1
|
Cao C, Wang C, Dai Q, Zou Q, Wang T. CRBPSA: CircRNA-RBP interaction sites identification using sequence structural attention model. BMC Biol 2024; 22:260. [PMID: 39543602 PMCID: PMC11566611 DOI: 10.1186/s12915-024-02055-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Due to the ability of circRNA to bind with corresponding RBPs and play a critical role in gene regulation and disease prevention, numerous identification algorithms have been developed. Nevertheless, most of the current mainstream methods primarily capture one-dimensional sequence features through various descriptors, while neglecting the effective extraction of secondary structure features. Moreover, as the number of introduced descriptors increases, the issues of sparsity and ineffective representation also rise, causing a significant burden on computational models and leaving room for improvement in predictive performance. RESULTS Based on this, we focused on capturing the features of secondary structure in sequences and developed a new architecture called CRBPSA, which is based on a sequence-structure attention mechanism. Firstly, a base-pairing matrix is generated by calculating the matching probability between each base, with a Gaussian function introduced as a weight to construct the secondary structure. Then, a Structure_Transformer is employed to extract base-pairing information and spatial positional dependencies, enabling the identification of binding sites through deeper feature extraction. Experimental results using the same set of hyperparameters on 37 circRNA datasets, totaling 671,952 samples, show that the CRBPSA algorithm achieves an average AUC of 99.93%, surpassing all existing prediction methods. CONCLUSIONS CRBPSA is a lightweight and efficient prediction tool for circRNA-RBP, which can capture structural features of sequences with minimal computational resources and accurately predict protein-binding sites. This tool facilitates a deeper understanding of the biological processes and mechanisms underlying circRNA and protein interactions.
Collapse
Affiliation(s)
- Chao Cao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang, China
| | - Chunyu Wang
- Faculty of Computing, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Qi Dai
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang, China
| | - Tao Wang
- School of Computer Science, Northwestern Polytechnical University, Xi'an, China.
| |
Collapse
|
2
|
Yehui L, Zhihong L, Fang T, Zixuan Z, Mengyuan Z, Zhifang Y, Jiuhong Z. Bibliometric Analysis of Global Research on Circular RNA: Current Status and Future Directions. Mol Biotechnol 2024; 66:2064-2077. [PMID: 37587318 DOI: 10.1007/s12033-023-00830-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/13/2023] [Indexed: 08/18/2023]
Abstract
Circular RNAs (circRNAs) have gained significant attention in recent years. This bibliometric analysis aimed to provide insights into the current state and future trends of global circRNA research. The scientific output on circRNAs from 2010 to 2022 was retrieved from the Web of Science Core Collection with circRNA-related terms as the subjects. Key bibliometric indicators were calculated and evaluated using CiteSpace. A total of 7385 studies on circRNAs were identified. The output and citation number have increased rapidly after 2015. China, the USA, and Germany were top three publishing countries. Currently, circCDR1as, circHIPK3, circPVT1, circSHPRH, and circZNF609 are the most studied circRNAs; and all are related to cancer. The theme of research have shifted from transcript, exon circularization and miRNA sponge topics to the transcriptome, tumor suppressor, and biomarkers, indicating that research interests have evolved from basic to applied research. CircRNAs will continue to be a highly active research area in the near future. From the current understanding of circRNA characterization and regulatory mechanisms as miRNA sponges in cancer, future directions may examine potential diagnostic and therapeutic roles of circRNAs in cancers or the function and mechanism of circRNAs in other diseases.
Collapse
Affiliation(s)
- Lv Yehui
- Institute of Wound Prevention and Treatment, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Department of Human Anatomy and Histology, School of Fundamental Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Li Zhihong
- Institute of Wound Prevention and Treatment, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Department of Human Anatomy and Histology, School of Fundamental Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Tong Fang
- Department of Human Anatomy and Histology, School of Fundamental Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Department of Physiology and Biochemistry, School of Fundamental Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Zeng Zixuan
- Institute of Wound Prevention and Treatment, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Zhang Mengyuan
- Institute of Wound Prevention and Treatment, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yang Zhifang
- Department of Human Anatomy and Histology, School of Fundamental Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Department of Physiology and Biochemistry, School of Fundamental Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Zhao Jiuhong
- Institute of Wound Prevention and Treatment, Shanghai University of Medicine and Health Sciences, Shanghai, China.
