1
|
He A, Yip KC, Lu D, Liu J, Zhang Z, Wang X, Liu Y, Wei Y, Zhang Q, Yan R, Gao F, Li R. Construction of a pathway-level model for preeclampsia based on gene expression data. Hypertens Res 2024; 47:2521-2531. [PMID: 38914704 DOI: 10.1038/s41440-024-01753-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 06/26/2024]
Abstract
Preeclampsia (PE) is a heterogeneous disease that seriously affects the health of mothers and fetuses. Lack of detection assays, its diagnosis and intervention are often delayed when the clinical symptoms are atypical. Using personalized pathway-based analysis and machine learning algorithms, we built a PE diagnosis model consisting of nine core pathways using multiple cohorts from the Gene Expression Omnibus database. The model showed an area under the receiver operating characteristic (AUROC) curve of 0.959 with the data from the placental tissue samples in the development cohort. In the two validation cohorts, the AUROCs were 0.898 and 0.876, respectively. The model also performed well with the maternal plasma data in another validation cohort (AUROC: 0.815). Moreover, we identified tyrosine-protein kinase Lck (LCK) as the hub gene in this model and found that LCK and pLCK proteins were downregulated in placentas from PE patients. The pathway-level model for PE can provide a novel direction to develop molecular diagnostic assay and investigate potential mechanisms of PE in future studies.
Collapse
Affiliation(s)
- Andong He
- Department of Obstetrics and Gynecology, Jinan University First Affiliated Hospital, Guangzhou, 510630, China
| | - Ka Cheuk Yip
- Department of Obstetrics and Gynecology, Jinan University First Affiliated Hospital, Guangzhou, 510630, China
| | - Daiqiang Lu
- Institute of Molecular and Medical Virology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jia Liu
- Department of Obstetrics and Gynecology, Jinan University First Affiliated Hospital, Guangzhou, 510630, China
| | - Zunhao Zhang
- Department of Pathology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Xiufang Wang
- Department of Obstetrics and Gynecology, Jinan University First Affiliated Hospital, Guangzhou, 510630, China
| | - Yifeng Liu
- Institute of Molecular and Medical Virology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Yiling Wei
- Department of Obstetrics and Gynecology, Jinan University First Affiliated Hospital, Guangzhou, 510630, China
| | - Qiao Zhang
- Institute of Molecular and Medical Virology, School of Medicine, Jinan University, Guangzhou, 510632, China.
| | - Ruiling Yan
- Department of Obstetrics and Gynecology, Jinan University First Affiliated Hospital, Guangzhou, 510630, China.
| | - Feng Gao
- Institute of Molecular and Medical Virology, School of Medicine, Jinan University, Guangzhou, 510632, China.
| | - Ruiman Li
- Department of Obstetrics and Gynecology, Jinan University First Affiliated Hospital, Guangzhou, 510630, China.
| |
Collapse
|
2
|
Sant VR, Radhachandran A, Ivezic V, Lee DT, Livhits MJ, Wu JX, Masamed R, Arnold CW, Yeh MW, Speier W. From Bench-to-Bedside: How Artificial Intelligence is Changing Thyroid Nodule Diagnostics, a Systematic Review. J Clin Endocrinol Metab 2024; 109:1684-1693. [PMID: 38679750 PMCID: PMC11180510 DOI: 10.1210/clinem/dgae277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/04/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024]
Abstract
CONTEXT Use of artificial intelligence (AI) to predict clinical outcomes in thyroid nodule diagnostics has grown exponentially over the past decade. The greatest challenge is in understanding the best model to apply to one's own patient population, and how to operationalize such a model in practice. EVIDENCE ACQUISITION A literature search of PubMed and IEEE Xplore was conducted for English-language publications between January 1, 2015 and January 1, 2023, studying diagnostic tests on suspected thyroid nodules that used AI. We excluded articles without prospective or external validation, nonprimary literature, duplicates, focused on nonnodular thyroid conditions, not using AI, and those incidentally using AI in support of an experimental diagnostic outside standard clinical practice. Quality was graded by Oxford level of evidence. EVIDENCE SYNTHESIS A total of 61 studies were identified; all performed external validation, 16 studies were prospective, and 33 compared a model to physician prediction of ground truth. Statistical validation was reported in 50 papers. A diagnostic pipeline was abstracted, yielding 5 high-level outcomes: (1) nodule localization, (2) ultrasound (US) risk score, (3) molecular status, (4) malignancy, and (5) long-term prognosis. Seven prospective studies validated a single commercial AI; strengths included automating nodule feature assessment from US and assisting the physician in predicting malignancy risk, while weaknesses included automated margin prediction and interobserver variability. CONCLUSION Models predominantly used US images to predict malignancy. Of 4 Food and Drug Administration-approved products, only S-Detect was extensively validated. Implementing an AI model locally requires data sanitization and revalidation to ensure appropriate clinical performance.
