1
|
Serrano DR, Luciano FC, Anaya BJ, Ongoren B, Kara A, Molina G, Ramirez BI, Sánchez-Guirales SA, Simon JA, Tomietto G, Rapti C, Ruiz HK, Rawat S, Kumar D, Lalatsa A. Artificial Intelligence (AI) Applications in Drug Discovery and Drug Delivery: Revolutionizing Personalized Medicine. Pharmaceutics 2024; 16:1328. [PMID: 39458657 PMCID: PMC11510778 DOI: 10.3390/pharmaceutics16101328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/06/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Artificial intelligence (AI) encompasses a broad spectrum of techniques that have been utilized by pharmaceutical companies for decades, including machine learning, deep learning, and other advanced computational methods. These innovations have unlocked unprecedented opportunities for the acceleration of drug discovery and delivery, the optimization of treatment regimens, and the improvement of patient outcomes. AI is swiftly transforming the pharmaceutical industry, revolutionizing everything from drug development and discovery to personalized medicine, including target identification and validation, selection of excipients, prediction of the synthetic route, supply chain optimization, monitoring during continuous manufacturing processes, or predictive maintenance, among others. While the integration of AI promises to enhance efficiency, reduce costs, and improve both medicines and patient health, it also raises important questions from a regulatory point of view. In this review article, we will present a comprehensive overview of AI's applications in the pharmaceutical industry, covering areas such as drug discovery, target optimization, personalized medicine, drug safety, and more. By analyzing current research trends and case studies, we aim to shed light on AI's transformative impact on the pharmaceutical industry and its broader implications for healthcare.
Collapse
Affiliation(s)
- Dolores R. Serrano
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (F.C.L.); (B.J.A.); (B.O.); (A.K.); (G.M.); (B.I.R.); (S.A.S.-G.); (J.A.S.); (G.T.); (C.R.); (H.K.R.)
- Instituto Universitario de Farmacia Industrial, 28040 Madrid, Spain
| | - Francis C. Luciano
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (F.C.L.); (B.J.A.); (B.O.); (A.K.); (G.M.); (B.I.R.); (S.A.S.-G.); (J.A.S.); (G.T.); (C.R.); (H.K.R.)
| | - Brayan J. Anaya
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (F.C.L.); (B.J.A.); (B.O.); (A.K.); (G.M.); (B.I.R.); (S.A.S.-G.); (J.A.S.); (G.T.); (C.R.); (H.K.R.)
| | - Baris Ongoren
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (F.C.L.); (B.J.A.); (B.O.); (A.K.); (G.M.); (B.I.R.); (S.A.S.-G.); (J.A.S.); (G.T.); (C.R.); (H.K.R.)
| | - Aytug Kara
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (F.C.L.); (B.J.A.); (B.O.); (A.K.); (G.M.); (B.I.R.); (S.A.S.-G.); (J.A.S.); (G.T.); (C.R.); (H.K.R.)
| | - Gracia Molina
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (F.C.L.); (B.J.A.); (B.O.); (A.K.); (G.M.); (B.I.R.); (S.A.S.-G.); (J.A.S.); (G.T.); (C.R.); (H.K.R.)
| | - Bianca I. Ramirez
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (F.C.L.); (B.J.A.); (B.O.); (A.K.); (G.M.); (B.I.R.); (S.A.S.-G.); (J.A.S.); (G.T.); (C.R.); (H.K.R.)
| | - Sergio A. Sánchez-Guirales
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (F.C.L.); (B.J.A.); (B.O.); (A.K.); (G.M.); (B.I.R.); (S.A.S.-G.); (J.A.S.); (G.T.); (C.R.); (H.K.R.)
| | - Jesus A. Simon
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (F.C.L.); (B.J.A.); (B.O.); (A.K.); (G.M.); (B.I.R.); (S.A.S.-G.); (J.A.S.); (G.T.); (C.R.); (H.K.R.)
| | - Greta Tomietto
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (F.C.L.); (B.J.A.); (B.O.); (A.K.); (G.M.); (B.I.R.); (S.A.S.-G.); (J.A.S.); (G.T.); (C.R.); (H.K.R.)
