1
|
Le SP, Krishna J, Gupta P, Dutta R, Li S, Chen J, Thayumanavan S. Polymers for Disrupting Protein-Protein Interactions: Where Are We and Where Should We Be? Biomacromolecules 2024; 25:6229-6249. [PMID: 39254158 DOI: 10.1021/acs.biomac.4c00850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Protein-protein interactions (PPIs) are central to the cellular signaling and regulatory networks that underlie many physiological and pathophysiological processes. It is challenging to target PPIs using traditional small molecule or peptide-based approaches due to the frequent lack of well-defined binding pockets at the large and flat PPI interfaces. Synthetic polymers offer an opportunity to circumvent these challenges by providing unparalleled flexibility in tuning their physiochemical properties to achieve the desired binding properties. In this review, we summarize the current state of the field pertaining to polymer-protein interactions in solution, highlighting various polyelectrolyte systems, their tunable parameters, and their characterization. We provide an outlook on how these architectures can be improved by incorporating sequence control, foldability, and machine learning to mimic proteins at every structural level. Advances in these directions will enable the design of more specific protein-binding polymers and provide an effective strategy for targeting dynamic proteins, such as intrinsically disordered proteins.
Collapse
Affiliation(s)
- Stephanie P Le
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
| | - Jithu Krishna
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
| | - Prachi Gupta
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
| | - Ranit Dutta
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
| | - Shanlong Li
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
| | - S Thayumanavan
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
- Department of Biomedical Engineering, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
2
|
Comajuncosa-Creus A, Jorba G, Barril X, Aloy P. Comprehensive detection and characterization of human druggable pockets through binding site descriptors. Nat Commun 2024; 15:7917. [PMID: 39256431 PMCID: PMC11387482 DOI: 10.1038/s41467-024-52146-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024] Open
Abstract
Druggable pockets are protein regions that have the ability to bind organic small molecules, and their characterization is essential in target-based drug discovery. However, deriving pocket descriptors is challenging and existing strategies are often limited in applicability. We introduce PocketVec, an approach to generate pocket descriptors via inverse virtual screening of lead-like molecules. PocketVec performs comparably to leading methodologies while addressing key limitations. Additionally, we systematically search for druggable pockets in the human proteome, using experimentally determined structures and AlphaFold2 models, identifying over 32,000 binding sites across 20,000 protein domains. We then generate PocketVec descriptors for each site and conduct an extensive similarity search, exploring over 1.2 billion pairwise comparisons. Our results reveal druggable pocket similarities not detected by structure- or sequence-based methods, uncovering clusters of similar pockets in proteins lacking crystallized inhibitors and opening the door to strategies for prioritizing chemical probe development to explore the druggable space.
Collapse
Affiliation(s)
- Arnau Comajuncosa-Creus
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain
| | - Guillem Jorba
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain
| | - Xavier Barril
- Facultat de Farmàcia and Institut de Biomedicina, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| | - Patrick Aloy
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain.
| |
Collapse
|
3
|
Gayathiri E, Prakash P, Ahamed M, Pandiaraj S, Venkidasamy B, Dayalan H, Thangaraj P, Selvam K, Chaudhari SY, Govindasamy R, Thiruvengadam M. Multitargeted pharmacokinetics, molecular docking and network pharmacology-based identification of effective phytocompounds from Sauropus androgynus (L.) Merr for inflammation and cancer treatment. J Biomol Struct Dyn 2024; 42:7883-7896. [PMID: 37534448 DOI: 10.1080/07391102.2023.2243335] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 07/23/2023] [Indexed: 08/04/2023]
Abstract
According to worldwide health data, cancer, and inflammatory illnesses are on the rise and are among the most common causes of death. Across the world, these types of health problems are now considered top priorities for government health organizations. Hence, this study aimed to investigate medicinal plants' potential for treating cancer and inflammatory disorders. This network pharmacology analysis aims to learn more about the potential targets and mechanisms of action for the bioactive ingredients in Sauropus androgynus (L.) Merr L. The compound-target network and protein-protein interaction analysis were built using the STRING database. Using Network Analyst, Gene Ontology, and Kyoto Encyclopaedia of Genes and Genomes, pathway enrichment was performed on the hub genes. 1-hexadecanol was shown to inhibit drug-metabolizing enzymes in a pharmacokinetic investigation. Those samples of 1-hexadecanol were found to be 1-hexadecanol (BBB 0.783), GI High, Pgp Substrate Yes, CYP2C19 Inhibitor Yes, CYP2D6 Yes, and HI -89.803. The intermolecular binding energies for 1-hexadecanol (4-DRI, -8.2 kcal/mol) are evaluated. These results from a study on S. androgynus used molecular docking and network pharmacology to gain insight into the prime target genes and potential mechanisms identified for AKT1, mTOR, AR, PPID, FKBP5, and NR3C1. The PI3K-Akt signalling pathway has become an important regulatory node in various pathological processes requiring coordinated actions. Stability and favourable conformations have been resolved by considering nonbonding interactions such as electrostatic and hydrogen bonds in MD simulations of the perfect molecules using the Desmond package. Thus, using an appropriate platform of network pharmacology, molecular docking, and in vitro experiments, this study provides for the first time a clearer knowledge of the anti-cancer and anti-inflammatory molecular bioactivities of S. androgynus. Further in vitro and in vivo confirmations are strongly needed to determine the efficacy and therapeutic effects of 1-hexadecanol in the biological process.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ekambaram Gayathiri
- Department of Plant Biology and Plant Biotechnology, Guru Nanak College (Autonomous), Chennai, India
| | | | - Maqusood Ahamed
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saravanan Pandiaraj
- Department of Self-Development Skills, King Saud University, Riyadh, Saudi Arabia
| | - Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha University, Chennai, India
| | - Haripriya Dayalan
- Department of Biotechnology, Rajalakshmi Engineering College (Affiliated to Anna University), Thandalam, Chennai, India
| | - Pratheep Thangaraj
- Department of Biotechnology, Rathinam College of Arts and Science, Coimbatore, India
| | | | - Somdatta Y Chaudhari
- Department of Pharmaceutical Chemistry, Modern College of Pharmacy, Nigdi, India
| | - Rajakumar Govindasamy
- Department of Orthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Science, Konkuk University, Seoul, South Korea
| |
Collapse
|
4
|
An Y, Lim J, Glavatskikh M, Wang X, Norris-Drouin J, Hardy PB, Leisner TM, Pearce KH, Kireev D. In silico fragment-based discovery of CIB1-directed anti-tumor agents by FRASE-bot. Nat Commun 2024; 15:5564. [PMID: 38956119 PMCID: PMC11219766 DOI: 10.1038/s41467-024-49892-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 06/19/2024] [Indexed: 07/04/2024] Open
Abstract
Chemical probes are an indispensable tool for translating biological discoveries into new therapies, though are increasingly difficult to identify since novel therapeutic targets are often hard-to-drug proteins. We introduce FRASE-based hit-finding robot (FRASE-bot), to expedite drug discovery for unconventional therapeutic targets. FRASE-bot mines available 3D structures of ligand-protein complexes to create a database of FRAgments in Structural Environments (FRASE). The FRASE database can be screened to identify structural environments similar to those in the target protein and seed the target structure with relevant ligand fragments. A neural network model is used to retain fragments with the highest likelihood of being native binders. The seeded fragments then inform ultra-large-scale virtual screening of commercially available compounds. We apply FRASE-bot to identify ligands for Calcium and Integrin Binding protein 1 (CIB1), a promising drug target implicated in triple negative breast cancer. FRASE-based virtual screening identifies a small-molecule CIB1 ligand (with binding confirmed in a TR-FRET assay) showing specific cell-killing activity in CIB1-dependent cancer cells, but not in CIB1-depletion-insensitive cells.