- Department of Human Anatomy and Histology, School of Fundamental Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China.
| |
Collapse
|
3
|
Zhang B, Hou Z, Yang Y, Wong KC, Zhu H, Li X. SOFB is a comprehensive ensemble deep learning approach for elucidating and characterizing protein-nucleic-acid-binding residues. Commun Biol 2024; 7:679. [PMID: 38830995 PMCID: PMC11148103 DOI: 10.1038/s42003-024-06332-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 05/15/2024] [Indexed: 06/05/2024] Open
Abstract
Proteins and nucleic-acids are essential components of living organisms that interact in critical cellular processes. Accurate prediction of nucleic acid-binding residues in proteins can contribute to a better understanding of protein function. However, the discrepancy between protein sequence information and obtained structural and functional data renders most current computational models ineffective. Therefore, it is vital to design computational models based on protein sequence information to identify nucleic acid binding sites in proteins. Here, we implement an ensemble deep learning model-based nucleic-acid-binding residues on proteins identification method, called SOFB, which characterizes protein sequences by learning the semantics of biological dynamics contexts, and then develop an ensemble deep learning-based sequence network to learn feature representation and classification by explicitly modeling dynamic semantic information. Among them, the language learning model, which is constructed from natural language to biological language, captures the underlying relationships of protein sequences, and the ensemble deep learning-based sequence network consisting of different convolutional layers together with Bi-LSTM refines various features for optimal performance. Meanwhile, to address the imbalanced issue, we adopt ensemble learning to train multiple models and then incorporate them. Our experimental results on several DNA/RNA nucleic-acid-binding residue datasets demonstrate that our proposed model outperforms other state-of-the-art methods. In addition, we conduct an interpretability analysis of the identified nucleic acid binding residue sequences based on the attention weights of the language learning model, revealing novel insights into the dynamic semantic information that supports the identified nucleic acid binding residues. SOFB is available at https://github.com/Encryptional/SOFB and https://figshare.com/articles/online_resource/SOFB_figshare_rar/25499452 .
Collapse
Affiliation(s)
- Bin Zhang
- School of Artificial Intelligence, Jilin University, Changchun, China
| | - Zilong Hou
- School of Artificial Intelligence, Jilin University, Changchun, China
| | - Yuning Yang
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| | - Ka-Chun Wong
- Department of Computer Science, City University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Haoran Zhu
- School of Artificial Intelligence, Jilin University, Changchun, China.
| | - Xiangtao Li
- School of Artificial Intelligence, Jilin University, Changchun, China.
| |
Collapse
|
4
|
Cao C, Wang C, Yang S, Zou Q. CircSI-SSL: circRNA-binding site identification based on self-supervised learning. Bioinformatics 2024; 40:btae004. [PMID: 38180876 PMCID: PMC10789309 DOI: 10.1093/bioinformatics/btae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/13/2023] [Accepted: 01/03/2024] [Indexed: 01/07/2024] Open
Abstract
MOTIVATION In recent years, circular RNAs (circRNAs), the particular form of RNA with a closed-loop structure, have attracted widespread attention due to their physiological significance (they can directly bind proteins), leading to the development of numerous protein site identification algorithms. Unfortunately, these studies are supervised and require the vast majority of labeled samples in training to produce superior performance. But the acquisition of sample labels requires a large number of biological experiments and is difficult to obtain. RESULTS To resolve this matter that a great deal of tags need to be trained in the circRNA-binding site prediction task, a self-supervised learning binding site identification algorithm named CircSI-SSL is proposed in this article. According to the survey, this is unprecedented in the research field. Specifically, CircSI-SSL initially combines multiple feature coding schemes and employs RNA_Transformer for cross-view sequence prediction (self-supervised task) to learn mutual information from the multi-view data, and then fine-tuning with only a few sample labels. Comprehensive experiments on six widely used circRNA datasets indicate that our CircSI-SSL algorithm achieves excellent performance in comparison to previous algorithms, even in the extreme case where the ratio of training data to test data is 1:9. In addition, the transplantation experiment of six linRNA datasets without network modification and hyperparameter adjustment shows that CircSI-SSL has good scalability. In summary, the prediction algorithm based on self-supervised learning proposed in this article is expected to replace previous supervised algorithms and has more extensive application value. AVAILABILITY AND IMPLEMENTATION The source code and data are available at https://github.com/cc646201081/CircSI-SSL.
