1
|
Si Y, Huang Z, Fang Z, Yuan Z, Huang Z, Li Y, Wei Y, Wu F, Yao YF. Global-local aware Heterogeneous Graph Contrastive Learning for multifaceted association prediction in miRNA-gene-disease networks. Brief Bioinform 2024; 25:bbae443. [PMID: 39256197 PMCID: PMC11387071 DOI: 10.1093/bib/bbae443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/11/2024] [Accepted: 08/30/2024] [Indexed: 09/12/2024] Open
Abstract
Unraveling the intricate network of associations among microRNAs (miRNAs), genes, and diseases is pivotal for deciphering molecular mechanisms, refining disease diagnosis, and crafting targeted therapies. Computational strategies, leveraging link prediction within biological graphs, present a cost-efficient alternative to high-cost empirical assays. However, while plenty of methods excel at predicting specific associations, such as miRNA-disease associations (MDAs), miRNA-target interactions (MTIs), and disease-gene associations (DGAs), a holistic approach harnessing diverse data sources for multifaceted association prediction remains largely unexplored. The limited availability of high-quality data, as vitro experiments to comprehensively confirm associations are often expensive and time-consuming, results in a sparse and noisy heterogeneous graph, hindering an accurate prediction of these complex associations. To address this challenge, we propose a novel framework called Global-local aware Heterogeneous Graph Contrastive Learning (GlaHGCL). GlaHGCL combines global and local contrastive learning to improve node embeddings in the heterogeneous graph. In particular, global contrastive learning enhances the robustness of node embeddings against noise by aligning global representations of the original graph and its augmented counterpart. Local contrastive learning enforces representation consistency between functionally similar or connected nodes across diverse data sources, effectively leveraging data heterogeneity and mitigating the issue of data scarcity. The refined node representations are applied to downstream tasks, such as MDA, MTI, and DGA prediction. Experiments show GlaHGCL outperforming state-of-the-art methods, and case studies further demonstrate its ability to accurately uncover new associations among miRNAs, genes, and diseases. We have made the datasets and source code publicly available at https://github.com/Sue-syx/GlaHGCL.
Collapse
Affiliation(s)
- Yuxuan Si
- Department of Ophthalmology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, East Qingchun Road, 310016 Zhejiang, China
- College of Computer Science and Technology, Zhejiang University, 38 Zheda Road, 310027 Zhejiang, China
| | - Zihan Huang
- College of Computer Science and Technology, Zhejiang University, 38 Zheda Road, 310027 Zhejiang, China
| | - Zhengqing Fang
- Department of Ophthalmology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, East Qingchun Road, 310016 Zhejiang, China
- College of Computer Science and Technology, Zhejiang University, 38 Zheda Road, 310027 Zhejiang, China
| | - Zhouhang Yuan
- Department of Ophthalmology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, East Qingchun Road, 310016 Zhejiang, China
- College of Computer Science and Technology, Zhejiang University, 38 Zheda Road, 310027 Zhejiang, China
| | - Zhengxing Huang
- College of Computer Science and Technology, Zhejiang University, 38 Zheda Road, 310027 Zhejiang, China
| | - Yingming Li
- College of Information Science and Electronic Engineering, Zhejiang University, 38 Zheda Road, 310027 Zhejiang, China
| | - Ying Wei
- College of Computer Science and Technology, Zhejiang University, 38 Zheda Road, 310027 Zhejiang, China
| | - Fei Wu
- College of Computer Science and Technology, Zhejiang University, 38 Zheda Road, 310027 Zhejiang, China
| | - Yu-Feng Yao
- Department of Ophthalmology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, East Qingchun Road, 310016 Zhejiang, China
- Department of Ophthalmology, The Fourth Affiliated Hospital of Soochow University, 215000 Suzhou, China
| |
Collapse
|
2
|
Qin C, Zhang J, Ma L. EMCMDA: predicting miRNA-disease associations via efficient matrix completion. Sci Rep 2024; 14:12761. [PMID: 38834687 DOI: 10.1038/s41598-024-63582-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024] Open
Abstract