Collapse
Affiliation(s)
- Yi An
- Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27513, USA
| | - Jiwoong Lim
- Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27513, USA
| | - Marta Glavatskikh
- Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27513, USA
| | - Xiaowen Wang
- Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27513, USA
- Chemistry department, University of Missouri, Columbia, Columbia, MO, 65211, USA
| | - Jacqueline Norris-Drouin
- Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27513, USA
| | - P Brian Hardy
- Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27513, USA
| | - Tina M Leisner
- Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27513, USA
| | - Kenneth H Pearce
- Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27513, USA.
| | - Dmitri Kireev
- Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27513, USA.
- Chemistry department, University of Missouri, Columbia, Columbia, MO, 65211, USA.
| |
Collapse
|
5
|
Banerjee J, Tiwari AK, Banerjee S. Drug repurposing for cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 207:123-150. [PMID: 38942535 DOI: 10.1016/bs.pmbts.2024.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
In the dynamic landscape of cancer therapeutics, the innovative strategy of drug repurposing emerges as a transformative paradigm, heralding a new era in the fight against malignancies. This book chapter aims to embark on the comprehension of the strategic deployment of approved drugs for repurposing and the meticulous journey of drug repurposing from earlier times to the current era. Moreover, the chapter underscores the multifaceted and complex nature of cancer biology, and the evolving field of cancer drug therapeutics while emphasizing the mandate of drug repurposing to advance cancer therapeutics. Importantly, the narrative explores the latest tools, technologies, and cutting-edge methodologies including high-throughput screening, omics technologies, and artificial intelligence-driven approaches, for shaping and accelerating the pace of drug repurposing to uncover novel cancer therapeutic avenues. The chapter critically assesses the breakthroughs, expanding the repertoire of repurposing drug candidates in cancer, and their major categories. Another focal point of this book chapter is that it addresses the emergence of combination therapies involving repurposed drugs, reflecting a shift towards personalized and synergistic treatment approaches. The expert analysis delves into the intricacies of combinatorial regimens, elucidating their potential to target heterogeneous cancer populations and overcome resistance mechanisms, thereby enhancing treatment efficacy. Therefore, this chapter provides in-depth insights into the potential of repurposing towards bringing the much-needed big leap in the field of cancer therapeutics.
Collapse
Affiliation(s)
- Juni Banerjee
- Department of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Gandhinagar, Gujarat, India
| | - Anand Krishna Tiwari
- Department of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Gandhinagar, Gujarat, India
| | - Shuvomoy Banerjee
- Department of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Gandhinagar, Gujarat, India.
| |
Collapse
|
6
|
Reim T, Ehrt C, Graef J, Günther S, Meents A, Rarey M. SiteMine: Large-scale binding site similarity searching in protein structure databases. Arch Pharm (Weinheim) 2024; 357:e2300661. [PMID: 38335311 DOI: 10.1002/ardp.202300661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 02/12/2024]
Abstract
Drug discovery and design challenges, such as drug repurposing, analyzing protein-ligand and protein-protein complexes, ligand promiscuity studies, or function prediction, can be addressed by protein binding site similarity analysis. Although numerous tools exist, they all have individual strengths and drawbacks with regard to run time, provision of structure superpositions, and applicability to diverse application domains. Here, we introduce SiteMine, an all-in-one database-driven, alignment-providing binding site similarity search tool to tackle the most pressing challenges of binding site comparison. The performance of SiteMine is evaluated on the ProSPECCTs benchmark, showing a promising performance on most of the data sets. The method performs convincingly regarding all quality criteria for reliable binding site comparison, offering a novel state-of-the-art approach for structure-based molecular design based on binding site comparisons. In a SiteMine showcase, we discuss the high structural similarity between cathepsin L and calpain 1 binding sites and give an outlook on the impact of this finding on structure-based drug design. SiteMine is available at https://uhh.de/naomi.
Collapse
Affiliation(s)
- Thorben Reim
- ZBH - Center for Bioinformatics, Universität Hamburg, Hamburg, Germany
| | - Christiane Ehrt
- ZBH - Center for Bioinformatics, Universität Hamburg, Hamburg, Germany
| | - Joel Graef
- ZBH - Center for Bioinformatics, Universität Hamburg, Hamburg, Germany
| | - Sebastian Günther
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Alke Meents
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Matthias Rarey
- ZBH - Center for Bioinformatics, Universität Hamburg, Hamburg, Germany
| |
Collapse
|
7
|
Maity D, Singh D, Bandhu A. Mce1R of Mycobacterium tuberculosis prefers long-chain fatty acids as specific ligands: a computational study. Mol Divers 2023; 27:2523-2543. [PMID: 36385433 DOI: 10.1007/s11030-022-10566-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 11/04/2022] [Indexed: 11/17/2022]
Abstract
The mce1 operon of Mycobacterium tuberculosis, which codes the Mce1 transporter, facilitates the transport of fatty acids. Fatty acids are one of the major sources for carbon and energy for the pathogen during its intracellular survival and pathogenicity. The mce1 operon is transcriptionally regulated by Mce1R, a VanR-type regulator, which could bind specific ligands and control the expression of the mce1 operon accordingly. This work reports computational identification of Mce1R-specific ligands. Initially by employing cavity similarity search algorithm by the ProBis server, the cavities of the proteins similar to that of Mce1R and the bound ligands were identified from which fatty acids were selected as the potential ligands. From the earlier-generated monomeric structure, the dimeric structure of Mce1R was then modeled by the GalaxyHomomer server and validated computationally to use in molecular docking and molecular dynamics simulation analysis. The fatty acid ligands were found to dock within the cavity of Mce1R and the docked complexes were subjected to molecular dynamics simulation to explore their stabilities and other dynamic properties. The data suggest that Mce1R preferably binds to long-chain fatty acids and undergoes distinct structural changes upon binding.
Collapse
Affiliation(s)
- Dipanwita Maity
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, 506004, India
| | - Dheeraj Singh
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, 506004, India
| | - Amitava Bandhu
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, 506004, India.
| |
Collapse
|
8
|
Cai L, Liu B, Cao Y, Sun T, Li Y. Unveiling the molecular structure and role of RBBP4/7: implications for epigenetic regulation and cancer research. Front Mol Biosci 2023; 10:1276612. [PMID: 38028543 PMCID: PMC10679446 DOI: 10.3389/fmolb.2023.1276612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Retinoblastoma-binding protein (RBBP) family is a class of proteins that can interact with tumor suppressor retinoblastoma protein (pRb). RBBP4 and RBBP7 are the only pair of homologous proteins in this family, serving as scaffold proteins whose main function is to offer a platform to indirectly connect two proteins. This characteristic allows them to extensively participate in the binding of various proteins and epigenetic complexes, indirectly influencing the function of effector proteins. As a result, they are often highlighted in organism activities involving active epigenetic modifications, such as embryonic development and cancer activation. In this review, we summarize the structural characteristics of RBBP4/7, the complexes they are involved in, their roles in embryonic development and cancer, as well as potential future research directions, which we hope to inspire the field of epigenetic research in the future.