Collapse
Affiliation(s)
- Chao Cao
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang 324003, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Chunyu Wang
- Faculty of Computing, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Shuhong Yang
- Faculty of Mathematics and Computer Science, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Quan Zou
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang 324003, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| |
Collapse
|
5
|
Zhu H, Yang Y, Wang Y, Wang F, Huang Y, Chang Y, Wong KC, Li X. Dynamic characterization and interpretation for protein-RNA interactions across diverse cellular conditions using HDRNet. Nat Commun 2023; 14:6824. [PMID: 37884495 PMCID: PMC10603054 DOI: 10.1038/s41467-023-42547-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
RNA-binding proteins play crucial roles in the regulation of gene expression, and understanding the interactions between RNAs and RBPs in distinct cellular conditions forms the basis for comprehending the underlying RNA function. However, current computational methods pose challenges to the cross-prediction of RNA-protein binding events across diverse cell lines and tissue contexts. Here, we develop HDRNet, an end-to-end deep learning-based framework to precisely predict dynamic RBP binding events under diverse cellular conditions. Our results demonstrate that HDRNet can accurately and efficiently identify binding sites, particularly for dynamic prediction, outperforming other state-of-the-art models on 261 linear RNA datasets from both eCLIP and CLIP-seq, supplemented with additional tissue data. Moreover, we conduct motif and interpretation analyses to provide fresh insights into the pathological mechanisms underlying RNA-RBP interactions from various perspectives. Our functional genomic analysis further explores the gene-human disease associations, uncovering previously uncharacterized observations for a broad range of genetic disorders.
Collapse
Affiliation(s)
- Haoran Zhu
- School of Artificial Intelligence, Jilin University, 130012, Changchun, China
| | - Yuning Yang
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Yunhe Wang
- School of Artificial Intelligence, Hebei University of Technology, Tianjin, China
| | - Fuzhou Wang
- Department of Computer Science, City University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Yujian Huang
- College of Computer Science and Cyber Security, Chengdu University of Technology, 610059, Chengdu, China
| | - Yi Chang
- School of Artificial Intelligence, Jilin University, 130012, Changchun, China
| | - Ka-Chun Wong
- Department of Computer Science, City University of Hong Kong, Hong Kong, Hong Kong SAR.
| | - Xiangtao Li
- School of Artificial Intelligence, Jilin University, 130012, Changchun, China.
| |
Collapse
|
6
|
Shen Z, Liu W, Zhao S, Zhang Q, Wang S, Yuan L. Nucleotide-level prediction of CircRNA-protein binding based on fully convolutional neural network. Front Genet 2023; 14:1283404. [PMID: 37867600 PMCID: PMC10587422 DOI: 10.3389/fgene.2023.1283404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 09/21/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction: CircRNA-protein binding plays a critical role in complex biological activity and disease. Various deep learning-based algorithms have been proposed to identify CircRNA-protein binding sites. These methods predict whether the CircRNA sequence includes protein binding sites from the sequence level, and primarily concentrate on analysing the sequence specificity of CircRNA-protein binding. For model performance, these methods are unsatisfactory in accurately predicting motif sites that have special functions in gene expression. Methods: In this study, based on the deep learning models that implement pixel-level binary classification prediction in computer vision, we viewed the CircRNA-protein binding sites prediction as a nucleotide-level binary classification task, and use a fully convolutional neural networks to identify CircRNA-protein binding motif sites (CPBFCN). Results: CPBFCN provides a new path to predict CircRNA motifs. Based on the MEME tool, the existing CircRNA-related and protein-related database, we analysed the motif functions discovered by CPBFCN. We also investigated the correlation between CircRNA sponge and motif distribution. Furthermore, by comparing the motif distribution with different input sequence lengths, we found that some motifs in the flanking sequences of CircRNA-protein binding region may contribute to CircRNA-protein binding. Conclusion: This study contributes to identify circRNA-protein binding and provides help in understanding the role of circRNA-protein binding in gene expression regulation.