Collapse
Affiliation(s)
- Vivek R Sant
- Division of Endocrine Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ashwath Radhachandran
- Biomedical Artificial Intelligence Research Lab, UCLA Department of Bioengineering, Los Angeles, CA 90024, USA
| | - Vedrana Ivezic
- Biomedical Artificial Intelligence Research Lab, UCLA Department of Bioengineering, Los Angeles, CA 90024, USA
| | - Denise T Lee
- Department of Surgery, Icahn School of Medicine at Mount Sinai Hospital, New York, NY 10029, USA
| | - Masha J Livhits
- Section of Endocrine Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - James X Wu
- Section of Endocrine Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Rinat Masamed
- Department of Radiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Corey W Arnold
- Biomedical Artificial Intelligence Research Lab, UCLA Department of Bioengineering, Los Angeles, CA 90024, USA
| | - Michael W Yeh
- Section of Endocrine Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - William Speier
- Biomedical Artificial Intelligence Research Lab, UCLA Department of Bioengineering, Los Angeles, CA 90024, USA
| |
Collapse
|
3
|
Tutsoy O, Sumbul HE. A novel deep machine learning algorithm with dimensionality and size reduction approaches for feature elimination: thyroid cancer diagnoses with randomly missing data. Brief Bioinform 2024; 25:bbae344. [PMID: 39007597 PMCID: PMC11247408 DOI: 10.1093/bib/bbae344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 06/04/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Thyroid cancer incidences endure to increase even though a large number of inspection tools have been developed recently. Since there is no standard and certain procedure to follow for the thyroid cancer diagnoses, clinicians require conducting various tests. This scrutiny process yields multi-dimensional big data and lack of a common approach leads to randomly distributed missing (sparse) data, which are both formidable challenges for the machine learning algorithms. This paper aims to develop an accurate and computationally efficient deep learning algorithm to diagnose the thyroid cancer. In this respect, randomly distributed missing data stemmed singularity in learning problems is treated and dimensionality reduction with inner and target similarity approaches are developed to select the most informative input datasets. In addition, size reduction with the hierarchical clustering algorithm is performed to eliminate the considerably similar data samples. Four machine learning algorithms are trained and also tested with the unseen data to validate their generalization and robustness abilities. The results yield 100% training and 83% testing preciseness for the unseen data. Computational time efficiencies of the algorithms are also examined under the equal conditions.
Collapse
Affiliation(s)
- Onder Tutsoy
- Adana Alparslan Turkes Science and Technology University, Adana, Turkey
| | - Hilmi Erdem Sumbul
- University of Health Sciences, Adana City Training and Research Hospital, Adana, Turkey
| |
Collapse
|
4
|
Budhraja S, Doborjeh M, Singh B, Tan S, Doborjeh Z, Lai E, Merkin A, Lee J, Goh W, Kasabov N. Filter and Wrapper Stacking Ensemble (FWSE): a robust approach for reliable biomarker discovery in high-dimensional omics data. Brief Bioinform 2023; 24:bbad382. [PMID: 37889118 PMCID: PMC10605029 DOI: 10.1093/bib/bbad382] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 09/18/2023] [Accepted: 10/03/2023] [Indexed: 10/28/2023] Open
Abstract
Selecting informative features, such as accurate biomarkers for disease diagnosis, prognosis and response to treatment, is an essential task in the field of bioinformatics. Medical data often contain thousands of features and identifying potential biomarkers is challenging due to small number of samples in the data, method dependence and non-reproducibility. This paper proposes a novel ensemble feature selection method, named Filter and Wrapper Stacking Ensemble (FWSE), to identify reproducible biomarkers from high-dimensional omics data. In FWSE, filter feature selection methods are run on numerous subsets of the data to eliminate irrelevant features, and then wrapper feature selection methods are applied to rank the top features. The method was validated on four high-dimensional medical datasets related to mental illnesses and cancer. The results indicate that the features selected by FWSE are stable and statistically more significant than the ones obtained by existing methods while also demonstrating biological relevance. Furthermore, FWSE is a generic method, applicable to various high-dimensional datasets in the fields of machine intelligence and bioinformatics.
