1
|
Zheng Y, Ma Y, Xiong Q, Zhu K, Weng N, Zhu Q. The role of artificial intelligence in the development of anticancer therapeutics from natural polyphenols: Current advances and future prospects. Pharmacol Res 2024; 208:107381. [PMID: 39218422 DOI: 10.1016/j.phrs.2024.107381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/06/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Natural polyphenols, abundant in the human diet, are derived from a wide variety of sources. Numerous preclinical studies have demonstrated their significant anticancer properties against various malignancies, making them valuable resources for drug development. However, traditional experimental methods for developing anticancer therapies from natural polyphenols are time-consuming and labor-intensive. Recently, artificial intelligence has shown promising advancements in drug discovery. Integrating AI technologies into the development process for natural polyphenols can substantially reduce development time and enhance efficiency. In this study, we review the crucial roles of natural polyphenols in anticancer treatment and explore the potential of AI technologies to aid in drug development. Specifically, we discuss the application of AI in key stages such as drug structure prediction, virtual drug screening, prediction of biological activity, and drug-target protein interaction, highlighting the potential to revolutionize the development of natural polyphenol-based anticancer therapies.
Collapse
Affiliation(s)
- Ying Zheng
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, Sichuan 610041, China
| | - Yifei Ma
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, Sichuan 610041, China
| | - Qunli Xiong
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, Sichuan 610041, China
| | - Kai Zhu
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian 350011, PR China
| | - Ningna Weng
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian 350011, PR China
| | - Qing Zhu
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, Sichuan 610041, China.
| |
Collapse
|
2
|
Song W, Xu L, Han C, Tian Z, Zou Q. Drug-target interaction predictions with multi-view similarity network fusion strategy and deep interactive attention mechanism. Bioinformatics 2024; 40:btae346. [PMID: 38837345 PMCID: PMC11164831 DOI: 10.1093/bioinformatics/btae346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/06/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024] Open
Abstract
MOTIVATION Accurately identifying the drug-target interactions (DTIs) is one of the crucial steps in the drug discovery and drug repositioning process. Currently, many computational-based models have already been proposed for DTI prediction and achieved some significant improvement. However, these approaches pay little attention to fuse the multi-view similarity networks related to drugs and targets in an appropriate way. Besides, how to fully incorporate the known interaction relationships to accurately represent drugs and targets is not well investigated. Therefore, there is still a need to improve the accuracy of DTI prediction models. RESULTS In this study, we propose a novel approach that employs Multi-view similarity network fusion strategy and deep Interactive attention mechanism to predict Drug-Target Interactions (MIDTI). First, MIDTI constructs multi-view similarity networks of drugs and targets with their diverse information and integrates these similarity networks effectively in an unsupervised manner. Then, MIDTI obtains the embeddings of drugs and targets from multi-type networks simultaneously. After that, MIDTI adopts the deep interactive attention mechanism to further learn their discriminative embeddings comprehensively with the known DTI relationships. Finally, we feed the learned representations of drugs and targets to the multilayer perceptron model and predict the underlying interactions. Extensive results indicate that MIDTI significantly outperforms other baseline methods on the DTI prediction task. The results of the ablation experiments also confirm the effectiveness of the attention mechanism in the multi-view similarity network fusion strategy and the deep interactive attention mechanism. AVAILABILITY AND IMPLEMENTATION https://github.com/XuLew/MIDTI.
Collapse
Affiliation(s)
- Wei Song
- School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450000, China
| | - Lewen Xu
- School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450000, China
| | - Chenguang Han
- School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450000, China
| | - Zhen Tian
- School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450000, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou 324000, China
| | - Quan Zou
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou 324000, China
| |
Collapse
|
3
|
Chen S, Li M, Semenov I. MFA-DTI: Drug-target interaction prediction based on multi-feature fusion adopted framework. Methods 2024; 224:79-92. [PMID: 38430967 DOI: 10.1016/j.ymeth.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/16/2024] [Accepted: 02/23/2024] [Indexed: 03/05/2024] Open
Abstract
The identification of drug-target interactions (DTI) is a valuable step in the drug discovery and repositioning process. However, traditional laboratory experiments are time-consuming and expensive. Computational methods have streamlined research to determine DTIs. The application of deep learning methods has significantly improved the prediction performance for DTIs. Modern deep learning methods can leverage multiple sources of information, including sequence data that contains biological structural information, and interaction data. While useful, these methods cannot be effectively applied to each type of information individually (e.g., chemical structure and interaction network) and do not take into account the specificity of DTI data such as low- or zero-interaction biological entities. To overcome these limitations, we propose a method called MFA-DTI (Multi-feature Fusion Adopted framework for DTI). MFA-DTI consists of three modules: an interaction graph learning module that processes the interaction network to generate interaction vectors, a chemical structure learning module that extracts features from the chemical structure, and a fusion module that combines these features for the final prediction. To validate the performance of MFA-DTI, we conducted experiments on six public datasets under different settings. The results indicate that the proposed method is highly effective in various settings and outperforms state-of-the-art methods.