Collapse
Affiliation(s)
- Zhen Shen
- School of Computer and Software, Nanyang Institute of Technology, Nanyang, Henan, China
| | - Wei Liu
- School of Computer and Software, Nanyang Institute of Technology, Nanyang, Henan, China
| | - ShuJun Zhao
- School of Computer and Software, Nanyang Institute of Technology, Nanyang, Henan, China
| | - QinHu Zhang
- EIT Institute for Advanced Study, Ningbo, Zhejiang, China
| | - SiGuo Wang
- EIT Institute for Advanced Study, Ningbo, Zhejiang, China
| | - Lin Yuan
- Key Laboratory of Computing Power Network and Information Security, Ministry of Education, Shandong Computer Science Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Shandong Engineering Research Center of Big Data Applied Technology, Faculty of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Shandong Provincial Key Laboratory of Computer Networks, Shandong Fundamental Research Center for Computer Science, Jinan, China
| |
Collapse
|
7
|
Mou M, Pan Z, Zhou Z, Zheng L, Zhang H, Shi S, Li F, Sun X, Zhu F. A Transformer-Based Ensemble Framework for the Prediction of Protein-Protein Interaction Sites. RESEARCH (WASHINGTON, D.C.) 2023; 6:0240. [PMID: 37771850 PMCID: PMC10528219 DOI: 10.34133/research.0240] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/08/2023] [Indexed: 09/30/2023]
Abstract
The identification of protein-protein interaction (PPI) sites is essential in the research of protein function and the discovery of new drugs. So far, a variety of computational tools based on machine learning have been developed to accelerate the identification of PPI sites. However, existing methods suffer from the low predictive accuracy or the limited scope of application. Specifically, some methods learned only global or local sequential features, leading to low predictive accuracy, while others achieved improved performance by extracting residue interactions from structures but were limited in their application scope for the serious dependence on precise structure information. There is an urgent need to develop a method that integrates comprehensive information to realize proteome-wide accurate profiling of PPI sites. Herein, a novel ensemble framework for PPI sites prediction, EnsemPPIS, was therefore proposed based on transformer and gated convolutional networks. EnsemPPIS can effectively capture not only global and local patterns but also residue interactions. Specifically, EnsemPPIS was unique in (a) extracting residue interactions from protein sequences with transformer and (b) further integrating global and local sequential features with the ensemble learning strategy. Compared with various existing methods, EnsemPPIS exhibited either superior performance or broader applicability on multiple PPI sites prediction tasks. Moreover, pattern analysis based on the interpretability of EnsemPPIS demonstrated that EnsemPPIS was fully capable of learning residue interactions within the local structure of PPI sites using only sequence information. The web server of EnsemPPIS is freely available at http://idrblab.org/ensemppis.
Collapse
Affiliation(s)
- Minjie Mou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital,
Zhejiang UniversitySchool of Medicine, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Ziqi Pan
- College of Pharmaceutical Sciences, The Second Affiliated Hospital,
Zhejiang UniversitySchool of Medicine, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Zhimeng Zhou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital,
Zhejiang UniversitySchool of Medicine, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Lingyan Zheng
- College of Pharmaceutical Sciences, The Second Affiliated Hospital,
Zhejiang UniversitySchool of Medicine, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Hanyu Zhang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital,
Zhejiang UniversitySchool of Medicine, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Shuiyang Shi
- College of Pharmaceutical Sciences, The Second Affiliated Hospital,
Zhejiang UniversitySchool of Medicine, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Fengcheng Li
- College of Pharmaceutical Sciences, The Second Affiliated Hospital,
Zhejiang UniversitySchool of Medicine, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Xiuna Sun
- College of Pharmaceutical Sciences, The Second Affiliated Hospital,