Collapse
Affiliation(s)
- Lize Cai
- The First Affiliated Hospital of Soochow University, Suzhou University, Suzhou, China
| | - Bin Liu
- Department of Neurosurgery, Qinghai Provincial People’s Hospital, Xining, China
| | - Yufei Cao
- The First Affiliated Hospital of Soochow University, Suzhou University, Suzhou, China
| | - Ting Sun
- The First Affiliated Hospital of Soochow University, Suzhou University, Suzhou, China
| | - Yanyan Li
- The First Affiliated Hospital of Soochow University, Suzhou University, Suzhou, China
| |
Collapse
|
9
|
Ayipo YO, Ahmad I, Alananzeh W, Lawal A, Patel H, Mordi MN. Computational modelling of potential Zn-sensitive non-β-lactam inhibitors of imipenemase-1 (IMP-1). J Biomol Struct Dyn 2023; 41:10096-10116. [PMID: 36476097 DOI: 10.1080/07391102.2022.2153168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022]
Abstract
Antibiotic resistance (AR) remains one of the leading global health challenges, mostly implicated in disease-related deaths. The Enterobacteriaceae-producing metallo-β-lactamases (MBLs) are critically involved in AR pathogenesis through Zn-dependent catalytic destruction of β-lactam antibiotics, yet with limited successful clinical inhibitors. The efficacy of relevant broad-spectrum β-lactams including imipenem and meropenem are seriously challenged by their susceptibility to the Zn-dependent carbapenemase hydrolysis, as such, searching for alternatives remains imperative. In this study, computational molecular modelling and virtual screening methods were extensively applied to identify new putative Zn-sensitive broad-spectrum inhibitors of MBLs, specifically imipenemase-1 (IMP-1) from the IBScreen database. Three ligands, STOCK3S-30154, STOCK3S-30418 and STOCK3S-30514 selectively displayed stronger binding interactions with the enzymes compared to reference inhibitors, imipenem and meropenem. For instance, the ligands showed molecular docking scores of -9.450, -8.005 and -10.159 kcal/mol, and MM-GBSA values of -40.404, -31.902 and -33.680 kcal/mol respectively against the IMP-1. Whereas, imipenem and meropenem showed docking scores of -9.038 and -10.875 kcal/mol, and MM-GBSA of -31.184 and -32.330 kcal/mol respectively against the enzyme. The ligands demonstrated good thermodynamic stability and compactness in complexes with IMP-1 throughout the 100 ns molecular dynamics (MD) trajectories. Interestingly, their binding affinities and stabilities were significantly affected in contacts with the remodelled Zn-deficient IMP-1, indicating sensitivity to the carbapenemase active Zn site, however, with non-β-lactam scaffolds, tenable to resist catalytic hydrolysis. They displayed ideal drug-like ADMET properties, thus, representing putative Zn-sensitive non-β-lactam inhibitors of IMP-1 amenable for further experimental studies.
Collapse
Affiliation(s)
- Yusuf Oloruntoyin Ayipo
- Centre for Drug Research, Universiti Sains Malaysia, USM, Pulau Pinang, Malaysia
- Department of Chemistry and Industrial Chemistry, Kwara State University, Ilorin, Nigeria
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Waleed Alananzeh
- Centre for Drug Research, Universiti Sains Malaysia, USM, Pulau Pinang, Malaysia
| | - Amudat Lawal
- Department of Chemistry, University of Ilorin, Ilorin, Nigeria
| | - Harun Patel
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Mohd Nizam Mordi
- Centre for Drug Research, Universiti Sains Malaysia, USM, Pulau Pinang, Malaysia
| |
Collapse
|
10
|
Feng J, Zheng Y, Ma W, Ihsan A, Hao H, Cheng G, Wang X. Multitarget antibacterial drugs: An effective strategy to combat bacterial resistance. Pharmacol Ther 2023; 252:108550. [PMID: 39492518 DOI: 10.1016/j.pharmthera.2023.108550] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/05/2024]
Abstract
The rise of antibiotic resistance and the decrease in the discovery of new antibiotics have caused a global health crisis. Of particular concern is the fact that despite efforts to develop new antibiotics, drug discovery is unable to keep up with the rapid development of resistance. This ongoing crisis highlights the fact that single-target drugs may not always exhibit satisfactory therapeutic effects and are prone to target mutations and resistance due to the complexity of bacterial mechanisms. Retrospective studies have shown that most successful antibiotics have multiple targets. Compared with single-target drugs, successfully designed multitarget drugs can simultaneously regulate multiple targets to reduce resistance caused by single-target mutations or expression changes. In addition to a lower risk of drug-drug interactions, multitarget drugs show superior pharmacokinetics and higher patient compliance compared with combination therapies. Therefore, to reduce resistance, many efforts have been made to discover and design multitarget drugs with different chemical structures and functions. Although there have been numerous studies on how to develop drugs and slow down the development of drug resistance, the reduction of bacterial resistance by multitarget antibacterial drugs has not received widespread attention and is rarely mentioned in the peer-reviewed literature. This review summarises the development of antibiotic resistance and the mechanisms proposed for its emergence, examines the potential of multitarget drugs as an effective strategy to slow the development of resistance, and discusses the rationale for multitarget drug therapy. We also describe multitarget antibacterial compounds with the potential to reduce drug resistance and the available strategies to develop multitarget drugs.
Collapse
Affiliation(s)
- Jin Feng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Youle Zheng
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Wanqing Ma
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Awais Ihsan
- Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Islamabad 45550, Pakistan
| | - Haihong Hao
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Guyue Cheng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
11
|
An Y, Glavatskikh M, Lim J, Wang X, Norris-Drouin J, Hardy PB, Leisner TM, Pearce KH, Kireev D. Machine Learning-driven Fragment-based Discovery of CIB1-directed Anti-Tumor Agents by FRASE-bot. RESEARCH SQUARE 2023:rs.3.rs-3197490. [PMID: 37645935 PMCID: PMC10462244 DOI: 10.21203/rs.3.rs-3197490/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Chemical probes are an indispensable tool for translating biological discoveries into new therapies, though are increasingly difficult to identify. Novel therapeutic targets are often hard-to-drug proteins, such as messengers or transcription factors. Computational strategies arise as a promising solution to expedite drug discovery for unconventional therapeutic targets. FRASE-bot exploits big data and machine learning (ML) to distill 3D information relevant to the target protein from thousands of protein-ligand complexes to seed it with ligand fragments. The seeded fragments can then inform either (i) de novo design of 3D ligand structures or (ii) ultra-large-scale virtual screening of commercially available compounds. Here, FRASE-bot was applied to identify ligands for Calcium and Integrin Binding protein 1 (CIB1), a promising but ligand-orphan drug target implicated in triple negative breast cancer. The signaling function of CIB1 relies on protein-protein interactions and its structure does not feature any natural ligand-binding pocket. FRASE-based virtual screening identified the first small-molecule CIB1 ligand (with binding confirmed in a TR-FRET assay) showing specific cell-killing activity in CIB1-dependent cancer cells, but not in CIB1-depleted cells.
Collapse
Affiliation(s)
- Yi An
- Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27513
| | - Marta Glavatskikh
- Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27513
| | - Jiwoong Lim
- Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27513
| | - Xiaowen Wang
- Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27513
- Chemistry department, University of Missouri, Columbia, Columbia, MO, 65211
| | - Jacqueline Norris-Drouin
- Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27513
| | - P. Brian Hardy
- Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27513
| | - Tina M. Leisner
- Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27513
| | - Kenneth H. Pearce
- Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27513
| | - Dmitri Kireev
- Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27513
- Chemistry department, University of Missouri, Columbia, Columbia, MO, 65211
| |
Collapse
|
12
|
Zhang Z, Wei X. Artificial intelligence-assisted selection and efficacy prediction of antineoplastic strategies for precision cancer therapy. Semin Cancer Biol 2023; 90:57-72. [PMID: 36796530 DOI: 10.1016/j.semcancer.2023.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/12/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
The rapid development of artificial intelligence (AI) technologies in the context of the vast amount of collectable data obtained from high-throughput sequencing has led to an unprecedented understanding of cancer and accelerated the advent of a new era of clinical oncology with a tone of precision treatment and personalized medicine. However, the gains achieved by a variety of AI models in clinical oncology practice are far from what one would expect, and in particular, there are still many uncertainties in the selection of clinical treatment options that pose significant challenges to the application of AI in clinical oncology. In this review, we summarize emerging approaches, relevant datasets and open-source software of AI and show how to integrate them to address problems from clinical oncology and cancer research. We focus on the principles and procedures for identifying different antitumor strategies with the assistance of AI, including targeted cancer therapy, conventional cancer therapy, and cancer immunotherapy. In addition, we also highlight the current challenges and directions of AI in clinical oncology translation. Overall, we hope this article will provide researchers and clinicians with a deeper understanding of the role and implications of AI in precision cancer therapy, and help AI move more quickly into accepted cancer guidelines.