| | - Chrysi Rapti
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (F.C.L.); (B.J.A.); (B.O.); (A.K.); (G.M.); (B.I.R.); (S.A.S.-G.); (J.A.S.); (G.T.); (C.R.); (H.K.R.)
| | - Helga K. Ruiz
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (F.C.L.); (B.J.A.); (B.O.); (A.K.); (G.M.); (B.I.R.); (S.A.S.-G.); (J.A.S.); (G.T.); (C.R.); (H.K.R.)
| | - Satyavati Rawat
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (S.R.); (D.K.)
| | - Dinesh Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (S.R.); (D.K.)
| | - Aikaterini Lalatsa
- Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161, Cathedral Street, Glasgow G4 0RE, UK
- CRUK Formulation Unit, School of Pharmacy and Biomedical Sciences, University of Strathclyde, 161, Cathedral Street, Glasgow G4 0RE, UK
| |
Collapse
|
2
|
Song Z, Chen G, Chen CYC. AI empowering traditional Chinese medicine? Chem Sci 2024; 15:d4sc04107k. [PMID: 39355231 PMCID: PMC11440359 DOI: 10.1039/d4sc04107k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/22/2024] [Indexed: 10/03/2024] Open
Abstract
For centuries, Traditional Chinese Medicine (TCM) has been a prominent treatment method in China, incorporating acupuncture, herbal remedies, massage, and dietary therapy to promote holistic health and healing. TCM has played a major role in drug discovery, with over 60% of small-molecule drugs approved by the FDA from 1981 to 2019 being derived from natural products. However, TCM modernization faces challenges such as data standardization and the complexity of TCM formulations. The establishment of comprehensive TCM databases has significantly improved the efficiency and accuracy of TCM research, enabling easier access to information on TCM ingredients and encouraging interdisciplinary collaborations. These databases have revolutionized TCM research, facilitating advancements in TCM modernization and patient care. In addition, advancements in AI algorithms and database data quality have accelerated progress in AI for TCM. The application of AI in TCM encompasses a wide range of areas, including herbal screening and new drug discovery, diagnostic and treatment principles, pharmacological mechanisms, network pharmacology, and the incorporation of innovative AI technologies. AI also has the potential to enable personalized medicine by identifying patterns and correlations in patient data, leading to more accurate diagnoses and tailored treatments. The potential benefits of AI for TCM are vast and diverse, promising continued progress and innovation in the field.
Collapse
Affiliation(s)
- Zhilin Song
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen Guangdong 518055 China
- AI for Science (AI4S)-Preferred Program, School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School Shenzhen Guangdong 518055 China
| | - Guanxing Chen
- Artificial Intelligence Medical Research Center, School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-sen University Shenzhen Guangdong 518107 China
| | - Calvin Yu-Chian Chen
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen Guangdong 518055 China
- AI for Science (AI4S)-Preferred Program, School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School Shenzhen Guangdong 518055 China
- Department of Medical Research, China Medical University Hospital Taichung 40447 Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University Taichung 41354 Taiwan
- Guangdong L-Med Biotechnology Co., Ltd Meizhou Guangdong 514699 China
| |
Collapse
|
3
|
Smith DA, Burton LM, Smith SA. Through a computer monitor darkly: artificial intelligence in absorption, distribution, metabolism and excretion science. Xenobiotica 2024; 54:359-367. [PMID: 38095217 DOI: 10.1080/00498254.2023.2295361] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/12/2023] [Indexed: 08/22/2024]
Abstract
Artificial Intelligence (AI) is poised or has already begun to influence absorption, distribution, metabolism and excretion (ADME) science. It is not in the area expected - that of superior modelling of ADME data to increase its predictive power. It is influencing traditional exhaustive and careful literature research by providing almost perfect summaries of existing information. This will highly influence how people study, graduate and progress in the ADME sciences. The literature contains many flaws (protein binding influence on unbound drug concentration is one of the examples cited) and without direction AI may help to popularise them.ADME science has a relatively small number of key assays and values, but these are produced under widely varying conditions so large data sets, the best substrate for artificial intelligence, are not readily available to produce new more predictive systems. The use of AI to enrich the databases may be a near term goal.AI is already contributing in other areas such as technical skill assimilation, maintenance of complex instruments (combined with virtual reality) and the processing of pharmacovigilance.