Collapse
Affiliation(s)
- Sugam Budhraja
- Knowledge Engineering and Discovery Research Innovation (KEDRI), School of Engineering Computer and Mathematical Sciences, Auckland University of Technology, 55 Wellesley Street East, 1010 Auckland, New Zealand
| | - Maryam Doborjeh
- Knowledge Engineering and Discovery Research Innovation (KEDRI), School of Engineering Computer and Mathematical Sciences, Auckland University of Technology, 55 Wellesley Street East, 1010 Auckland, New Zealand
| | - Balkaran Singh
- Knowledge Engineering and Discovery Research Innovation (KEDRI), School of Engineering Computer and Mathematical Sciences, Auckland University of Technology, 55 Wellesley Street East, 1010 Auckland, New Zealand
| | - Samuel Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore
| | - Zohreh Doborjeh
- School of Population Health, The University of Auckland, Grafton, 1023,Auckland, New Zealand
| | - Edmund Lai
- Knowledge Engineering and Discovery Research Innovation (KEDRI), School of Engineering Computer and Mathematical Sciences, Auckland University of Technology, 55 Wellesley Street East, 1010 Auckland, New Zealand
| | - Alexander Merkin
- National Institute for Stroke and Applied Neuroscience, Auckland University of Technology, 55 Wellesley Street East, 1010 Auckland, New Zealand
| | - Jimmy Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore
- Institute of Mental Health, 10 Buangkok View, 539747, Singapore
| | - Wilson Goh
- Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore
- Center for Biomedical Informatics, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore
- School of Biological Sciences, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore
| | - Nikola Kasabov
- Knowledge Engineering and Discovery Research Innovation (KEDRI), School of Engineering Computer and Mathematical Sciences, Auckland University of Technology, 55 Wellesley Street East, 1010 Auckland, New Zealand
- Intelligent Systems Research Center, Ulster University, Magee Campus, Derry, BT48 7JL, Ulster, United Kingdom
- Auckland Bioengineering Institute, The University of Auckland, 6/70 Symonds Street, 1010 Auckland, New Zealand
- Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
5
|
Xiang Z, Zhuo Q, Zhao C, Deng X, Zhu T, Wang T, Jiang W, Lei B. Self-supervised multi-modal fusion network for multi-modal thyroid ultrasound image diagnosis. Comput Biol Med 2022; 150:106164. [PMID: 36240597 DOI: 10.1016/j.compbiomed.2022.106164] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/11/2022] [Accepted: 10/01/2022] [Indexed: 12/07/2022]
Abstract
Ultrasound is a typical non-invasive diagnostic method often used to detect thyroid cancer lesions. However, due to the limitations of the information provided by ultrasound images, shear wave elastography (SWE) and color doppler ultrasound (CDUS) are also used clinically to assist in diagnosis, which makes the diagnosis time-consuming, labor-intensive, and highly subjective process. Therefore, automatic diagnosis of benign and malignant thyroid nodules is beneficial for the clinical diagnosis of the thyroid. To this end, based on three modalities of gray-scale ultrasound images(US), SWE, and CDUS, we propose a deep learning-based multi-modal feature fusion network for the automatic diagnosis of thyroid disease based on the ultrasound images. First, three ResNet18s initialized by self-supervised learning are used as branches to extract the image information of each modality, respectively. Then, a multi-modal multi-head attention branch is used to remove the common information of three modalities, and the knowledge of each modal is combined for thyroid diagnosis. At the same time, to better integrate the features between modalities, a multi-modal feature guidance module is also proposed to guide the feature extraction of each branch and reduce the difference between each-modal feature. We verify the multi-modal thyroid ultrasound image diagnosis method on the self-collected dataset, and the results prove that this method could provide fast and accurate assistance for sonographers in diagnosing thyroid nodules.
