1
|
Soleymani F, Paquet E, Viktor HL, Michalowski W. Structure-based protein and small molecule generation using EGNN and diffusion models: A comprehensive review. Comput Struct Biotechnol J 2024; 23:2779-2797. [PMID: 39050782 PMCID: PMC11268121 DOI: 10.1016/j.csbj.2024.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
Recent breakthroughs in deep learning have revolutionized protein sequence and structure prediction. These advancements are built on decades of protein design efforts, and are overcoming traditional time and cost limitations. Diffusion models, at the forefront of these innovations, significantly enhance design efficiency by automating knowledge acquisition. In the field of de novo protein design, the goal is to create entirely novel proteins with predetermined structures. Given the arbitrary positions of proteins in 3-D space, graph representations and their properties are widely used in protein generation studies. A critical requirement in protein modelling is maintaining spatial relationships under transformations (rotations, translations, and reflections). This property, known as equivariance, ensures that predicted protein characteristics adapt seamlessly to changes in orientation or position. Equivariant graph neural networks offer a solution to this challenge. By incorporating equivariant graph neural networks to learn the score of the probability density function in diffusion models, one can generate proteins with robust 3-D structural representations. This review examines the latest deep learning advancements, specifically focusing on frameworks that combine diffusion models with equivariant graph neural networks for protein generation.
Collapse
Affiliation(s)
- Farzan Soleymani
- Telfer School of Management, University of Ottawa, ON, K1N 6N5, Canada
| | - Eric Paquet
- National Research Council, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
- School of Electrical Engineering and Computer Science, University of Ottawa, ON, K1N 6N5, Canada
| | - Herna Lydia Viktor
- School of Electrical Engineering and Computer Science, University of Ottawa, ON, K1N 6N5, Canada
| | | |
Collapse
|
2
|
Xie X, Gui L, Qiao B, Wang G, Huang S, Zhao Y, Sun S. Deep learning in template-free de novo biosynthetic pathway design of natural products. Brief Bioinform 2024; 25:bbae495. [PMID: 39373052 PMCID: PMC11456888 DOI: 10.1093/bib/bbae495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/12/2024] [Accepted: 09/20/2024] [Indexed: 10/08/2024] Open
Abstract
Natural products (NPs) are indispensable in drug development, particularly in combating infections, cancer, and neurodegenerative diseases. However, their limited availability poses significant challenges. Template-free de novo biosynthetic pathway design provides a strategic solution for NP production, with deep learning standing out as a powerful tool in this domain. This review delves into state-of-the-art deep learning algorithms in NP biosynthesis pathway design. It provides an in-depth discussion of databases like Kyoto Encyclopedia of Genes and Genomes (KEGG), Reactome, and UniProt, which are essential for model training, along with chemical databases such as Reaxys, SciFinder, and PubChem for transfer learning to expand models' understanding of the broader chemical space. It evaluates the potential and challenges of sequence-to-sequence and graph-to-graph translation models for accurate single-step prediction. Additionally, it discusses search algorithms for multistep prediction and deep learning algorithms for predicting enzyme function. The review also highlights the pivotal role of deep learning in improving catalytic efficiency through enzyme engineering, which is essential for enhancing NP production. Moreover, it examines the application of large language models in pathway design, enzyme discovery, and enzyme engineering. Finally, it addresses the challenges and prospects associated with template-free approaches, offering insights into potential advancements in NP biosynthesis pathway design.