Abundant researches have consistently illustrated the crucial role of microRNAs (miRNAs) in a wide array of essential biological processes. Furthermore, miRNAs have been validated as promising therapeutic targets for addressing complex diseases. Given the costly and time-consuming nature of traditional biological experimental validation methods, it is imperative to develop computational methods. In the work, we developed a novel approach named efficient matrix completion (EMCMDA) for predicting miRNA-disease associations. First, we calculated the similarities across multiple sources for miRNA/disease pairs and combined this information to create a holistic miRNA/disease similarity measure. Second, we utilized this biological information to create a heterogeneous network and established a target matrix derived from this network. Lastly, we framed the miRNA-disease association prediction issue as a low-rank matrix-complete issue that was addressed via minimizing matrix truncated schatten p-norm. Notably, we improved the conventional singular value contraction algorithm through using a weighted singular value contraction technique. This technique dynamically adjusts the degree of contraction based on the significance of each singular value, ensuring that the physical meaning of these singular values is fully considered. We evaluated the performance of EMCMDA by applying two distinct cross-validation experiments on two diverse databases, and the outcomes were statistically significant. In addition, we executed comprehensive case studies on two prevalent human diseases, namely lung cancer and breast cancer. Following prediction and multiple validations, it was evident that EMCMDA proficiently forecasts previously undisclosed disease-related miRNAs. These results underscore the robustness and efficacy of EMCMDA in miRNA-disease association prediction.
Collapse
Affiliation(s)
- Chao Qin
- School of Information Science and Engineering, Qilu Normal University, Jinan, 250200, China.
| | - Jiancheng Zhang
- School of Information Science and Engineering, Qilu Normal University, Jinan, 250200, China
| | - Lingyu Ma
- School of Control Science and Engineering, Harbin Institute of Technology, Weihai, 250200, China
| |
Collapse
|
3
|
Krishnan SR, Roy A, Gromiha MM. Reliable method for predicting the binding affinity of RNA-small molecule interactions using machine learning. Brief Bioinform 2024; 25:bbae002. [PMID: 38261341 PMCID: PMC10805179 DOI: 10.1093/bib/bbae002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 12/21/2023] [Accepted: 12/24/2023] [Indexed: 01/24/2024] Open
Abstract
Ribonucleic acids (RNAs) play important roles in cellular regulation. Consequently, dysregulation of both coding and non-coding RNAs has been implicated in several disease conditions in the human body. In this regard, a growing interest has been observed to probe into the potential of RNAs to act as drug targets in disease conditions. To accelerate this search for disease-associated novel RNA targets and their small molecular inhibitors, machine learning models for binding affinity prediction were developed specific to six RNA subtypes namely, aptamers, miRNAs, repeats, ribosomal RNAs, riboswitches and viral RNAs. We found that differences in RNA sequence composition, flexibility and polar nature of RNA-binding ligands are important for predicting the binding affinity. Our method showed an average Pearson correlation (r) of 0.83 and a mean absolute error of 0.66 upon evaluation using the jack-knife test, indicating their reliability despite the low amount of data available for several RNA subtypes. Further, the models were validated with external blind test datasets, which outperform other existing quantitative structure-activity relationship (QSAR) models. We have developed a web server to host the models, RNA-Small molecule binding Affinity Predictor, which is freely available at: https://web.iitm.ac.in/bioinfo2/RSAPred/.
Collapse
Affiliation(s)
- Sowmya R Krishnan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
- TCS Research (Life Sciences division), Tata Consultancy Services, Hyderabad 500081, India
| | - Arijit Roy
- TCS Research (Life Sciences division), Tata Consultancy Services, Hyderabad 500081, India
| | - M Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
- International Research Frontiers Initiative, School of Computing, Tokyo Institute of Technology, Yokohama 226-8501, Japan
- Department of Computer Science, National University of Singapore, Singapore 117543
| |
Collapse
|