Collapse
|
4
|
Yan Y, Ai C, Xie J, Ji Z, Zhou X, Chen Z, Wu J. Natural language processing assisted detection of inappropriate proton pump inhibitor use in adult hospitalised patients. Eur J Hosp Pharm 2024:ejhpharm-2024-004126. [PMID: 38897653 DOI: 10.1136/ejhpharm-2024-004126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024] Open
Abstract
OBJECTIVES To establish a clinical application monitoring system for proton pump inhibitors (PPI-MS) and to enhance the detection and intervention of inappropriate PPI use in adult hospitalised patients. METHODS Natural language processing technology was applied to indication recognition of therapeutic PPI applications and the assessment of admission record recognition for preventive PPI applications. Symptom judgement was based on the tense-negation model and regular expressions. Evidence-based rules for clinical PPI application were embedded for the construction of PPI-MS. A total of 9421 patient records using PPI from July 2022 to July 2023 were analysed to validate the performance of the system and to identify common issues related to inappropriate clinical PPI use. RESULTS Out of 9421 hospitalised patients detected using PPI, 4736 (50.27%) were used for prophylaxis and the rest for therapeutic use. Among the prophylactic medications, 2274 patients (48.02%) were identified as receiving inappropriate prophylactic PPI. The main reasons were inappropriate prophylaxis without indication. Additionally, 258 cases of inappropriate therapeutic PPI use were identified, mainly involving the use of esomeprazole for peptic ulcers and Zollinger-Ellison syndrome. The efficiency of the PPI rational medication monitoring system, when coupled with human involvement, was 32 times that of manual monitoring. Among cases of inappropriate prophylactic PPI use, 45.29% were due to lack of indications, 28.34% involved inappropriate administration routes, 15.74% were related to inappropriate dosing frequencies and 10.62% were attributed to inappropriate drug selection. There were 933 cases related to the use of antiplatelet and anticoagulant drugs and 708 cases related to the use of non-steroidal anti-inflammatory drugs. The overall accuracy of the PPI-MS system was 88.69%, with a recall rate of 99.33%, and the F1 score was 93.71%. CONCLUSIONS Establishing a PPI medication monitoring system through natural language processing technology, while ensuring accuracy and recall rates, improves evaluation efficiency and homogeneity. This provides a new solution for timely detection of issues relating to clinical PPI usage.
Collapse
Affiliation(s)
- Yan Yan
- Department of Pharmacy, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Chao Ai
- Department of Pharmacy, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Jike Xie
- Department of Pharmacy, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Zhaoshuai Ji
- Department of Pharmacy, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Xuesi Zhou
- THiFLY Research, Tsinghua University, Beijing, China
| | - Zhonghao Chen
- THiFLY Research, Tsinghua University, Beijing, China
| | - Ji Wu
- Department of Electronic Engineering, Tsinghua University, Beijing, China
- College of AI, Tsinghua University, Beijing, China
| |
Collapse
|
5
|
Zhang Y, Deng Z, Xu X, Feng Y, Junliang S. Application of Artificial Intelligence in Drug-Drug Interactions Prediction: A Review. J Chem Inf Model 2024; 64:2158-2173. [PMID: 37458400 DOI: 10.1021/acs.jcim.3c00582] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Drug-drug interactions (DDI) are a critical aspect of drug research that can have adverse effects on patients and can lead to serious consequences. Predicting these events accurately can significantly improve clinicians' ability to make better decisions and establish optimal treatment regimens. However, manually detecting these interactions is time-consuming and labor-intensive. Utilizing the