Collapse
Affiliation(s)
- Zhe Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, PR China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
13
|
Durairaj J, de Ridder D, van Dijk AD. Beyond sequence: Structure-based machine learning. Comput Struct Biotechnol J 2022; 21:630-643. [PMID: 36659927 PMCID: PMC9826903 DOI: 10.1016/j.csbj.2022.12.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
Recent breakthroughs in protein structure prediction demarcate the start of a new era in structural bioinformatics. Combined with various advances in experimental structure determination and the uninterrupted pace at which new structures are published, this promises an age in which protein structure information is as prevalent and ubiquitous as sequence. Machine learning in protein bioinformatics has been dominated by sequence-based methods, but this is now changing to make use of the deluge of rich structural information as input. Machine learning methods making use of structures are scattered across literature and cover a number of different applications and scopes; while some try to address questions and tasks within a single protein family, others aim to capture characteristics across all available proteins. In this review, we look at the variety of structure-based machine learning approaches, how structures can be used as input, and typical applications of these approaches in protein biology. We also discuss current challenges and opportunities in this all-important and increasingly popular field.
Collapse
Affiliation(s)
- Janani Durairaj
- Biozentrum, University of Basel, Basel, Switzerland
- Bioinformatics Group, Department of Plant Sciences, Wageningen University and Research, Wageningen, the Netherlands
| | - Dick de Ridder
- Bioinformatics Group, Department of Plant Sciences, Wageningen University and Research, Wageningen, the Netherlands
| | - Aalt D.J. van Dijk
- Bioinformatics Group, Department of Plant Sciences, Wageningen University and Research, Wageningen, the Netherlands
| |
Collapse
|
14
|
Scott O, Gu J, Chan AE. Classification of Protein-Binding Sites Using a Spherical Convolutional Neural Network. J Chem Inf Model 2022; 62:5383-5396. [PMID: 36341715 PMCID: PMC9709917 DOI: 10.1021/acs.jcim.2c00832] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The analysis and comparison of protein-binding sites aid various applications in the drug discovery process, e.g., hit finding, drug repurposing, and polypharmacology. Classification of binding sites has been a hot topic for the past 30 years, and many different methods have been published. The rapid development of machine learning computational algorithms, coupled with the large volume of publicly available protein-ligand 3D structures, makes it possible to apply deep learning techniques in binding site comparison. Our method uses a cutting-edge spherical convolutional neural network based on the DeepSphere architecture to learn global representations of protein-binding sites. The model was trained on TOUGH-C1 and TOUGH-M1 data and validated with the ProSPECCTs datasets. Our results show that our model can (1) perform well in protein-binding site similarity and classification tasks and (2) learn and separate the physicochemical properties of binding sites. Lastly, we tested the model on a set of kinases, where the results show that it is able to cluster the different kinase subfamilies effectively. This example demonstrates the method's promise for lead hopping within or outside a protein target, directly based on binding site information.
Collapse
|
15
|
Qureshi R, Basit SA, Shamsi JA, Fan X, Nawaz M, Yan H, Alam T. Machine learning based personalized drug response prediction for lung cancer patients. Sci Rep 2022; 12:18935. [PMID: 36344580 PMCID: PMC9640729 DOI: 10.1038/s41598-022-23649-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Lung cancers with a mutated epidermal growth factor receptor (EGFR) are a major contributor to cancer fatalities globally. Targeted tyrosine kinase inhibitors (TKIs) have been developed against EGFR and show encouraging results for survival rate and quality of life. However, drug resistance may affect treatment plans and treatment efficacy may be lost after about a year. Predicting the response to EGFR-TKIs for EGFR-mutated lung cancer patients is a key research area. In this study, we propose a personalized drug response prediction model (PDRP), based on molecular dynamics simulations and machine learning, to predict the response of first generation FDA-approved small molecule EGFR-TKIs, Gefitinib/Erlotinib, in lung cancer patients. The patient's mutation status is taken into consideration in molecular dynamics (MD) simulation. Each patient's unique mutation status was modeled considering MD simulation to extract molecular-level geometric features. Moreover, additional clinical features were incorporated into machine learning model for drug response prediction. The complete feature set includes demographic and clinical information (DCI), geometrical properties of the drug-target binding site, and the binding free energy of the drug-target complex from the MD simulation. PDRP incorporates an XGBoost classifier, which achieves state-of-the-art performance with 97.5% accuracy, 93% recall, 96.5% precision, and 94% F1-score, for a 4-class drug response prediction task. We found that modeling the geometry of the binding pocket combined with binding free energy is a good predictor for drug response. However, we observed that clinical information had a little impact on the performance of the model. The proposed model could be tested on other types of cancers. We believe PDRP will support the planning of effective treatment regimes based on clinical-genomic information. The source code and related files are available on GitHub at: https://github.com/rizwanqureshi123/PDRP/ .
Collapse
Affiliation(s)
- Rizwan Qureshi
- grid.452146.00000 0004 1789 3191College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
| | - Syed Abdullah Basit
- FAST National University of Computer and Emerging Sciences, Karachi, Pakistan
| | - Jawwad A. Shamsi
- FAST National University of Computer and Emerging Sciences, Karachi, Pakistan
| | - Xinqi Fan
- grid.35030.350000 0004 1792 6846Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong ,grid.35030.350000 0004 1792 6846Center for Intelligent Multidimensional Data Analysis (CIMDA), City University of Hong Kong, Kowloon, Hong Kong
| | - Mehmood Nawaz
- grid.10784.3a0000 0004 1937 0482Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR China
| | - Hong Yan
- grid.35030.350000 0004 1792 6846Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong ,grid.35030.350000 0004 1792 6846Center for Intelligent Multidimensional Data Analysis (CIMDA), City University of Hong Kong, Kowloon, Hong Kong
| | - Tanvir Alam
- grid.452146.00000 0004 1789 3191College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
16
|
Eguida M, Rognan D. Estimating the Similarity between Protein Pockets. Int J Mol Sci 2022; 23:12462. [PMID: 36293316 PMCID: PMC9604425 DOI: 10.3390/ijms232012462] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/15/2022] [Accepted: 10/16/2022] [Indexed: 10/28/2023] Open
Abstract
With the exponential increase in publicly available protein structures, the comparison of protein binding sites naturally emerged as a scientific topic to explain observations or generate hypotheses for ligand design, notably to predict ligand selectivity for on- and off-targets, explain polypharmacology, and design target-focused libraries. The current review summarizes the state-of-the-art computational methods applied to pocket detection and comparison as well as structural druggability estimates. The major strengths and weaknesses of current pocket descriptors, alignment methods, and similarity search algorithms are presented. Lastly, an exhaustive survey of both retrospective and prospective applications in diverse medicinal chemistry scenarios illustrates the capability of the existing methods and the hurdle that still needs to be overcome for more accurate predictions.
