1
|
Wu G, Keller SH, Sardo L, Magliaro B, Zuck P, Balibar CJ, Williams C, Pan L, Gregory M, Ton K, Maxwell J, Cheney C, Rush T, Howell BJ. Single cell spatial profiling of FFPE splenic tissue from a humanized mouse model of HIV infection. Biomark Res 2024; 12:116. [PMID: 39380117 PMCID: PMC11462831 DOI: 10.1186/s40364-024-00658-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/18/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Latency remains a major obstacle to finding a cure for HIV despite the availability of antiretroviral therapy. Due to virus dormancy, limited biomarkers are available to identify latent HIV-infected cells. Profiling of individual HIV-infected cells is needed to explore potential latency biomarkers and to study the mechanisms of persistence that maintain the HIV reservoir. METHODS Single cell spatial transcriptomic characterization using the CosMx Spatial Molecular Imager platform was conducted to analyze HIV-infected cells in formalin-fixed paraffin-embedded sections of splenic tissue surgically obtained from an HIV-infected humanized mouse model. Regulation of over a thousand human genes was quantified in both viremic and aviremic specimens. In addition, in situ hybridization and immunohistochemistry were performed in parallel to identify HIV viral RNA- and p24-containing cells, respectively. Finally, initial findings from CosMx gene profiling were confirmed by isolating RNA from CD4 + T cells obtained from a person living with HIV on antiretroviral therapy following either PMA/Ionomycin or DMSO treatment. RNA was quantified using qPCR for a panel of targeted human host genes. RESULTS Supervised cell typing revealed that most of the HIV-infected cells in the mouse spleen sections were differentiated CD4 + T cells. A significantly higher number of infected cells, 2781 (1.61%) in comparison to 112 (0.06%), and total HIV transcripts per infected cell were observed in viremic samples compared to aviremic samples, respectively, which was consistent with the data obtained from ISH and IHC. Notably, the expression of 55 genes was different in infected cells within tissue from aviremic animals compared to viremic. In particular, both spleen tyrosine kinase (SYK) and CXCL17, were expressed approximately 100-fold higher. This data was further evaluated against bulk RNA isolated from HIV-infected human primary CD4 + T cells. A nearly 6-fold higher expression of SYK mRNA was observed in DMSO-treated CD4 + T cells compared to those stimulated with PMA/Ionomycin. CONCLUSION This study found that the CosMx SMI platform is valuable for assessing HIV infection and providing insights into host biomarkers associated with HIV reservoirs. Higher relative expression of the SYK gene in aviremic-infected cells from the humanized mouse HIV model was consistent with levels found in CD4 + T cells of aviremic donors.
Collapse
Affiliation(s)
- Guoxin Wu
- MRL, Merck & Co., Inc, Rahway, NJ, USA.
| | | | | | | | - Paul Zuck
- MRL, Merck & Co., Inc, Rahway, NJ, USA
| | | | | | - Liuliu Pan
- NanoString Technologies, a Bruker Company, Seattle, WA, USA
| | - Mark Gregory
- NanoString Technologies, a Bruker Company, Seattle, WA, USA
| | - Kathy Ton
- NanoString Technologies, a Bruker Company, Seattle, WA, USA
| | | | | | - Tom Rush
- MRL, Merck & Co., Inc, Rahway, NJ, USA
| | | |
Collapse
|
2
|
Wang Q, Feng Y, Wang Y, Li B, Wen J, Zhou X, Song Q. AntiFormer: graph enhanced large language model for binding affinity prediction. Brief Bioinform 2024; 25:bbae403. [PMID: 39162312 PMCID: PMC11333967 DOI: 10.1093/bib/bbae403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/21/2024] Open
Abstract
Antibodies play a pivotal role in immune defense and serve as key therapeutic agents. The process of affinity maturation, wherein antibodies evolve through somatic mutations to achieve heightened specificity and affinity to target antigens, is crucial for effective immune response. Despite their significance, assessing antibody-antigen binding affinity remains challenging due to limitations in conventional wet lab techniques. To address this, we introduce AntiFormer, a graph-based large language model designed to predict antibody binding affinity. AntiFormer incorporates sequence information into a graph-based framework, allowing for precise prediction of binding affinity. Through extensive evaluations, AntiFormer demonstrates superior performance compared with existing methods, offering accurate predictions with reduced computational time. Application of AntiFormer to severe acute respiratory syndrome coronavirus 2 patient samples reveals antibodies with strong neutralizing capabilities, providing insights for therapeutic development and vaccination strategies. Furthermore, analysis of individual samples following influenza vaccination elucidates differences in antibody response between young and older adults. AntiFormer identifies specific clonotypes with enhanced binding affinity post-vaccination, particularly in young individuals, suggesting age-related variations in immune response dynamics. Moreover, our findings underscore the importance of large clonotype category in driving affinity maturation and immune modulation. Overall, AntiFormer is a promising approach to accelerate antibody-based diagnostics and therapeutics, bridging the gap between traditional methods and complex antibody maturation processes.