advancements in Artificial Intelligence (AI) is essential for achieving accurate forecasts of DDIs. In this review, DDI prediction tasks are classified into three types according to the type of DDI prediction: undirected DDI prediction, DDI events prediction, and Asymmetric DDI prediction. The paper then reviews the progress of AI for each of these three prediction tasks in DDI and provides a summary of the data sets used as well as the representative methods used in these three prediction directions. In this review, we aim to provide a comprehensive overview of drug interaction prediction. The first section introduces commonly used databases and presents an overview of current research advancements and techniques across three domains of DDI. Additionally, we introduce classical machine learning techniques for predicting undirected drug interactions and provide a timeline for the progression of the predicted drug interaction events. At last, we debate the difficulties and prospects of AI approaches at predicting DDI, emphasizing their potential for improving clinical decision-making and patient outcomes.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- School of Information and Control Engineering, Qingdao University of Technology, Qingdao,266000,China
| | - Zengqian Deng
- School of Information and Control Engineering, Qingdao University of Technology, Qingdao,266000,China
| | - Xiaoyu Xu
- School of Information and Control Engineering, Qingdao University of Technology, Qingdao,266000,China
| | - Yinfei Feng
- School of Information and Control Engineering, Qingdao University of Technology, Qingdao,266000,China
| | - Shang Junliang
- School of Information Science and Engineering, Qufu Normal University, Rizhao, 276800, China
| |
Collapse
|
6
|
Rubinic I, Kurtov M, Rubinic I, Likic R, Dargan PI, Wood DM. Artificial intelligence in clinical pharmacology: A case study and scoping review of large language models and bioweapon potential. Br J Clin Pharmacol 2024; 90:620-628. [PMID: 37658550 DOI: 10.1111/bcp.15899] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/03/2023] Open
Abstract
This paper aims to explore the possibility of employing large language models (LLMs) - a type of artificial intelligence (AI) - in clinical pharmacology, with a focus on its possible misuse in bioweapon development. Additionally, ethical considerations, legislation and potential risk reduction measures are analysed. The existing literature is reviewed to investigate the potential misuse of AI and LLMs in bioweapon creation. The search includes articles from PubMed, Scopus and Web of Science Core Collection that were identified using a specific protocol. To explore the regulatory landscape, the OECD.ai platform was used. The review highlights the dual-use vulnerability of AI and LLMs, with a focus on bioweapon development. Subsequently, a case study is used to illustrate the potential of AI manipulation resulting in harmful substance synthesis. Existing regulations inadequately address the ethical concerns tied to AI and LLMs. Mitigation measures are proposed, including technical solutions (explainable AI), establishing ethical guidelines through collaborative efforts, and implementing policy changes to create a comprehensive regulatory framework. The integration of AI and LLMs into clinical pharmacology presents invaluable opportunities, while also introducing significant ethical and safety considerations. Addressing the dual-use nature of AI requires robust regulations, as well as adopting a strategic approach grounded in technical solutions and ethical values following the principles of transparency, accountability and safety. Additionally, AI's potential role in developing countermeasures against novel hazardous substances is underscored. By adopting a proactive approach, the potential benefits of AI and LLMs can be fully harnessed while minimizing the associated risks.