Collapse
Affiliation(s)
- Zhuo Xiang
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen, China
| | - Qiuluan Zhuo
- Huazhong University of Science and Technology Union Shenzhen Hospital, Department of Ultrasound, China
| | - Cheng Zhao
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen, China
| | - Xiaofei Deng
- Huazhong University of Science and Technology Union Shenzhen Hospital, Department of Ultrasound, China
| | - Ting Zhu
- Huazhong University of Science and Technology Union Shenzhen Hospital, Department of Ultrasound, China
| | - Tianfu Wang
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen, China
| | - Wei Jiang
- Huazhong University of Science and Technology Union Shenzhen Hospital, Department of Ultrasound, China.
| | - Baiying Lei
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen, China.
| |
Collapse
|
6
|
Guo YY, Li ZJ, Du C, Gong J, Liao P, Zhang JX, Shao C. Machine learning for identifying benign and malignant of thyroid tumors: A retrospective study of 2,423 patients. Front Public Health 2022; 10:960740. [PMID: 36187616 PMCID: PMC9515945 DOI: 10.3389/fpubh.2022.960740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/23/2022] [Indexed: 01/24/2023] Open
Abstract
Thyroid tumors, one of the common tumors in the endocrine system, while the discrimination between benign and malignant thyroid tumors remains insufficient. The aim of this study is to construct a diagnostic model of benign and malignant thyroid tumors, in order to provide an emerging auxiliary diagnostic method for patients with thyroid tumors. The patients were selected from the Chongqing General Hospital (Chongqing, China) from July 2020 to September 2021. And peripheral blood, BRAFV600E gene, and demographic indicators were selected, including sex, age, BRAFV600E gene, lymphocyte count (Lymph#), neutrophil count (Neu#), neutrophil/lymphocyte ratio (NLR), platelet/lymphocyte ratio (PLR), red blood cell distribution width (RDW), platelets count (PLT), red blood cell distribution width-coefficient of variation (RDW-CV), alkaline phosphatase (ALP), and parathyroid hormone (PTH). First, feature selection was executed by univariate analysis combined with least absolute shrinkage and selection operator (LASSO) analysis. Afterward, we used machine learning algorithms to establish three types of models. The first model contains all predictors, the second model contains indicators after feature selection, and the third model contains patient peripheral blood indicators. The four machine learning algorithms include extreme gradient boosting (XGBoost), random forest (RF), light gradient boosting machine (LightGBM), and adaptive boosting (AdaBoost) which were used to build predictive models. A grid search algorithm was used to find the optimal parameters of the machine learning algorithms. A series of indicators, such as the area under the curve (AUC), were intended to determine the model performance. A total of 2,042 patients met the criteria and were enrolled in this study, and 12 variables were included. Sex, age, Lymph#, PLR, RDW, and BRAFV600E were identified as statistically significant indicators by univariate and LASSO analysis. Among the model we constructed, RF, XGBoost, LightGBM and AdaBoost with the AUC of 0.874 (95% CI, 0.841-0.906), 0.868 (95% CI, 0.834-0.901), 0.861 (95% CI, 0.826-0.895), and 0.837 (95% CI, 0.802-0.873) in the first model. With the AUC of 0.853 (95% CI, 0.818-0.888), 0.853 (95% CI, 0.818-0.889), 0.837 (95% CI, 0.800-0.873), and 0.832 (95% CI, 0.797-0.867) in the second model. With the AUC of 0.698 (95% CI, 0.651-0.745), 0.688 (95% CI, 0.639-0.736), 0.693 (95% CI, 0.645-0.741), and 0.666 (95% CI, 0.618-0.714) in the third model. Compared with the existing models, our study proposes a model incorporating novel biomarkers which could be a powerful and promising tool for predicting benign and malignant thyroid tumors.