Collapse
Affiliation(s)
| | - Didier Rognan
- Laboratoire d’Innovation Thérapeutique, UMR7200 CNRS-Université de Strasbourg, 67400 Illkirch, France
| |
Collapse
|
17
|
Sim J, Kwon S, Seok C. HProteome-BSite: predicted binding sites and ligands in human 3D proteome. Nucleic Acids Res 2022; 51:D403-D408. [PMID: 36243970 PMCID: PMC9825455 DOI: 10.1093/nar/gkac873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/20/2022] [Accepted: 09/29/2022] [Indexed: 01/29/2023] Open
Abstract
Atomic-level knowledge of protein-ligand interactions allows a detailed understanding of protein functions and provides critical clues to discovering molecules regulating the functions. While recent innovative deep learning methods for protein structure prediction dramatically increased the structural coverage of the human proteome, molecular interactions remain largely unknown. A new database, HProteome-BSite, provides predictions of binding sites and ligands in the enlarged 3D human proteome. The model structures for human proteins from the AlphaFold Protein Structure Database were processed to structural domains of high confidence to maximize the coverage and reliability of interaction prediction. For ligand binding site prediction, an updated version of a template-based method GalaxySite was used. A high-level performance of the updated GalaxySite was confirmed. HProteome-BSite covers 80.74% of the UniProt entries in the AlphaFold human 3D proteome. Predicted binding sites and binding poses of potential ligands are provided for effective applications to further functional studies and drug discovery. The HProteome-BSite database is available at https://galaxy.seoklab.org/hproteome-bsite/database and is free and open to all users.
Collapse
Affiliation(s)
- Jiho Sim
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Sohee Kwon
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea,Galux Inc, Gwanak-gu, Seoul 08738, Republic of Korea
| | - Chaok Seok
- To whom correspondence should be addressed. Tel: +82 2 880 9197; Fax: +82 2 889 1568;
| |
Collapse
|
18
|
Arrué L, Cigna-Méndez A, Barbosa T, Borrego-Muñoz P, Struve-Villalobos S, Oviedo V, Martínez-García C, Sepúlveda-Lara A, Millán N, Márquez Montesinos JCE, Muñoz J, Santana PA, Peña-Varas C, Barreto GE, González J, Ramírez D. New Drug Design Avenues Targeting Alzheimer's Disease by Pharmacoinformatics-Aided Tools. Pharmaceutics 2022; 14:1914. [PMID: 36145662 PMCID: PMC9503559 DOI: 10.3390/pharmaceutics14091914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022] Open
Abstract
Neurodegenerative diseases (NDD) have been of great interest to scientists for a long time due to their multifactorial character. Among these pathologies, Alzheimer's disease (AD) is of special relevance, and despite the existence of approved drugs for its treatment, there is still no efficient pharmacological therapy to stop, slow, or repair neurodegeneration. Existing drugs have certain disadvantages, such as lack of efficacy and side effects. Therefore, there is a real need to discover new drugs that can deal with this problem. However, as AD is multifactorial in nature with so many physiological pathways involved, the most effective approach to modulate more than one of them in a relevant manner and without undesirable consequences is through polypharmacology. In this field, there has been significant progress in recent years in terms of pharmacoinformatics tools that allow the discovery of bioactive molecules with polypharmacological profiles without the need to spend a long time and excessive resources on complex experimental designs, making the drug design and development pipeline more efficient. In this review, we present from different perspectives how pharmacoinformatics tools can be useful when drug design programs are designed to tackle complex diseases such as AD, highlighting essential concepts, showing the relevance of artificial intelligence and new trends, as well as different databases and software with their main results, emphasizing the importance of coupling wet and dry approaches in drug design and development processes.
Collapse
Affiliation(s)
- Lily Arrué
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca 3480094, Chile
| | - Alexandra Cigna-Méndez
- Facultad de Ingeniería, Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, Santiago 8910060, Chile
| | - Tábata Barbosa
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Paola Borrego-Muñoz
- Escuela de Medicina, Fundación Universitaria Juan N. Corpas, Bogotá 110311, Colombia
| | - Silvia Struve-Villalobos
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Temuco 4780000, Chile
| | - Victoria Oviedo
- Facultad de Ingeniería, Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, Santiago 8910060, Chile
| | - Claudia Martínez-García
- Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Alexis Sepúlveda-Lara
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Temuco 4780000, Chile
| | - Natalia Millán
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | | | - Juana Muñoz
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Paula A. Santana
- Facultad de Ingeniería, Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, Santiago 8910060, Chile
| | - Carlos Peña-Varas
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile
| | - George E. Barreto
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland
| | - Janneth González
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - David Ramírez
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile
| |
Collapse
|
19
|
Shi W, Singha M, Pu L, Srivastava G, Ramanujam J, Brylinski M. GraphSite: Ligand Binding Site Classification with Deep Graph Learning. Biomolecules 2022; 12:1053. [PMID: 36008947 PMCID: PMC9405584 DOI: 10.3390/biom12081053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 12/10/2022] Open
Abstract
The binding of small organic molecules to protein targets is fundamental to a wide array of cellular functions. It is also routinely exploited to develop new therapeutic strategies against a variety of diseases. On that account, the ability to effectively detect and classify ligand binding sites in proteins is of paramount importance to modern structure-based drug discovery. These complex and non-trivial tasks require sophisticated algorithms from the field of artificial intelligence to achieve a high prediction accuracy. In this communication, we describe GraphSite, a deep learning-based method utilizing a graph representation of local protein structures and a state-of-the-art graph neural network to classify ligand binding sites. Using neural weighted message passing layers to effectively capture the structural, physicochemical, and evolutionary characteristics of binding pockets mitigates model overfitting and improves the classification accuracy. Indeed, comprehensive cross-validation benchmarks against a large dataset of binding pockets belonging to 14 diverse functional classes demonstrate that GraphSite yields the class-weighted F1-score of 81.7%, outperforming other approaches such as molecular docking and binding site matching. Further, it also generalizes well to unseen data with the F1-score of 70.7%, which is the expected performance in real-world applications. We also discuss new directions to improve and extend GraphSite in the future.
Collapse
Affiliation(s)
- Wentao Shi
- Division of Electrical and Computer Engineering, Louisiana State University, Baton Rouge, LA 70803, USA; (W.S.); (J.R.)
| | - Manali Singha
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; (M.S.); (G.S.)
| | - Limeng Pu
- Center for Computation and Technology, Louisiana State University, Baton Rouge, LA 70803, USA;
| | - Gopal Srivastava
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; (M.S.); (G.S.)
| | - Jagannathan Ramanujam
- Division of Electrical and Computer Engineering, Louisiana State University, Baton Rouge, LA 70803, USA; (W.S.); (J.R.)
- Center for Computation and Technology, Louisiana State University, Baton Rouge, LA 70803, USA;
| | - Michal Brylinski
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; (M.S.); (G.S.)
- Center for Computation and Technology, Louisiana State University, Baton Rouge, LA 70803, USA;
| |
Collapse
|
20
|
Mazola Y, Márquez Montesinos JCE, Ramírez D, Zúñiga L, Decher N, Ravens U, Yarov-Yarovoy V, González W. Common Structural Pattern for Flecainide Binding in Atrial-Selective K v1.5 and Na v1.5 Channels: A Computational Approach. Pharmaceutics 2022; 14:1356. [PMID: 35890252 PMCID: PMC9318806 DOI: 10.3390/pharmaceutics14071356] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia. Its treatment includes antiarrhythmic drugs (AADs) to modulate the function of cardiac ion channels. However, AADs have been limited by proarrhythmic effects, non-cardiovascular toxicities as well as often modest antiarrhythmic efficacy. Theoretical models showed that a combined blockade of Nav1.5 (and its current, INa) and Kv1.5 (and its current, IKur) ion channels yield a synergistic anti-arrhythmic effect without alterations in ventricles. We focused on Kv1.5 and Nav1.5 to search for structural similarities in their binding site (BS) for flecainide (a common blocker and widely prescribed AAD) as a first step for prospective rational multi-target directed ligand (MTDL) design strategies. We present a computational workflow for a flecainide BS comparison in a flecainide-Kv1.5 docking model and a solved structure of the flecainide-Nav1.5 complex. The workflow includes docking, molecular dynamics, BS characterization and pattern matching. We identified a common structural pattern in flecainide BS for these channels. The latter belongs to the central cavity and consists of a hydrophobic patch and a polar region, involving residues from the S6 helix and P-loop. Since the rational MTDL design for AF is still incipient, our findings could advance multi-target atrial-selective strategies for AF treatment.
