis of the complexity of biological systems, we selected brain research for a detailed explanation. We describe the application of multilayer networks and chronological networks in brain research to demonstrate the primary ideas associated with the application of multilayer networks in biological studies. Finally, we mention a quality assessment method focusing on multilayer and single-layer networks as an evaluation method emphasizing network studies.
Collapse
Affiliation(s)
- Yuanyuan Lv
- Hainan Key Laboratory for Computational Science and Application, Hainan Normal University, Haikou, China
- Yangtze Delta Region Institute, University of Electronic Science and Technology of China, Quzhou, China
| | - Shan Huang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tianjiao Zhang
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Bo Gao
- Department of Radiology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
29
|
Niu K, Luo X, Zhang S, Teng Z, Zhang T, Zhao Y. iEnhancer-EBLSTM: Identifying Enhancers and Strengths by Ensembles of Bidirectional Long Short-Term Memory. Front Genet 2021; 12:665498. [PMID: 33833783 PMCID: PMC8021722 DOI: 10.3389/fgene.2021.665498] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/01/2021] [Indexed: 12/26/2022] Open
Abstract
Enhancers are regulatory DNA sequences that could be bound by specific proteins named transcription factors (TFs). The interactions between enhancers and TFs regulate specific genes by increasing the target gene expression. Therefore, enhancer identification and classification have been a critical issue in the enhancer field. Unfortunately, so far there has been a lack of suitable methods to identify enhancers. Previous research has mainly focused on the features of the enhancer's function and interactions, which ignores the sequence information. As we know, the recurrent neural network (RNN) and long short-term memory (LSTM) models are currently the most common methods for processing time series data. LSTM is more suitable than RNN to address the DNA sequence. In this paper, we take the advantages of LSTM to build a method named iEnhancer-EBLSTM to identify enhancers. iEnhancer-ensembles of bidirectional LSTM (EBLSTM) consists of two steps. In the first step, we extract subsequences by sliding a 3-mer window along the DNA sequence as features. Second, EBLSTM model is used to identify enhancers from the candidate input sequences. We use the dataset from the study of Quang H et al. as the benchmarks. The experimental results from the datasets demonstrate the efficiency of our proposed model.
Collapse
Affiliation(s)
- Kun Niu
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Ximei Luo
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Shumei Zhang
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Zhixia Teng
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Tianjiao Zhang
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Yuming Zhao
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| |
Collapse
|
30
|
Jiao S, Wu S, Huang S, Liu M, Gao B. Advances in the Identification of Circular RNAs and Research Into circRNAs in Human Diseases. Front Genet 2021; 12:665233. [PMID: 33815488 PMCID: PMC8017306 DOI: 10.3389/fgene.2021.665233] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 03/01/2021] [Indexed: 12/14/2022] Open
Abstract
Circular RNAs (circRNAs) are a class of endogenous non-coding RNAs (ncRNAs) with a closed-loop structure that are mainly produced by variable processing of precursor mRNAs (pre-mRNAs). They are widely present in all eukaryotes and are very stable. Currently, circRNA studies have become a hotspot in RNA research. It has been reported that circRNAs constitute a significant proportion of transcript expression, and some are significantly more abundantly expressed than other transcripts. CircRNAs have regulatory roles in gene expression and critical biological functions in the development of organisms, such as acting as microRNA sponges or as endogenous RNAs and biomarkers. As such, they may have useful functions in the diagnosis and treatment of diseases. CircRNAs have been found to play an important role in the development of several diseases, including atherosclerosis, neurological disorders, diabetes, and cancer. In this paper, we review the status of circRNA research, describe circRNA-related databases and the identification of circRNAs, discuss the role of circRNAs in human diseases such as colon cancer, atherosclerosis, and gastric cancer, and identify remaining research questions related to circRNAs.