Collapse
Affiliation(s)
- Siqi Chen
- School of Information Science and Engineering, Chongqing Jiaotong University, Chongqing, 400074, China.
| | - Minghui Li
- Beidahuang Industry Group General Hospital, Harbin, 150006, China
| | - Ivan Semenov
- College of Intelligence and Computing, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
4
|
Zhang Y, Liu C, Liu M, Liu T, Lin H, Huang CB, Ning L. Attention is all you need: utilizing attention in AI-enabled drug discovery. Brief Bioinform 2023; 25:bbad467. [PMID: 38189543 PMCID: PMC10772984 DOI: 10.1093/bib/bbad467] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/03/2023] [Accepted: 11/25/2023] [Indexed: 01/09/2024] Open
Abstract
Recently, attention mechanism and derived models have gained significant traction in drug development due to their outstanding performance and interpretability in handling complex data structures. This review offers an in-depth exploration of the principles underlying attention-based models and their advantages in drug discovery. We further elaborate on their applications in various aspects of drug development, from molecular screening and target binding to property prediction and molecule generation. Finally, we discuss the current challenges faced in the application of attention mechanisms and Artificial Intelligence technologies, including data quality, model interpretability and computational resource constraints, along with future directions for research. Given the accelerating pace of technological advancement, we believe that attention-based models will have an increasingly prominent role in future drug discovery. We anticipate that these models will usher in revolutionary breakthroughs in the pharmaceutical domain, significantly accelerating the pace of drug development.
Collapse
Affiliation(s)
- Yang Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Caiqi Liu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, Heilongjiang 150081, China
- Key Laboratory of Molecular Oncology of Heilongjiang Province, No.150 Haping Road, Nangang District, Harbin, Heilongjiang 150081, China
| | - Mujiexin Liu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tianyuan Liu
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
| | - Hao Lin
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Cheng-Bing Huang
- School of Computer Science and Technology, Aba Teachers University, Aba, China
| | - Lin Ning
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang, China
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu 611844, China
| |
Collapse
|
5
|
Zhang P, Zhang D, Zhou W, Wang L, Wang B, Zhang T, Li S. Network pharmacology: towards the artificial intelligence-based precision traditional Chinese medicine. Brief Bioinform 2023; 25:bbad518. [PMID: 38197310 PMCID: PMC10777171 DOI: 10.1093/bib/bbad518] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/03/2023] [Accepted: 11/30/2023] [Indexed: 01/11/2024] Open
Abstract
Network pharmacology (NP) provides a new methodological perspective for understanding traditional medicine from a holistic perspective, giving rise to frontiers such as traditional Chinese medicine network pharmacology (TCM-NP). With the development of artificial intelligence (AI) technology, it is key for NP to develop network-based AI methods to reveal the treatment mechanism of complex diseases from massive omics data. In this review, focusing on the TCM-NP, we summarize involved AI methods into three categories: network relationship mining, network target positioning and network target navigating, and present the typical application of TCM-NP in uncovering biological basis and clinical value of Cold/Hot syndromes. Collectively, our review provides researchers with an innovative overview of the methodological progress of NP and its application in TCM from the AI perspective.
Collapse
Affiliation(s)
- Peng Zhang
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics/Bioinformatics Division, BNRIST, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Dingfan Zhang
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics/Bioinformatics Division, BNRIST, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Wuai Zhou
- China Mobile Information System Integration Co., Ltd, Beijing 100032, China
| | - Lan Wang
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics/Bioinformatics Division, BNRIST, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Boyang Wang
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics/Bioinformatics Division, BNRIST, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Tingyu Zhang
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics/Bioinformatics Division, BNRIST, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Shao Li
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics/Bioinformatics Division, BNRIST, Department of Automation, Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Tian Z, Yu Y, Fang H, Xie W, Guo M. Predicting microbe-drug associations with structure-enhanced contrastive learning and self-paced negative sampling strategy. Brief Bioinform 2023; 24:7009077. [PMID: 36715986 DOI: 10.1093/bib/bbac634] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/19/2022] [Accepted: 12/29/2022] [Indexed: 01/31/2023] Open
Abstract
MOTIVATION Predicting the associations between human microbes and drugs (MDAs) is one critical step in drug development and precision medicine areas. Since discovering these associations through wet experiments is time-consuming and labor-intensive, computational methods have already been an effective way to tackle this problem. Recently, graph contrastive learning (GCL) approaches have shown great advantages in learning the embeddings of nodes from heterogeneous biological graphs (HBGs). However, most GCL-based approaches don't fully capture the rich structure information in HBGs. Besides, fewer MDA prediction methods could screen out the most informative negative samples for effectively training the classifier. Therefore, it still needs to improve the accuracy of MDA predictions. RESULTS In this study, we propose a novel approach that employs the Structure-enhanced Contrastive learning and Self-paced negative sampling strategy for Microbe-Drug Association predictions (SCSMDA). Firstly, SCSMDA constructs the similarity networks of microbes and drugs, as well as their different meta-path-induced networks. Then SCSMDA employs the representations of microbes and drugs learned from meta-path-induced networks to enhance their embeddings learned from the similarity networks by the contrastive learning strategy. After that, we adopt the self-paced negative sampling strategy to select the most informative negative samples to train the MLP classifier. Lastly, SCSMDA predicts the potential microbe-drug associations with the trained MLP classifier. The embeddings of microbes and drugs learning from the similarity networks are enhanced with the contrastive learning strategy, which could obtain their discriminative representations. Extensive results on three public datasets indicate that SCSMDA significantly outperforms other baseline methods on the MDA prediction task. Case studies for two common drugs could further demonstrate the effectiveness of SCSMDA in finding novel MDA associations. AVAILABILITY The source code is publicly available on GitHub https://github.com/Yue-Yuu/SCSMDA-master.
Collapse
Affiliation(s)
- Zhen Tian
- School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450000, China
| | - Yue Yu
- School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450000, China
| | - Haichuan Fang
- School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450000, China
| | - Weixin Xie
- Institute of Intelligent System and Bioinformatics, College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, 150000, China
| | - Maozu Guo
- School of Electrical and Information Engineering, Beijing University of Civil Engineering and Architecture, 100044, Beijing, China
| |
Collapse
|