Collapse
Affiliation(s)
- Yuliet Mazola
- Center for Bioinformatics, Simulation and Modeling (CBSM), Universidad de Talca, Talca 3460000, Chile; (Y.M.); (J.C.E.M.M.)
| | - José C. E. Márquez Montesinos
- Center for Bioinformatics, Simulation and Modeling (CBSM), Universidad de Talca, Talca 3460000, Chile; (Y.M.); (J.C.E.M.M.)
| | - David Ramírez
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile;
| | - Leandro Zúñiga
- Escuela de Medicina, Centro de Investigaciones Médicas, Universidad de Talca, Talca 3460000, Chile;
| | - Niels Decher
- Institute for Physiology and Pathophysiology, Vegetative Physiology, Philipps-University of Marburg, 35043 Marburg, Germany;
| | - Ursula Ravens
- Institut für Experimentelle Kardiovaskuläre Medizin, Universitäts-Herzzentrum Freiburg Bad Krotzingen, 79110 Freiburg im Breisgau, Germany;
| | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, University of California, Davis, CA 95616, USA;
| | - Wendy González
- Center for Bioinformatics, Simulation and Modeling (CBSM), Universidad de Talca, Talca 3460000, Chile; (Y.M.); (J.C.E.M.M.)
- Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Talca 3530000, Chile
| |
Collapse
|
21
|
Yan X, Lu Y, Li Z, Wei Q, Gao X, Wang S, Wu S, Cui S. PointSite: A Point Cloud Segmentation Tool for Identification of Protein Ligand Binding Atoms. J Chem Inf Model 2022; 62:2835-2845. [PMID: 35621730 DOI: 10.1021/acs.jcim.1c01512] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Accurate identification of ligand binding sites (LBS) on a protein structure is critical for understanding protein function and designing structure-based drugs. As the previous pocket-centric methods are usually based on the investigation of pseudo-surface-points outside the protein structure, they cannot fully take advantage of the local connectivity of atoms within the protein, as well as the global 3D geometrical information from all the protein atoms. In this paper, we propose a novel point clouds segmentation method, PointSite, for accurate identification of protein ligand binding atoms, which performs protein LBS identification at the atom-level in a protein-centric manner. Specifically, we first transfer the original 3D protein structure to point clouds and then conduct segmentation through Submanifold Sparse Convolution based U-Net. With the fine-grained atom-level binding atoms representation and enhanced feature learning, PointSite can outperform previous methods in atom Intersection over Union (atom-IoU) by a large margin. Furthermore, our segmented binding atoms, that is, atoms with high probability predicted by our model can work as a filter on predictions achieved by previous pocket-centric approaches, which significantly decreases the false-positive of LBS candidates. Besides, we further directly extend PointSite trained on bound proteins for LBS identification on unbound proteins, which demonstrates the superior generalization capacity of PointSite. Through cascaded filter and reranking aided by the segmented atoms, state-of-the-art performance can be achieved over various canonical benchmarks, CAMEO hard targets, and unbound proteins in terms of the commonly used DCA criteria.
Collapse
Affiliation(s)
- Xu Yan
- The Chinese University of Hongkong (Shenzhen) & Future Network of Intelligence Institute, Shenzhen 518172, China
| | - Yingfeng Lu
- The Chinese University of Hongkong (Shenzhen) & Future Network of Intelligence Institute, Shenzhen 518172, China
| | - Zhen Li
- The Chinese University of Hongkong (Shenzhen) & Future Network of Intelligence Institute, Shenzhen 518172, China
| | - Qing Wei
- The Chinese University of Hongkong (Shenzhen) & Future Network of Intelligence Institute, Shenzhen 518172, China
| | - Xin Gao
- King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Sheng Wang
- Shanghai Zelixir Biotech Company Ltd., Shanghai 200030, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Song Wu
- Shenzhen University, Shenzhen 518060, China
| | - Shuguang Cui
- The Chinese University of Hongkong (Shenzhen) & Future Network of Intelligence Institute, Shenzhen 518172, China
| |
Collapse
|
22
|
Scafuri B, Verdino A, D'Arminio N, Marabotti A. Computational methods to assist in the discovery of pharmacological chaperones for rare diseases. Brief Bioinform 2022; 23:6590149. [PMID: 35595532 DOI: 10.1093/bib/bbac198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/13/2022] [Accepted: 04/28/2022] [Indexed: 12/21/2022] Open
Abstract
Pharmacological chaperones are chemical compounds able to bind proteins and stabilize them against denaturation and following degradation. Some pharmacological chaperones have been approved, or are under investigation, for the treatment of rare inborn errors of metabolism, caused by genetic mutations that often can destabilize the structure of the wild-type proteins expressed by that gene. Given that, for rare diseases, there is a general lack of pharmacological treatments, many expectations are poured out on this type of compounds. However, their discovery is not straightforward. In this review, we would like to focus on the computational methods that can assist and accelerate the search for these compounds, showing also examples in which these methods were successfully applied for the discovery of promising molecules belonging to this new category of pharmacologically active compounds.
Collapse
Affiliation(s)
- Bernardina Scafuri
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano (SA), Italy
| | - Anna Verdino
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano (SA), Italy
| | - Nancy D'Arminio
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano (SA), Italy
| | - Anna Marabotti
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano (SA), Italy
| |
Collapse
|
23
|
Valdés-Jiménez A, Jiménez-González D, Kiper AK, Rinné S, Decher N, González W, Reyes-Parada M, Núñez-Vivanco G. A New Strategy for Multitarget Drug Discovery/Repositioning Through the Identification of Similar 3D Amino Acid Patterns Among Proteins Structures: The Case of Tafluprost and its Effects on Cardiac Ion Channels. Front Pharmacol 2022; 13:855792. [PMID: 35370665 PMCID: PMC8971525 DOI: 10.3389/fphar.2022.855792] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/21/2022] [Indexed: 01/01/2023] Open
Abstract
The identification of similar three-dimensional (3D) amino acid patterns among different proteins might be helpful to explain the polypharmacological profile of many currently used drugs. Also, it would be a reasonable first step for the design of novel multitarget compounds. Most of the current computational tools employed for this aim are limited to the comparisons among known binding sites, and do not consider several additional important 3D patterns such as allosteric sites or other conserved motifs. In the present work, we introduce Geomfinder2.0, which is a new and improved version of our previously described algorithm for the deep exploration and discovery of similar and druggable 3D patterns. As compared with the original version, substantial improvements that have been incorporated to our software allow: (i) to compare quaternary structures, (ii) to deal with a list of pairs of structures, (iii) to know how druggable is the zone where similar 3D patterns are detected and (iv) to significantly reduce the execution time. Thus, the new algorithm achieves up to 353x speedup as compared to the previous sequential version, allowing the exploration of a significant number of quaternary structures in a reasonable time. In order to illustrate the potential of the updated Geomfinder version, we show a case of use in which similar 3D patterns were detected in the cardiac ions channels NaV1.5 and TASK-1. These channels are quite different in terms of structure, sequence and function and both have been regarded as important targets for drugs aimed at treating atrial fibrillation. Finally, we describe the in vitro effects of tafluprost (a drug currently used to treat glaucoma, which was identified as a novel putative ligand of NaV1.5 and TASK-1) upon both ion channels’ activity and discuss its possible repositioning as a novel antiarrhythmic drug.