Collapse
Affiliation(s)
- Igor Rubinic
- University of Rijeka School of Medicine, Rijeka, Croatia
- Clinical Hospital Centre Rijeka, Rijeka, Croatia
| | | | - Ivan Rubinic
- School of Engineering, University of Rijeka, Rijeka, Croatia
| | - Robert Likic
- University of Zagreb School of Medicine, Zagreb, Croatia
- Clinical Hospital Centre Zagreb, Zagreb, Croatia
| | - Paul I Dargan
- Faculty of Life Sciences and Medicine, King's College London, London, UK
- Clinical Toxicology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - David M Wood
- Faculty of Life Sciences and Medicine, King's College London, London, UK
- Clinical Toxicology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
7
|
Asfand-E-Yar M, Hashir Q, Shah AA, Malik HAM, Alourani A, Khalil W. Multimodal CNN-DDI: using multimodal CNN for drug to drug interaction associated events. Sci Rep 2024; 14:4076. [PMID: 38374325 PMCID: PMC10876630 DOI: 10.1038/s41598-024-54409-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/12/2024] [Indexed: 02/21/2024] Open
Abstract
Drug-to-drug interaction (DDIs) occurs when a patient consumes multiple drugs. Therefore, it is possible that any medication can influence other drugs' effectiveness. The drug-to-drug interactions are detected based on the interactions of chemical substructures, targets, pathways, and enzymes; therefore, machine learning (ML) and deep learning (DL) techniques are used to find the associated DDI events. The DL model, i.e., Convolutional Neural Network (CNN), is used to analyze the DDI. DDI is based on the 65 different drug-associated events, which is present in the drug bank database. Our model uses the inputs, which are chemical structures (i.e., smiles of drugs), enzymes, pathways, and the target of the drug. Therefore, for the multi-model CNN, we use several layers, activation functions, and features of drugs to achieve better accuracy as compared to traditional prediction algorithms. We perform different experiments on various hyperparameters. We have also carried out experiments on various iterations of drug features in different sets. Our Multi-Modal Convolutional Neural Network - Drug to Drug Interaction (MCNN-DDI) model achieved an accuracy of 90.00% and an AUPR of 94.78%. The results showed that a combination of the drug's features (i.e., chemical substructure, target, and enzyme) performs better in DDIs-associated events prediction than other features.
Collapse
Affiliation(s)
- Muhammad Asfand-E-Yar
- Department of Computer Science, CoE-AI, Center of Excellence Artificial Intelligence, Bahria University, Islamabad, Pakistan
| | - Qadeer Hashir
- Department of Computer Science, CoE-AI, Center of Excellence Artificial Intelligence, Bahria University, Islamabad, Pakistan
| | - Asghar Ali Shah
- Department of Computer Science, Bahria University, Islamabad , Pakistan
| | | | - Abdullah Alourani
- Department of Management Information Systems and Production Management, College of Business and Economics, Qassim University, Buraydah 51452, Saudi Arabia.
| | - Waqar Khalil
- Department of Computer Science, CoE-AI, Center of Excellence Artificial Intelligence, Bahria University, Islamabad, Pakistan
| |
Collapse
|
8
|
Zhang C, Zang T, Zhao T. KGE-UNIT: toward the unification of molecular interactions prediction based on knowledge graph and multi-task learning on drug discovery. Brief Bioinform 2024; 25:bbae043. [PMID: 38348746 PMCID: PMC10939374 DOI: 10.1093/bib/bbae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/29/2023] [Accepted: 01/23/2024] [Indexed: 02/15/2024] Open
Abstract
The prediction of molecular interactions is vital for drug discovery. Existing methods often focus on individual prediction tasks and overlook the relationships between them. Additionally, certain tasks encounter limitations due to insufficient data availability, resulting in limited performance. To overcome these limitations, we propose KGE-UNIT, a unified framework that combines knowledge graph embedding (KGE) and multi-task learning, for simultaneous prediction of drug-target interactions (DTIs) and drug-drug interactions (DDIs) and enhancing the performance of each task, even when data availability is limited. Via KGE, we extract heterogeneous features from the drug knowledge graph to enhance the structural features of drug and protein nodes, thereby improving the quality of features. Additionally, employing multi-task learning, we introduce an innovative predictor that comprises the task-aware Convolutional Neural Network-based (CNN-based) encoder and the task-aware attention decoder which can fuse better multimodal features, capture the contextual interactions of molecular tasks and enhance task awareness, leading to improved performance. Experiments on two imbalanced datasets for DTIs and DDIs demonstrate the superiority of KGE-UNIT, achieving high area under the receiver operating characteristics curves (AUROCs) (0.942, 0.987) and area under the precision-recall curve ( AUPRs) (0.930, 0.980) for DTIs and high AUROCs (0.975, 0.989) and AUPRs (0.966, 0.988) for DDIs. Notably, on the LUO dataset where the data were more limited, KGE-UNIT exhibited a more pronounced improvement, with increases of 4.32$\%$ in AUROC and 3.56$\%$ in AUPR for DTIs and 6.56$\%$ in AUROC and 8.17$\%$ in AUPR for DDIs. The scalability of KGE-UNIT is demonstrated through its extension to protein-protein interactions prediction, ablation studies and case studies further validate its effectiveness.