Zhejiang UniversitySchool of Medicine, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital,
Zhejiang UniversitySchool of Medicine, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| |
Collapse
|
8
|
Li L, Xue Z, Du X. ASCRB: Multi-view based attentional feature selection for CircRNA-binding site prediction. Comput Biol Med 2023; 162:107077. [PMID: 37290390 DOI: 10.1016/j.compbiomed.2023.107077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/15/2023] [Accepted: 05/27/2023] [Indexed: 06/10/2023]
Abstract
CircRNA is a non-coding RNA with a special circular structure, which plays a key role in a variety of life activities by interacting with RNA-binding proteins through CircRNA binding sites. Therefore, accurately identifying CircRNA binding sites is of great importance for gene regulation. In previous studies, most of the methods are based on single-view or multi-view features. Considering that single-view methods provide less effective information, the current mainstream methods mainly focus on extracting rich relevant features by constructing multiple views. However, the increasing number of views leads to a large amount of redundant information, which is detrimental to the detection of CircRNA binding sites. Therefore, to solve this problem, we propose to use the channel attention mechanism to further obtain useful multi-view features by filtering out invalid information in each view. First, we use five feature encoding schemes to construct multi-view. Then, we calibrate the features by generating the global representation of each view, filtering out redundant information to retain important feature information. Finally, features obtained from multiple views are fused to detect RNA binding sites. To validate the effectiveness of the method, we compared its performance on 37 CircRNA-RBP datasets with existing methods. Experimental results show that the average AUC performance of our method is 93.85%, which is better than the current state-of-the-art methods. We also provide the source code, which can be accessed at https://github.com/dxqllp/ASCRB for access.
Collapse
Affiliation(s)
- Lei Li
- Department of Neurology, Shuyang Hospital Affiliated to Yangzhou University School of Medicine (Shuyang Hospital of Traditional Chinese Medicine, Suqian, China
| | - Zhigang Xue
- School of Computer Science and Technology, Anhui University, Hefei, China
| | - Xiuquan Du
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Anhui University, Hefei, China; School of Computer Science and Technology, Anhui University, Hefei, China.
| |
Collapse
|
9
|
Zhuang J, Feng K, Teng X, Jia C. GNet: An integrated context-aware neural framework for transcription factor binding signal at single nucleotide resolution prediction. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:15809-15829. [PMID: 37919990 DOI: 10.3934/mbe.2023704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Transcription factors (TFs) are important factors that regulate gene expression. Revealing the mechanism affecting the binding specificity of TFs is the key to understanding gene regulation. Most of the previous studies focus on TF-DNA binding sites at the sequence level, and they seldom utilize the contextual features of DNA sequences. In this paper, we develop an integrated spatiotemporal context-aware neural network framework, named GNet, for predicting TF-DNA binding signal at single nucleotide resolution by achieving three tasks: single nucleotide resolution signal prediction, identification of binding regions at the sequence level, and TF-DNA binding motif prediction. GNet extracts implicit spatial contextual information with a gated highway neural mechanism, which captures large context multi-level patterns using linear shortcut connections, and the idea of it permeates the encoder and decoder parts of GNet. The improved dual external attention mechanism, which learns implicit relationships both within and among samples, and improves the performance of the model. Experimental results on 53 human TF ChIP-seq datasets and 6 chromatin accessibility ATAC-seq datasets shows that GNet outperforms the state-of-the-art methods in the three tasks, and the results of cross-species studies on 15 human and 18 mouse TF datasets of the corresponding TF families indicate that GNet also shows the best performance in cross-species prediction over the competitive methods.