Collapse
Affiliation(s)
- Alejandro Valdés-Jiménez
- Center for Bioinformatics, Simulations and Modelling, Faculty of Engineering, University of Talca, Talca, Chile
- Computer Architecture Department, Universitat Politécnica de Catalunya, Barcelona, Spain
| | - Daniel Jiménez-González
- Computer Architecture Department, Universitat Politécnica de Catalunya, Barcelona, Spain
- Barcelona Supercomputing Center, Barcelona, Spain
| | - Aytug K. Kiper
- Institute for Physiology and Pathophysiology, Philipps-University Marburg, Marburg, Germany
| | - Susanne Rinné
- Institute for Physiology and Pathophysiology, Philipps-University Marburg, Marburg, Germany
| | - Niels Decher
- Institute for Physiology and Pathophysiology, Philipps-University Marburg, Marburg, Germany
| | - Wendy González
- Center for Bioinformatics, Simulations and Modelling, Faculty of Engineering, University of Talca, Talca, Chile
- Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Talca, Talca, Chile
- *Correspondence: Wendy González, ; Miguel Reyes-Parada, ; Gabriel Núñez-Vivanco,
| | - Miguel Reyes-Parada
- Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Santiago, Chile
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
- *Correspondence: Wendy González, ; Miguel Reyes-Parada, ; Gabriel Núñez-Vivanco,
| | - Gabriel Núñez-Vivanco
- Departamento de Ciencias Naturales y Tecnología, Universidad de Aysén, Coyhaique, Chile
- *Correspondence: Wendy González, ; Miguel Reyes-Parada, ; Gabriel Núñez-Vivanco,
| |
Collapse
|
24
|
Jiang Z, Xiao SR, Liu R. Dissecting and predicting different types of binding sites in nucleic acids based on structural information. Brief Bioinform 2021; 23:6384399. [PMID: 34624074 PMCID: PMC8769709 DOI: 10.1093/bib/bbab411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/26/2021] [Accepted: 09/07/2021] [Indexed: 12/16/2022] Open
Abstract
The biological functions of DNA and RNA generally depend on their interactions with other molecules, such as small ligands, proteins and nucleic acids. However, our knowledge of the nucleic acid binding sites for different interaction partners is very limited, and identification of these critical binding regions is not a trivial work. Herein, we performed a comprehensive comparison between binding and nonbinding sites and among different categories of binding sites in these two nucleic acid classes. From the structural perspective, RNA may interact with ligands through forming binding pockets and contact proteins and nucleic acids using protruding surfaces, while DNA may adopt regions closer to the middle of the chain to make contacts with other molecules. Based on structural information, we established a feature-based ensemble learning classifier to identify the binding sites by fully using the interplay among different machine learning algorithms, feature spaces and sample spaces. Meanwhile, we designed a template-based classifier by exploiting structural conservation. The complementarity between the two classifiers motivated us to build an integrative framework for improving prediction performance. Moreover, we utilized a post-processing procedure based on the random walk algorithm to further correct the integrative predictions. Our unified prediction framework yielded promising results for different binding sites and outperformed existing methods.
Collapse
Affiliation(s)
- Zheng Jiang
- College of Informatics, Huazhong Agricultural University, Wuhan, P. R. China
| | - Si-Rui Xiao
- College of Informatics, Huazhong Agricultural University, Wuhan, P. R. China
| | - Rong Liu
- College of Informatics, Huazhong Agricultural University, Wuhan, P. R. China
| |
Collapse
|
25
|
Zhuravlev A, Golovanov A, Toporkov V, Kuhn H, Ivanov I. Functionalized Homologues and Positional Isomers of Rabbit 15-Lipoxygenase RS75091 Inhibitor. Med Chem 2021; 18:406-416. [PMID: 34097594 DOI: 10.2174/1573406417666210604112009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/12/2021] [Accepted: 04/05/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND RS75091 is a cinnamic acid derivative that has been used for the crystallization of the rabbit ALOX15-inhibitor complex. The atomic coordinates of the resolved ALOX15-inhibitor complex were later used to define the binding sites of other mammalian lipoxygenase orthologs, for which no direct structural data with ligand has been reported so far. INTRODUCTION The putative binding pocket of the human ALOX5 was reconstructed on the basis of its structural alignment with rabbit ALOX15-RS75091 inhibitor. However, considering the possible conformational changes the enzyme may undergo in solution, it remains unclear whether the existing models adequately mirror the architecture of the ALOX5 active site. METHODS In this study, we prepared a series of RS75091 derivatives using a Sonogashira coupling reaction of regioisomeric bromocinnamates with protected acetylenic alcohols and tested their inhibitory properties on rabbit ALOX15. RESULTS A bulky pentafluorophenyl moiety linked to either ortho- or metha-ethynylcinnamates via aliphatic spacer does not significantly impair the inhibitory properties of RS75091. CONCLUSION Hydroxylated 2- and 3-alkynylcinnamates may be suitable candidates for incorporation of an aromatic linker group like tetrafluorophenylazides for photoaffinity labeling assays.
Collapse
Affiliation(s)
- Alexander Zhuravlev
- Lomonosov Institute of Fine Chemical Technologies, MIREA - Russian Technological University, Vernadskogo pr. 86, 119571 Moscow. Russian Federation
| | - Alexey Golovanov
- Lomonosov Institute of Fine Chemical Technologies, MIREA - Russian Technological University, Vernadskogo pr. 86, 119571 Moscow. Russian Federation
| | - Valery Toporkov
- Lomonosov Institute of Fine Chemical Technologies, MIREA - Russian Technological University, Vernadskogo pr. 86, 119571 Moscow. Russian Federation
| | - Hartmut Kuhn
- Institute of Biochemistry, Charite - University Medicine Berlin, Corporate member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Charitéplatz 1, D-10117 Berlin. Germany
| | - Igor Ivanov
- Lomonosov Institute of Fine Chemical Technologies, MIREA - Russian Technological University, Vernadskogo pr. 86, 119571 Moscow. Russian Federation
| |
Collapse
|
26
|
Chaudhari R, Fong LW, Tan Z, Huang B, Zhang S. An up-to-date overview of computational polypharmacology in modern drug discovery. Expert Opin Drug Discov 2020; 15:1025-1044. [PMID: 32452701 PMCID: PMC7415563 DOI: 10.1080/17460441.2020.1767063] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/06/2020] [Indexed: 12/30/2022]
Abstract
INTRODUCTION In recent years, computational polypharmacology has gained significant attention to study the promiscuous nature of drugs. Despite tremendous challenges, community-wide efforts have led to a variety of novel approaches for predicting drug polypharmacology. In particular, some rapid advances using machine learning and artificial intelligence have been reported with great success. AREAS COVERED In this article, the authors provide a comprehensive update on the current state-of-the-art polypharmacology approaches and their applications, focusing on those reports published after our 2017 review article. The authors particularly discuss some novel, groundbreaking concepts, and methods that have been developed recently and applied to drug polypharmacology studies. EXPERT OPINION Polypharmacology is evolving and novel concepts are being introduced to counter the current challenges in the field. However, major hurdles remain including incompleteness of high-quality experimental data, lack of in vitro and in vivo assays to characterize multi-targeting agents, shortage of robust computational methods, and challenges to identify the best target combinations and design effective multi-targeting agents. Fortunately, numerous national/international efforts including multi-omics and artificial intelligence initiatives as well as most recent collaborations on addressing the COVID-19 pandemic have shown significant promise to propel the field of polypharmacology forward.