Collapse
Affiliation(s)
- Chengcheng Zhang
- Department of Computer Science, Harbin Institute of Technology, Harbin, 150001, China
| | - Tianyi Zang
- Department of Computer Science, Harbin Institute of Technology, Harbin, 150001, China
| | - Tianyi Zhao
- School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
9
|
Dudas B, Miteva MA. Computational and artificial intelligence-based approaches for drug metabolism and transport prediction. Trends Pharmacol Sci 2024; 45:39-55. [PMID: 38072723 DOI: 10.1016/j.tips.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 01/07/2024]
Abstract
Drug metabolism and transport, orchestrated by drug-metabolizing enzymes (DMEs) and drug transporters (DTs), are implicated in drug-drug interactions (DDIs) and adverse drug reactions (ADRs). Reliable and precise predictions of DDIs and ADRs are critical in the early stages of drug development to reduce the rate of drug candidate failure. A variety of experimental and computational technologies have been developed to predict DDIs and ADRs. Recent artificial intelligence (AI) approaches offer new opportunities for better predicting and understanding the complex processes related to drug metabolism and transport. We summarize the role of major DMEs and DTs, and provide an overview of current progress in computational approaches for the prediction of drug metabolism, transport, and DDIs, with an emphasis on AI including machine learning (ML) and deep learning (DL) modeling.
Collapse
Affiliation(s)
- Balint Dudas
- Université Paris Cité, CNRS UMR 8038 CiTCoM, Inserm U1268 MCTR, Paris, France
| | - Maria A Miteva
- Université Paris Cité, CNRS UMR 8038 CiTCoM, Inserm U1268 MCTR, Paris, France.
| |
Collapse
|
10
|
Chen J, Wu L, Liu K, Xu Y, He S, Bo X. EDST: a decision stump based ensemble algorithm for synergistic drug combination prediction. BMC Bioinformatics 2023; 24:325. [PMID: 37644423 PMCID: PMC10466832 DOI: 10.1186/s12859-023-05453-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023] Open
Abstract
INTRODUCTION There are countless possibilities for drug combinations, which makes it expensive and time-consuming to rely solely on clinical trials to determine the effects of each possible drug combination. In order to screen out the most effective drug combinations more quickly, scholars began to apply machine learning to drug combination prediction. However, most of them are of low interpretability. Consequently, even though they can sometimes produce high prediction accuracy, experts in the medical and biological fields can still not fully rely on their judgments because of the lack of knowledge about the decision-making process. RELATED WORK Decision trees and their ensemble algorithms are considered to be suitable methods for pharmaceutical applications due to their excellent performance and good interpretability. We review existing decision trees or decision tree ensemble algorithms in the medical field and point out their shortcomings. METHOD This study proposes a decision stump (DS)-based solution to extract interpretable knowledge from data sets. In this method, a set of DSs is first generated to selectively form a decision tree (DST). Different from the traditional decision tree, our algorithm not only enables a partial exchange of information between base classifiers by introducing a stump exchange method but also uses a modified Gini index to evaluate stump performance so that the generation of each node is evaluated by a global view to maintain high generalization ability. Furthermore, these trees are combined to construct an ensemble of DST (EDST). EXPERIMENT The two-drug combination data sets are collected from two cell lines with three classes (additive, antagonistic and synergistic effects) to test our method. Experimental results show that both our DST and EDST perform better than other methods. Besides, the rules generated by our methods are more compact and more accurate than other rule-based algorithms. Finally, we also analyze the extracted knowledge by the model in the field of bioinformatics. CONCLUSION The novel decision tree ensemble model can effectively predict the effect of drug combination datasets and easily obtain the decision-making process.