Collapse
Affiliation(s)
- Qing Wang
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, FL 32611, USA
| | - Yuzhou Feng
- Department of Laboratory Medicine and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Shihezi University School of Medicine, Shihezi University, Shihezi 832003, China
| | - Yanfei Wang
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, FL 32611, USA
| | - Bo Li
- Department of Computer and Information Science, University of Macau, Macau SAR, China
| | - Jianguo Wen
- Center for Computational Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xiaobo Zhou
- Center for Computational Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Qianqian Song
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, FL 32611, USA
| |
Collapse
|
3
|
Jin Y, Zuo Y, Li G, Liu W, Pan Y, Fan T, Fu X, Yao X, Peng Y. Advances in spatial transcriptomics and its applications in cancer research. Mol Cancer 2024; 23:129. [PMID: 38902727 PMCID: PMC11188176 DOI: 10.1186/s12943-024-02040-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/10/2024] [Indexed: 06/22/2024] Open
Abstract
Malignant tumors have increasing morbidity and high mortality, and their occurrence and development is a complicate process. The development of sequencing technologies enabled us to gain a better understanding of the underlying genetic and molecular mechanisms in tumors. In recent years, the spatial transcriptomics sequencing technologies have been developed rapidly and allow the quantification and illustration of gene expression in the spatial context of tissues. Compared with the traditional transcriptomics technologies, spatial transcriptomics technologies not only detect gene expression levels in cells, but also inform the spatial location of genes within tissues, cell composition of biological tissues, and interaction between cells. Here we summarize the development of spatial transcriptomics technologies, spatial transcriptomics tools and its application in cancer research. We also discuss the limitations and challenges of current spatial transcriptomics approaches, as well as future development and prospects.
Collapse
Affiliation(s)
- Yang Jin
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuanli Zuo
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Gang Li
- Department of Thoracic Surgery, The Public Health Clinical Center of Chengdu, Chengdu, 610061, China
| | - Wenrong Liu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yitong Pan
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Fan
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xin Fu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaojun Yao
- Department of Thoracic Surgery, The Public Health Clinical Center of Chengdu, Chengdu, 610061, China.
| | - Yong Peng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, China.
| |
Collapse
|
4
|
Schmidt M, Avagyan S, Reiche K, Binder H, Loeffler-Wirth H. A Spatial Transcriptomics Browser for Discovering Gene Expression Landscapes across Microscopic Tissue Sections. Curr Issues Mol Biol 2024; 46:4701-4720. [PMID: 38785552 PMCID: PMC11119626 DOI: 10.3390/cimb46050284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
A crucial feature of life is its spatial organization and compartmentalization on the molecular, cellular, and tissue levels. Spatial transcriptomics (ST) technology has opened a new chapter of the sequencing revolution, emerging rapidly with transformative effects across biology. This technique produces extensive and complex sequencing data, raising the need for computational methods for their comprehensive analysis and interpretation. We developed the ST browser web tool for the interactive discovery of ST images, focusing on different functional aspects such as single gene expression, the expression of functional gene sets, as well as the inspection of the spatial patterns of cell-cell interactions. As a unique feature, our tool applies self-organizing map (SOM) machine learning to the ST data. Our SOM data portrayal method generates individual gene expression landscapes for each spot in the ST image, enabling its downstream analysis with high resolution. The performance of the spatial browser is demonstrated by disentangling the intra-tumoral heterogeneity of melanoma and the microarchitecture of the mouse brain. The integration of machine-learning-based SOM portrayal into an interactive ST analysis environment opens novel perspectives for the comprehensive knowledge mining of the organization and interactions of cellular ecosystems.
Collapse
Affiliation(s)
- Maria Schmidt
- Interdisciplinary Centre for Bioinformatics (IZBI), Leipzig University, Härtelstr. 16-18, 04107 Leipzig, Germany; (M.S.); (H.B.)
| | - Susanna Avagyan
- Armenian Bioinformatics Institute, 3/6 Nelson Stepanyan Str., Yerevan 0062, Armenia
| | - Kristin Reiche
- Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstrasse 1, 04103 Leipzig, Germany
- Institute for Clinical Immunology, University Hospital of Leipzig, 04103 Leipzig, Germany
| | - Hans Binder
- Interdisciplinary Centre for Bioinformatics (IZBI), Leipzig University, Härtelstr. 16-18, 04107 Leipzig, Germany; (M.S.); (H.B.)