Collapse
Affiliation(s)
- Rajan Chaudhari
- Intelligent Molecular Discovery Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, United States
| | - Long Wolf Fong
- Intelligent Molecular Discovery Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, United States
- MD Anderson UTHealth Graduate School of Biomedical Sciences, 6767 Bertner Avenue, Houston, Texas 77030, United States
| | - Zhi Tan
- Intelligent Molecular Discovery Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, United States
| | - Beibei Huang
- Intelligent Molecular Discovery Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, United States
| | - Shuxing Zhang
- Intelligent Molecular Discovery Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, United States
- MD Anderson UTHealth Graduate School of Biomedical Sciences, 6767 Bertner Avenue, Houston, Texas 77030, United States
| |
Collapse
|
27
|
Singh N, Chaput L, Villoutreix BO. Virtual screening web servers: designing chemical probes and drug candidates in the cyberspace. Brief Bioinform 2020; 22:1790-1818. [PMID: 32187356 PMCID: PMC7986591 DOI: 10.1093/bib/bbaa034] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The interplay between life sciences and advancing technology drives a continuous cycle of chemical data growth; these data are most often stored in open or partially open databases. In parallel, many different types of algorithms are being developed to manipulate these chemical objects and associated bioactivity data. Virtual screening methods are among the most popular computational approaches in pharmaceutical research. Today, user-friendly web-based tools are available to help scientists perform virtual screening experiments. This article provides an overview of internet resources enabling and supporting chemical biology and early drug discovery with a main emphasis on web servers dedicated to virtual ligand screening and small-molecule docking. This survey first introduces some key concepts and then presents recent and easily accessible virtual screening and related target-fishing tools as well as briefly discusses case studies enabled by some of these web services. Notwithstanding further improvements, already available web-based tools not only contribute to the design of bioactive molecules and assist drug repositioning but also help to generate new ideas and explore different hypotheses in a timely fashion while contributing to teaching in the field of drug development.
Collapse
Affiliation(s)
- Natesh Singh
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 Drugs and Molecules for Living Systems, F-59000 Lille, France
| | - Ludovic Chaput
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 Drugs and Molecules for Living Systems, F-59000 Lille, France
| | - Bruno O Villoutreix
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 Drugs and Molecules for Living Systems, F-59000 Lille, France
| |
Collapse
|
28
|
Simonovsky M, Meyers J. DeeplyTough: Learning Structural Comparison of Protein Binding Sites. J Chem Inf Model 2020; 60:2356-2366. [DOI: 10.1021/acs.jcim.9b00554] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Martin Simonovsky
- BenevolentAI, London W1T 5HD, U.K
- École des Ponts ParisTech, Champs sur Marne 77455, France
- Université Paris-Est, Champs sur Marne 77455, France
| | | |
Collapse
|
29
|
Cerisier N, Petitjean M, Regad L, Bayard Q, Réau M, Badel A, Camproux AC. High Impact: The Role of Promiscuous Binding Sites in Polypharmacology. Molecules 2019; 24:molecules24142529. [PMID: 31295958 PMCID: PMC6680532 DOI: 10.3390/molecules24142529] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/27/2019] [Accepted: 06/27/2019] [Indexed: 02/06/2023] Open
Abstract
The literature focuses on drug promiscuity, which is a drug’s ability to bind to several targets, because it plays an essential role in polypharmacology. However, little work has been completed regarding binding site promiscuity, even though its properties are now recognized among the key factors that impact drug promiscuity. Here, we quantified and characterized the promiscuity of druggable binding sites from protein-ligand complexes in the high quality Mother Of All Databases while using statistical methods. Most of the sites (80%) exhibited promiscuity, irrespective of the protein class. Nearly half were highly promiscuous and able to interact with various types of ligands. The corresponding pockets were rather large and hydrophobic, with high sulfur atom and aliphatic residue frequencies, but few side chain atoms. Consequently, their interacting ligands can be large, rigid, and weakly hydrophilic. The selective sites that interacted with one ligand type presented less favorable pocket properties for establishing ligand contacts. Thus, their ligands were highly adaptable, small, and hydrophilic. In the dataset, the promiscuity of the site rather than the drug mainly explains the multiple interactions between the drug and target, as most ligand types are dedicated to one site. This underlines the essential contribution of binding site promiscuity to drug promiscuity between different protein classes.
Collapse
Affiliation(s)
- Natacha Cerisier
- Université de Paris, Biologie Fonctionnelle et Adaptative, UMR 8251, CNRS, ERL U1133, INSERM, Computational Modeling of Protein Ligand Interactions, F-75013 Paris, France
| | - Michel Petitjean
- Université de Paris, Biologie Fonctionnelle et Adaptative, UMR 8251, CNRS, ERL U1133, INSERM, Computational Modeling of Protein Ligand Interactions, F-75013 Paris, France
| | - Leslie Regad
- Université de Paris, Biologie Fonctionnelle et Adaptative, UMR 8251, CNRS, ERL U1133, INSERM, Computational Modeling of Protein Ligand Interactions, F-75013 Paris, France
| | - Quentin Bayard
- Centre de Recherche des Cordeliers, Sorbonne Universités, INSERM, USPC, Université Paris Descartes, Université Paris Diderot, Université Paris 13, Functional Genomics of Solid Tumors Laboratory, F-75006 Paris, France
| | - Manon Réau
- Laboratoire Génomique Bioinformatique et Chimie Moléculaire, EA 7528, Conservatoire National des Arts et Métiers, F-75003 Paris, France
| | - Anne Badel
- Université de Paris, Biologie Fonctionnelle et Adaptative, UMR 8251, CNRS, ERL U1133, INSERM, Computational Modeling of Protein Ligand Interactions, F-75013 Paris, France
| | - Anne-Claude Camproux
- Université de Paris, Biologie Fonctionnelle et Adaptative, UMR 8251, CNRS, ERL U1133, INSERM, Computational Modeling of Protein Ligand Interactions, F-75013 Paris, France.
| |
Collapse
|
30
|
Pu L, Govindaraj RG, Lemoine JM, Wu HC, Brylinski M. DeepDrug3D: Classification of ligand-binding pockets in proteins with a convolutional neural network. PLoS Comput Biol 2019; 15:e1006718. [PMID: 30716081 PMCID: PMC6375647 DOI: 10.1371/journal.pcbi.1006718] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 02/14/2019] [Accepted: 12/16/2018] [Indexed: 01/19/2023] Open
Abstract
Comprehensive characterization of ligand-binding sites is invaluable to infer molecular functions of hypothetical proteins, trace evolutionary relationships between proteins, engineer enzymes to achieve a desired substrate specificity, and develop drugs with improved selectivity profiles. These research efforts pose significant challenges owing to the fact that similar pockets are commonly observed across different folds, leading to the high degree of promiscuity of ligand-protein interactions at the system-level. On that account, novel algorithms to accurately classify binding sites are needed. Deep learning is attracting a significant attention due to its successful applications in a wide range of disciplines. In this communication, we present DeepDrug3D, a new approach to characterize and classify binding pockets in proteins with deep learning. It employs a state-of-the-art convolutional neural network in which biomolecular structures are represented as voxels assigned interaction energy-based attributes. The current implementation of DeepDrug3D, trained to detect and classify nucleotide- and heme-binding sites, not only achieves a high accuracy of 95%, but also has the ability to generalize to unseen data as demonstrated for steroid-binding proteins and peptidase enzymes. Interestingly, the analysis of strongly discriminative regions of binding pockets reveals that this high classification accuracy arises from learning the patterns of specific molecular interactions, such as hydrogen bonds, aromatic and hydrophobic contacts. DeepDrug3D is available as an open-source program at https://github.com/pulimeng/DeepDrug3D with the accompanying TOUGH-C1 benchmarking dataset accessible from https://osf.io/enz69/.
Collapse
Affiliation(s)
- Limeng Pu
- Division of Electrical & Computer Engineering, Louisiana State University, Baton Rouge, LA, United States of America
| | - Rajiv Gandhi Govindaraj
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States of America
| | - Jeffrey Mitchell Lemoine
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States of America
- Division of Computer Science and Engineering, Louisiana State University, Baton Rouge, LA, United States of America
| | - Hsiao-Chun Wu
- Division of Electrical & Computer Engineering, Louisiana State University, Baton Rouge, LA, United States of America
| | - Michal Brylinski
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States of America
- Center for Computation & Technology, Louisiana State University, Baton Rouge, LA, United States of America
- * E-mail:
| |
Collapse
|