Collapse
Affiliation(s)
- Yuan-yuan Guo
- Department of Laboratory Medicine, Chongqing General Hospital, Chongqing, China
| | - Zhi-jie Li
- Department of Laboratory Medicine, Chongqing General Hospital, Chongqing, China
| | - Chao Du
- Department of Laboratory Medicine, Fuling Center Hospital of Chongqing City, Chongqing, China
| | - Jun Gong
- Department of Information Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Pu Liao
- Department of Laboratory Medicine, Chongqing General Hospital, Chongqing, China,*Correspondence: Pu Liao
| | - Jia-xing Zhang
- Department of Laboratory Medicine, Chongqing General Hospital, Chongqing, China
| | - Cong Shao
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing, China
| |
Collapse
|
7
|
Wang J, Zhanghuang C, Jin L, Zhang Z, Tan X, Mi T, Liu J, Li M, Wu X, Tian X, He D. Development and validation of a nomogram to predict cancer-specific survival in elderly patients with papillary thyroid carcinoma: a population-based study. BMC Geriatr 2022; 22:736. [PMID: 36076163 PMCID: PMC9454205 DOI: 10.1186/s12877-022-03430-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/29/2022] [Indexed: 11/21/2022] Open
Abstract
Objective Thyroid carcinoma (TC) is the most common endocrine tumor in the human body. Papillary thyroid carcinoma (PTC) accounts for more than 80% of thyroid cancers. Accurate prediction of elderly PTC can help reduce the mortality of patients. We aimed to construct a nomogram predicting cancer-specific survival (CSS) in elderly patients with PTC. Methods Patient information was downloaded from the Surveillance, Epidemiology, and End Results (SEER) program. Univariate and multivariate Cox regression models were used to screen the independent risk factors for patients with PTC. The nomogram of elderly patients with PTC was constructed based on the multivariate Cox regression model. We used the concordance index (C-index), the area under the receiver operating characteristic curve (AUC) and the calibration curve to test the accuracy and discrimination of the prediction model. Decision curve analysis (DCA) was used to test the clinical value of the model. Results A total of 14,138 elderly patients with PTC were included in this study. Patients from 2004 to 2015 were randomly divided into a training set (N = 7379) and a validation set (N = 3141), and data from 2016 to 2018 were divided into an external validation set (N = 3618). Proportional sub-distribution hazard model showed that age, sex, tumor size, histological grade, TNM stage, surgery and chemotherapy were independent risk factors for prognosis. In the training set, validation set and external validation set, the C-index was 0.87(95%CI: 0.852–0.888), 0.891(95%CI: 0.866–0.916) and 0.931(95%CI:0.894–0.968), respectively, indicating that the nomogram had good discrimination. Calibration curves and AUC suggest that the prediction model has good discrimination and accuracy. Conclusions We constructed a new nomogram to predict CSS in elderly patients with PTC. Internal cross-validation and external validation indicate that the model has good discrimination and accuracy. The predictive model can help doctors and patients make clinical decisions.
Collapse
Affiliation(s)
- Jinkui Wang
- Department of Urology, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Chenghao Zhanghuang
- Department of Urology, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Department of Urology, Kunming Children's Hospital, Yunnan Provincial Key Research Laboratory of Pediatric Major Diseases, Kunming, 650228, China
| | - Liming Jin
- Department of Urology, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Zhaoxia Zhang
- Department of Urology, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Xiaojun Tan
- Department of Urology, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Tao Mi
- Department of Urology, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Jiayan Liu
- Department of Urology, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Mujie Li
- Department of Urology, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Xin Wu
- Department of Urology, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Xiaomao Tian
- Department of Urology, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Dawei He
- Department of Urology, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China.