Collapse
Affiliation(s)
| | | | | | - Yong Xu
- Fujian University of Technology, Fuzhou, China
| | - Song He
- Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Xiaochen Bo
- Institute of Health Service and Transfusion Medicine, Beijing, China
| |
Collapse
|
11
|
Han CD, Wang CC, Huang L, Chen X. MCFF-MTDDI: multi-channel feature fusion for multi-typed drug-drug interaction prediction. Brief Bioinform 2023; 24:bbad215. [PMID: 37291761 DOI: 10.1093/bib/bbad215] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/11/2023] [Accepted: 05/21/2023] [Indexed: 06/10/2023] Open
Abstract
Adverse drug-drug interactions (DDIs) have become an increasingly serious problem in the medical and health system. Recently, the effective application of deep learning and biomedical knowledge graphs (KGs) have improved the DDI prediction performance of computational models. However, the problems of feature redundancy and KG noise also arise, bringing new challenges for researchers. To overcome these challenges, we proposed a Multi-Channel Feature Fusion model for multi-typed DDI prediction (MCFF-MTDDI). Specifically, we first extracted drug chemical structure features, drug pairs' extra label features, and KG features of drugs. Then, these different features were effectively fused by a multi-channel feature fusion module. Finally, multi-typed DDIs were predicted through the fully connected neural network. To our knowledge, we are the first to integrate the extra label information into KG-based multi-typed DDI prediction; besides, we innovatively proposed a novel KG feature learning method and a State Encoder to obtain target drug pairs' KG-based features which contained more abundant and more key drug-related KG information with less noise; furthermore, a Gated Recurrent Unit-based multi-channel feature fusion module was proposed in an innovative way to yield more comprehensive feature information about drug pairs, effectively alleviating the problem of feature redundancy. We experimented with four datasets in the multi-class and the multi-label prediction tasks to comprehensively evaluate the performance of MCFF-MTDDI for predicting interactions of known-known drugs, known-new drugs and new-new drugs. In addition, we further conducted ablation studies and case studies. All the results fully demonstrated the effectiveness of MCFF-MTDDI.
Collapse
Affiliation(s)
- Chen-Di Han
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China
| | - Chun-Chun Wang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China
- School of Science, Jiangnan University, Wuxi, 214122, China
| | - Li Huang
- The Future Laboratory, Tsinghua University, Beijing, 100084, China
| | - Xing Chen
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China
- School of Science, Jiangnan University, Wuxi, 214122, China
- Artificial Intelligence Research Institute, China University of Mining and Technology, Xuzhou, 221116, China
| |
Collapse
|
12
|
Zhang ZM, Huang CX, Huo JZ. Circ_C4orf36 Promotes the Proliferation and Osteogenic Differentiation of BMSCs by Regulating VEGFA. Biochem Genet 2023; 61:931-944. [PMID: 36242722 DOI: 10.1007/s10528-022-10290-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 10/02/2022] [Indexed: 11/02/2022]
Abstract
Fracture healing is a complicated process containing the regulation of cellular process. It has been reported that circRNAs are involved in fracture healing. Our study aims to explore the role and mechanism of circ_C4orf36 in fracture healing. Here, we found that the expressions of Circ_C4orf36 and VEGFA were increased during osteoblast differentiation in MC3T3-E1 cells. Circ_C4orf36 overexpression could accelerate the proliferation and migration, as well as osteoblast differentiation in MC3T3-E1 cells, as well as increased ALP activity and osteogenic markers (Runx2, OCN) via upregulating VEGFA expression. Mechanistically, circ_C4orf36 facilitated the expression of VEGFA by recruiting EIF4A3. Taken together, our results elucidated that circ_C4orf6 promoted the migration, proliferation and osteoblast differentiation in BMSCs by upregulating VEGFA, which indicated that circ_C4orf36 might be a potential target in fracture healing treatment.
Collapse
Affiliation(s)
- Zhi-Min Zhang
- Shanxi Medical University, No.86, Xinjian south street, Taiyuan, 030000, Shanxi Province, People's Republic of China
| | - Chun-Xia Huang
- Shanxi Medical University, Linfen Hospital, Linfen, 041000, Shanxi Province, People's Republic of China
| | - Jian-Zhong Huo
- Shanxi Medical University, No.86, Xinjian south street, Taiyuan, 030000, Shanxi Province, People's Republic of China.
| |
Collapse
|