- Armenian Bioinformatics Institute, 3/6 Nelson Stepanyan Str., Yerevan 0062, Armenia
| | - Henry Loeffler-Wirth
- Interdisciplinary Centre for Bioinformatics (IZBI), Leipzig University, Härtelstr. 16-18, 04107 Leipzig, Germany; (M.S.); (H.B.)
| |
Collapse
|
5
|
Babu E, Sen S. Explore & actuate: the future of personalized medicine in oncology through emerging technologies. Curr Opin Oncol 2024; 36:93-101. [PMID: 38441149 DOI: 10.1097/cco.0000000000001016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
PURPOSE OF REVIEW The future of medicine is aimed to equip the physician with tools to assess the individual health of the patient for the uniqueness of the disease that separates it from the rest. The integration of omics technologies into clinical practice, reviewed here, would open new avenues for addressing the spatial and temporal heterogeneity of cancer. The rising cancer burden patiently awaits the advent of such an approach to personalized medicine for routine clinical settings. RECENT FINDINGS To weigh the translational potential, multiple technologies were categorized based on the extractable information from the different types of samples used, to the various omic-levels of molecular information that each technology has been able to advance over the last 2 years. This review uses a multifaceted classification that helps to assess translational potential in a meaningful way toward clinical adaptation. SUMMARY The importance of distinguishing technologies based on the flow of information from exploration to actuation puts forth a framework that allows the clinicians to better adapt a chosen technology or use them in combination to enhance their goals toward personalized medicine.
Collapse
Affiliation(s)
- Erald Babu
- UM-DAE Centre for Excellence in Basic Sciences, School of Biological Sciences, University of Mumbai, Kalina Campus, Mumbai, Maharashtra, India
| | | |
Collapse
|
6
|
Garrone O, La Porta CAM. Artificial Intelligence for Precision Oncology of Triple-Negative Breast Cancer: Learning from Melanoma. Cancers (Basel) 2024; 16:692. [PMID: 38398083 PMCID: PMC10887240 DOI: 10.3390/cancers16040692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Thanks to new technologies using artificial intelligence (AI) and machine learning, it is possible to use large amounts of data to try to extract information that can be used for personalized medicine. The great challenge of the future is, on the one hand, to acquire masses of biological data that nowadays are still limited and, on the other hand, to develop innovative strategies to extract information that can then be used for the development of predictive models. From this perspective, we discuss these aspects in the context of triple-negative breast cancer, a tumor where a specific treatment is still lacking and new therapies, such as immunotherapy, are under investigation. Since immunotherapy is already in use for other tumors such as melanoma, we discuss the strengths and weaknesses identified in the use of immunotherapy with melanoma to try to find more successful strategies. It is precisely in this context that AI and predictive tools can be extremely valuable. Therefore, the discoveries and advancements in immunotherapy for melanoma provide a foundation for developing effective immunotherapies for triple-negative breast cancer. Shared principles, such as immune system activation, checkpoint inhibitors, and personalized treatment, can be applied to TNBC to improve patient outcomes and offer new hope for those with aggressive, hard-to-treat breast cancer.
Collapse
Affiliation(s)
- Ornella Garrone
- Medical Oncology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Caterina A. M. La Porta
- Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy
- Center for Complexity and Biosystems, University of Milan, 20133 Milan, Italy
| |
Collapse
|
7
|
Luo H, Liang H, Liu H, Fan Z, Wei Y, Yao X, Cong S. TEMINET: A Co-Informative and Trustworthy Multi-Omics Integration Network for Diagnostic Prediction. Int J Mol Sci 2024; 25:1655. [PMID: 38338932 PMCID: PMC10855161 DOI: 10.3390/ijms25031655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/20/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Advancing the domain of biomedical investigation, integrated multi-omics data have shown exceptional performance in elucidating complex human diseases. However, as the variety of omics information expands, precisely perceiving the informativeness of intra- and inter-omics becomes challenging due to the intricate interrelations, thus presenting significant challenges in the integration of multi-omics data. To address this, we introduce a novel multi-omics integration approach, referred to as TEMINET. This approach enhances diagnostic prediction by leveraging an intra-omics co-informative representation module and a trustworthy learning strategy used to address inter-omics fusion. Considering the multifactorial nature of complex diseases, TEMINET utilizes intra-omics features to construct disease-specific networks; then, it applies graph attention networks and a multi-level framework to capture more collective informativeness than pairwise relations. To perceive the contribution of co-informative representations within intra-omics, we designed a trustworthy learning strategy to identify the reliability of each omics in integration. To integrate inter-omics information, a combined-beliefs fusion approach is deployed to harmonize the trustworthy representations of different omics types effectively. Our experiments across four different diseases using mRNA, methylation, and miRNA data demonstrate that TEMINET achieves advanced performance and robustness in classification tasks.
Collapse
Affiliation(s)
- Haoran Luo
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266000, China; (H.L.); (Z.F.)
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China; (H.L.); (H.L.); (Y.W.)
| | - Hong Liang
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China; (H.L.); (H.L.); (Y.W.)
| | - Hongwei Liu
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China; (H.L.); (H.L.); (Y.W.)
| | - Zhoujie Fan
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266000, China; (H.L.); (Z.F.)
| | - Yanhui Wei
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China; (H.L.); (H.L.); (Y.W.)
| | - Xiaohui Yao
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266000, China; (H.L.); (Z.F.)
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China; (H.L.); (H.L.); (Y.W.)
| | - Shan Cong
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266000, China; (H.L.); (Z.F.)
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China; (H.L.); (H.L.); (Y.W.)
| |
Collapse
|