| |
Collapse
|
8
|
Cheng B, Zhou P, Chen Y. Machine-learning algorithms based on personalized pathways for a novel predictive model for the diagnosis of hepatocellular carcinoma. BMC Bioinformatics 2022; 23:248. [PMID: 35739471 PMCID: PMC9219178 DOI: 10.1186/s12859-022-04805-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/20/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND At present, the diagnostic ability of hepatocellular carcinoma (HCC) based on serum alpha-fetoprotein level is limited. Finding markers that can effectively distinguish cancer and non-cancerous tissues is important for improving the diagnostic efficiency of HCC. RESULTS In this study, we developed a predictive model for HCC diagnosis using personalized biological pathways combined with a machine learning algorithm based on regularized regression and carry out relevant examinations. In two training sets, the overall cross-study-validated area under the receiver operating characteristic curve (AUROC), the area under the precision-recall curve and the Brier score of the diagnostic model were 0.987 [95%confidence interval (CI): 0.979-0.996], 0.981 and 0.091, respectively. Besides, the model showed good transferability in external validation set. In TCGA-LIHC cohort, the AUROC, AURPC and Brier score were 0.992 (95%CI: 0.985-0.998), 0.967 and 0.112, respectively. The diagnostic model has accomplished very impressive performance in distinguishing HCC from non-cancerous liver tissues. Moreover, we further analyzed the extracted biological pathways to explore molecular features and prognostic factors. The risk score generated from a 12-gene signature extracted from the characteristic pathways was correlated with some immune related pathways and served as an independent prognostic factor for HCC. CONCLUSION We used personalized biological pathways analysis and machine learning algorithm to construct a highly accurate HCC diagnostic model. The excellent interpretable performance and good transferability of this model enables it with great potential for personalized medicine, which can assist clinicians in diagnosis for HCC patients.
Collapse
Affiliation(s)
- Binglin Cheng
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Baiyun District, Guangzhou, 510515, Guangdong Province, China.,The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Peitao Zhou
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Baiyun District, Guangzhou, 510515, Guangdong Province, China
| | - Yuhan Chen
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Baiyun District, Guangzhou, 510515, Guangdong Province, China.
| |
Collapse
|
9
|
Dong X, Akuetteh PDP, Song J, Ni C, Jin C, Li H, Jiang W, Si Y, Zhang X, Zhang Q, Huang G. Major Vault Protein (MVP) Associated With BRAF V600E Mutation Is an Immune Microenvironment-Related Biomarker Promoting the Progression of Papillary Thyroid Cancer via MAPK/ERK and PI3K/AKT Pathways. Front Cell Dev Biol 2022; 9:688370. [PMID: 35433709 PMCID: PMC9009514 DOI: 10.3389/fcell.2021.688370] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 12/23/2021] [Indexed: 12/15/2022] Open
Abstract
Papillary thyroid cancer (PTC) is the most common malignancy of the endocrine system, with an increase in incidence frequency. Major vault protein (MVP) is the main structural protein of the vault complex that has already been investigated in specific cancers. Yet the underlying biological functions and molecular mechanisms of MVP in PTC still remain considerably uncharacterized. Comprehensive analyses are predicated on several public datasets and local RNA-Seq cohort. Clinically, we found that MVP was upregulated in human PTC than in non-cancerous thyroid tissue and was correlated with vital clinicopathological parameters in PTC patients. MVP expression was associated with BRAF V600E, RAS, TERT, and RET status, and it was correlated with worse progression-free survival in PTC patients. Functionally, enrichment analysis provided new clues for the close relationship between MVP with cancer-related signaling pathways and the immune microenvironment in PTC. In PTC with high MVP expression, we found CD8+ T cells, regulatory T cells, and follicular helper T cells have a higher infiltration level. Intriguingly, MVP expression was positively correlated with multiple distinct phases of the anti-cancer immunity cycle. MVP knockdown significantly suppressed cell viability and colony formation, and promoted apoptosis. In addition, downregulated MVP markedly inhibited the migration and invasion potential of PTC cells. The rescue experiments showed that MVP could reverse the level of cell survival and migration. Mechanistically, MVP exerts its oncogenic function in PTC cells through activating PI3K/AKT/mTOR and MAPK/ERK pathways. These results point out that MVP is a reliable biomarker related to the immune microenvironment and provide a basis for elucidating the oncogenic roles of MVP in PTC progression.
Collapse
Affiliation(s)
- Xubin Dong
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Percy David Papa Akuetteh
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jingjing Song
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chao Ni
- Children’s Heart Center, Institute of Cardiovascular Development and Translational Medicine, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Cong Jin
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huihui Li
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenjie Jiang
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuhao Si
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaohua Zhang
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiyu Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guanli Huang
- Department of Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Thyroid Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| |
Collapse
|