1
|
Liu R, Yu X, Cao X, Wang X, Liang Y, Qi W, Ye Y, Zao X. Downregulation of ST6GAL2 Correlates to Liver Inflammation and Predicts Adverse Prognosis in Hepatocellular Carcinoma. J Inflamm Res 2024; 17:565-580. [PMID: 38318244 PMCID: PMC10843983 DOI: 10.2147/jir.s437291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/25/2024] [Indexed: 02/07/2024] Open
Abstract
Purpose ST6 Beta-Galactoside Alpha-2,6-Sialyltransferase 2 (ST6GAL2), a member of the sialic acid transferase family, is differentially expressed in diverse cancers. However, it remains poorly understood in tumorigenesis and impacts on immune cell infiltration (ICI) in hepatocellular carcinoma (HCC). Patients and Methods Herein, the expression, diagnosis, prognosis, functional enrichment, genetic alterations, immune characteristics, and targeted drugs of ST6GAL2 in HCC were researched by conducting bioinformatics analysis, in vivo, and in vitro experiments. Results ST6GAL2 was remarkably decreased in HCC compared to non-tumor tissues, portending a poor prognosis associated with high DNA methylation levels. Functional enrichment and GSVA analyses revealed that ST6GAL2 might function through the extracellular matrix, PI3K-Akt signaling pathways, and tumor inflammation signature. We found that ST6GAL2 expression was proportional to ICI, immunostimulator, and immune subtypes. ST6GAL2 expression first increased and then decreased during the progression of liver inflammation to HCC. The dysfunctional experiment indicated that ST6GAL2 might exert immunosuppressive effects during HCC progression through regulating ICI. Several broad-spectrum anticancer drugs were obtained by drug sensitivity prediction analysis of ST6GAL2. Conclusion In conclusion, ST6GAL2 was a reliable prognostic biomarker strongly associated with ICI, and could be a potential immunotherapeutic target for HCC.
Collapse
Affiliation(s)
- Ruijia Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People’s Republic of China
- Institute of Liver Diseases, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People’s Republic of China
| | - Xudong Yu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People’s Republic of China
| | - Xu Cao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People’s Republic of China
- Institute of Liver Diseases, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People’s Republic of China
| | - Xuyun Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
| | - Yijun Liang
- Institute of Liver Diseases, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People’s Republic of China
| | - Wenying Qi
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People’s Republic of China
- Institute of Liver Diseases, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People’s Republic of China
| | - Yong’an Ye
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People’s Republic of China
- Institute of Liver Diseases, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People’s Republic of China
| | - Xiaobin Zao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People’s Republic of China
- Institute of Liver Diseases, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People’s Republic of China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People’s Republic of China
| |
Collapse
|
2
|
Dubey G, Singh M, Singh H, Agarwal M, Chandel SS, Mishra A, Singh RP, Kukreti N. Emerging roles of SnoRNAs in the pathogenesis and treatment of autoimmune disorders. Pathol Res Pract 2024; 253:154952. [PMID: 38000202 DOI: 10.1016/j.prp.2023.154952] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
SnoRNAs (small non-coding RNAs) have recently gained prominence in autoimmune diseases, revealing their crucial role in modulating the immune response and contributing to disease pathogenesis. Initially known for their involvement in ribosomal RNA processing and modification, molecular biology and genomics advancements have uncovered their broader impact on cellular function, especially in autoimmune disorders. Autoimmune diseases represent conditions characterized by the immune system's erroneous attacks on self-tissues, encompassing disorders like systemic lupus erythematosus, rheumatoid arthritis, and multiple sclerosis. The complex etiology of these conditions involves a delicate interplay of genetic and environmental factors. Emerging evidence suggests that snoRNAs initially recognized for their housekeeping roles, extend their influence on immune regulation through diverse mechanisms. SnoRNAs have been implicated in epigenetic modification, directly affecting the gene expression profiles of immune cells. Their ability to guide site-specific changes on ribosomal RNAs and other non-coding RNAs can significantly influence the translation of proteins involved in immune response pathways. Moreover, snoRNAs interact with key immune-related proteins, modulating their functions and subsequently impacting immune cell development, activation, and tolerance. Dysregulation of snoRNA expression has been observed in various autoimmune diseases, underscoring their potential as biomarkers for disease diagnosis, prognosis, and therapeutic targets. Manipulating snoRNA expression or activity is a promising therapeutic intervention avenue, offering the potential for personalized treatment strategies in autoimmune diseases. However, there remains a need for comprehensive research efforts to elucidate the precise molecular mechanisms underlying snoRNA-mediated immune modulation. Further investigations in this domain are essential to unravel the potential of snoRNAs in autoimmune disorders.
Collapse
Affiliation(s)
- Gaurav Dubey
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, India
| | - Mithilesh Singh
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, India.
| | - Himmat Singh
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, India
| | - Mohit Agarwal
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, India
| | | | - Anurag Mishra
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, India
| | - Ravindra Pal Singh
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, India
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| |
Collapse
|