Collapse
Affiliation(s)
- Jujuan Zhuang
- School of Science, Dalian Maritime University, Dalian, Liaoning 116026, China
| | - Kexin Feng
- School of Science, Dalian Maritime University, Dalian, Liaoning 116026, China
| | - Xinyang Teng
- School of Science, Dalian Maritime University, Dalian, Liaoning 116026, China
| | - Cangzhi Jia
- School of Science, Dalian Maritime University, Dalian, Liaoning 116026, China
| |
Collapse
|
10
|
Cao C, Yang S, Li M, Li C. CircSSNN: circRNA-binding site prediction via sequence self-attention neural networks with pre-normalization. BMC Bioinformatics 2023; 24:220. [PMID: 37254080 DOI: 10.1186/s12859-023-05352-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/25/2023] [Indexed: 06/01/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) play a significant role in some diseases by acting as transcription templates. Therefore, analyzing the interaction mechanism between circRNA and RNA-binding proteins (RBPs) has far-reaching implications for the prevention and treatment of diseases. Existing models for circRNA-RBP identification usually adopt convolution neural network (CNN), recurrent neural network (RNN), or their variants as feature extractors. Most of them have drawbacks such as poor parallelism, insufficient stability, and inability to capture long-term dependencies. METHODS In this paper, we propose a new method completely using the self-attention mechanism to capture deep semantic features of RNA sequences. On this basis, we construct a CircSSNN model for the cirRNA-RBP identification. The proposed model constructs a feature scheme by fusing circRNA sequence representations with statistical distributions, static local contexts, and dynamic global contexts. With a stable and efficient network architecture, the distance between any two positions in a sequence is reduced to a constant, so CircSSNN can quickly capture the long-term dependencies and extract the deep semantic features. RESULTS Experiments on 37 circRNA datasets show that the proposed model has overall advantages in stability, parallelism, and prediction performance. Keeping the network structure and hyperparameters unchanged, we directly apply the CircSSNN to linRNA datasets. The favorable results show that CircSSNN can be transformed simply and efficiently without task-oriented tuning. CONCLUSIONS In conclusion, CircSSNN can serve as an appealing circRNA-RBP identification tool with good identification performance, excellent scalability, and wide application scope without the need for task-oriented fine-tuning of parameters, which is expected to reduce the professional threshold required for hyperparameter tuning in bioinformatics analysis.
Collapse
Affiliation(s)
- Chao Cao
- School of Computer Science and Technology, Guangxi University of Science and Technology, Liuzhou, China
| | - Shuhong Yang
- Key Laboratory of Guangxi Universities on Intelligent Computing and Distributed Information Processing, Guangxi University of Science and Technology, Liuzhou, China.
| | - Mengli Li
- School of Technology, Guilin University, Guilin, China
| | - Chungui Li
- School of Computer Science and Technology, Guangxi University of Science and Technology, Liuzhou, China.
| |
Collapse
|
11
|
JLCRB: A unified multi-view-based joint representation learning for CircRNA binding sites prediction. J Biomed Inform 2022; 136:104231. [DOI: 10.1016/j.jbi.2022.104231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022]
|
12
|
Chen S, Li Q, Zhao J, Bin Y, Zheng C. NeuroPred-CLQ: incorporating deep temporal convolutional networks and multi-head attention mechanism to predict neuropeptides. Brief Bioinform 2022; 23:6672901. [DOI: 10.1093/bib/bbac319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/27/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Neuropeptides (NPs) are a particular class of informative substances in the immune system and physiological regulation. They play a crucial role in regulating physiological functions in various biological growth and developmental stages. In addition, NPs are crucial for developing new drugs for the treatment of neurological diseases. With the development of molecular biology techniques, some data-driven tools have emerged to predict NPs. However, it is necessary to improve the predictive performance of these tools for NPs. In this study, we developed a deep learning model (NeuroPred-CLQ) based on the temporal convolutional network (TCN) and multi-head attention mechanism to identify NPs effectively and translate the internal relationships of peptide sequences into numerical features by the Word2vec algorithm. The experimental results show that NeuroPred-CLQ learns data information effectively, achieving 93.6% accuracy and 98.8% AUC on the independent test set. The model has better performance in identifying NPs than the state-of-the-art predictors. Visualization of features using t-distribution random neighbor embedding shows that the NeuroPred-CLQ can clearly distinguish the positive NPs from the negative ones. We believe the NeuroPred-CLQ can facilitate drug development and clinical trial studies to treat neurological disorders.
Collapse
Affiliation(s)
- Shouzhi Chen
- School of Mathematics and System Science, Xinjiang University , Urumqi, China
| | - Qing Li
- School of Mathematics and System Science, Xinjiang University , Urumqi, China
| | - Jianping Zhao
- School of Mathematics and System Science, Xinjiang University , Urumqi, China
| | - Yannan Bin
- School of Computer Science and Technology, Anhui University , Hefei, China
| | - Chunhou Zheng
- School of Mathematics and System Science, Xinjiang University , Urumqi, China
- School of Computer Science and Technology, Anhui University , Hefei, China
| |
Collapse
|