Collapse
Affiliation(s)
- Shihu Jiao
- Hainan Key Laboratory for Computational Science and Application, Hainan Normal University, Haikou, China.,Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| | - Song Wu
- Director of Preventive Treatment of Disease Centre, Qinhuangdao Hospital of Traditional Chinese Medicine, Qinhuangdao, China
| | - Shan Huang
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Mingyang Liu
- Department of Internal Medicine-Oncology, Heilongjiang Province Land Reclamation Headquarters General Hospital, Harbin, China
| | - Bo Gao
- Department of Radiology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
31
|
Recent Advances in Predicting Protein S-Nitrosylation Sites. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5542224. [PMID: 33628788 PMCID: PMC7892234 DOI: 10.1155/2021/5542224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 01/09/2023]
Abstract
Protein S-nitrosylation (SNO) is a process of covalent modification of nitric oxide (NO) and its derivatives and cysteine residues. SNO plays an essential role in reversible posttranslational modifications of proteins. The accurate prediction of SNO sites is crucial in revealing a certain biological mechanism of NO regulation and related drug development. Identification of the sites of SNO in proteins is currently a very hot topic. In this review, we briefly summarize recent advances in computationally identifying SNO sites. The challenges and future perspectives for identifying SNO sites are also discussed. We anticipate that this review will provide insights into research on SNO site prediction.
Collapse
|
32
|
Bai Z, Chen M, Lin Q, Ye Y, Fan H, Wen K, Zeng J, Huang D, Mo W, Lei Y, Liao Z. Identification of Methicillin-Resistant Staphylococcus Aureus From Methicillin-Sensitive Staphylococcus Aureus and Molecular Characterization in Quanzhou, China. Front Cell Dev Biol 2021; 9:629681. [PMID: 33553185 PMCID: PMC7858276 DOI: 10.3389/fcell.2021.629681] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 01/04/2021] [Indexed: 12/17/2022] Open
Abstract
To distinguish Methicillin-Resistant Staphylococcus aureus (MRSA) from Methicillin-Sensitive Staphylococcus aureus (MSSA) in the protein sequences level, test the susceptibility to antibiotic of all Staphylococcus aureus isolates from Quanzhou hospitals, define the virulence factor and molecular characteristics of the MRSA isolates. MRSA and MSSA Pfam protein sequences were used to extract feature vectors of 188D, n-gram and 400D. Weka software was applied to classify the two Staphylococcus aureus and performance effect was evaluated. Antibiotic susceptibility testing of the 81 Staphylococcus aureus was performed by the Mérieux Microbial Analysis Instrument. The 65 MRSA isolates were characterized by Panton-Valentine leukocidin (PVL), X polymorphic region of Protein A (spa), multilocus sequence typing test (MLST), staphylococcus chromosomal cassette mec (SCCmec) typing. After comparing the results of Weka six classifiers, the highest correctly classified rates were 91.94, 70.16, and 62.90% from 188D, n-gram and 400D, respectively. Antimicrobial susceptibility test of the 81 Staphylococcus aureus: Penicillin-resistant rate was 100%. No resistance to teicoplanin, linezolid, and vancomycin. The resistance rate of the MRSA isolates to clindamycin, erythromycin and tetracycline was higher than that of the MSSAs. Among the 65 MRSA isolates, the positive rate of PVL gene was 47.7% (31/65). Seventeen sequence types (STs) were identified among the 65 isolates, and ST59 was the most prevalent. SCCmec type III and IV were observed at 24.6 and 72.3%, respectively. Two isolates did not be typed. Twenty-one spa types were identified, spa t437 (34/65, 52.3%) was the most predominant type. MRSA major clone type of molecular typing was CC59-ST59-spa t437-IV (28/65, 43.1%). Overall, 188D feature vectors can be applied to successfully distinguish MRSA from MSSA. In Quanzhou, the detection rate of PVL virulence factor was high, suggesting a high pathogenic risk of MRSA infection. The cross-infection of CA-MRSA and HA-MRSA was presented, the molecular characteristics were increasingly blurred, HA-MRSA with typical CA-MRSA molecular characteristics has become an important cause of healthcare-related infections. CC59-ST59-spa t437-IV was the main clone type in Quanzhou, which was rare in other parts of mainland China.
Collapse
Affiliation(s)
- Zhimin Bai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Clinical Laboratory, Jinjiang Municipal Hospital, Jinjiang, China
| | - Min Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Microbiological Laboratory Sanming Center for Disease Control and Prevention, Sanming, China
| | - Qiaofa Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Ying Ye
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Hongmei Fan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Kaizhen Wen
- Department of Clinical Laboratory, Jinjiang Municipal Hospital, Jinjiang, China
| | - Jianxing Zeng
- Department of Clinical Laboratory, Jinjiang Municipal Hospital, Jinjiang, China
| | - Donghong Huang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Wenfei Mo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Ying Lei
- Department of Clinical Laboratory, Quanzhou Women's and Children's Hospital, Quanzhou, China
| | - Zhijun Liao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|