Collapse
Affiliation(s)
- Xueying Xie
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education (Northeast Forestry University), No. 26 Hexing Road, Xiangfang District, Harbin 150001, China
- College of Life Science, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Lin Gui
- College of Computer and Control Engineering, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Baixue Qiao
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education (Northeast Forestry University), No. 26 Hexing Road, Xiangfang District, Harbin 150001, China
- College of Life Science, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Guohua Wang
- College of Computer and Control Engineering, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Shan Huang
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, No. 246 Xuefu Road, Nangang District,Harbin 150081, China
| | - Yuming Zhao
- College of Computer and Control Engineering, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Shanwen Sun
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education (Northeast Forestry University), No. 26 Hexing Road, Xiangfang District, Harbin 150001, China
- College of Life Science, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, China
| |
Collapse
|
3
|
Peng L, Hu R, Kong F, Gan J, Mo Y, Shi X, Zhu X. Reverse Graph Learning for Graph Neural Network. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:4530-4541. [PMID: 35380973 DOI: 10.1109/tnnls.2022.3161030] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Graph neural networks (GNNs) conduct feature learning by taking into account the local structure preservation of the data to produce discriminative features, but need to address the following issues, i.e., 1) the initial graph containing faulty and missing edges often affect feature learning and 2) most GNN methods suffer from the issue of out-of-example since their training processes do not directly generate a prediction model to predict unseen data points. In this work, we propose a reverse GNN model to learn the graph from the intrinsic space of the original data points as well as to investigate a new out-of-sample extension method. As a result, the proposed method can output a high-quality graph to improve the quality of feature learning, while the new method of out-of-sample extension makes our reverse GNN method available for conducting supervised learning and semi-supervised learning. Experimental results on real-world datasets show that our method outputs competitive classification performance, compared to state-of-the-art methods, in terms of semi-supervised node classification, out-of-sample extension, random edge attack, link prediction, and image retrieval.
Collapse
|
4
|
Habeck M. Bayesian methods in integrative structure modeling. Biol Chem 2023; 404:741-754. [PMID: 37505205 DOI: 10.1515/hsz-2023-0145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/07/2023] [Indexed: 07/29/2023]
Abstract
There is a growing interest in characterizing the structure and dynamics of large biomolecular assemblies and their interactions within the cellular environment. A diverse array of experimental techniques allows us to study biomolecular systems on a variety of length and time scales. These techniques range from imaging with light, X-rays or electrons, to spectroscopic methods, cross-linking mass spectrometry and functional genomics approaches, and are complemented by AI-assisted protein structure prediction methods. A challenge is to integrate all of these data into a model of the system and its functional dynamics. This review focuses on Bayesian approaches to integrative structure modeling. We sketch the principles of Bayesian inference, highlight recent applications to integrative modeling and conclude with a discussion of current challenges and future perspectives.
Collapse
Affiliation(s)
- Michael Habeck
- Microscopic Image Analysis Group, Jena University Hospital, D-07743 Jena, Germany
- Max Planck Institute for Multidisciplinary Sciences, d-37077 Göttingen, Germany
| |
Collapse
|
5
|
Zhang O, Haghighatlari M, Li J, Liu ZH, Namini A, Teixeira JMC, Forman-Kay JD, Head-Gordon T. Learning to evolve structural ensembles of unfolded and disordered proteins using experimental solution data. J Chem Phys 2023; 158:174113. [PMID: 37144719 PMCID: PMC10163956 DOI: 10.1063/5.0141474] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/11/2023] [Indexed: 05/06/2023] Open
Abstract
The structural characterization of proteins with a disorder requires a computational approach backed by experiments to model their diverse and dynamic structural ensembles. The selection of conformational ensembles consistent with solution experiments of disordered proteins highly depends on the initial pool of conformers, with currently available tools limited by conformational sampling. We have developed a Generative Recurrent Neural Network (GRNN) that uses supervised learning to bias the probability distributions of torsions to take advantage of experimental data types such as nuclear magnetic resonance J-couplings, nuclear Overhauser effects, and paramagnetic resonance enhancements. We show that updating the generative model parameters according to the reward feedback on the basis of the agreement between experimental data and probabilistic selection of torsions from learned distributions provides an alternative to existing approaches that simply reweight conformers of a static structural pool for disordered proteins. Instead, the biased GRNN, DynamICE, learns to physically change the conformations of the underlying pool of the disordered protein to those that better agree with experiments.
Collapse
Affiliation(s)
- Oufan Zhang
- Kenneth S. Pitzer Theory Center and Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Mojtaba Haghighatlari
- Kenneth S. Pitzer Theory Center and Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Jie Li
- Kenneth S. Pitzer Theory Center and Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | | - Ashley Namini
- Molecular Medicine Program, Hospital for Sick Children, Toronto, Ontario M5S 1A8, Canada
| | | | | | | |
Collapse
|
6
|
Zhu JJ, Zhang NJ, Wei T, Chen HF. Enhancing Conformational Sampling for Intrinsically Disordered and Ordered Proteins by Variational Autoencoder. Int J Mol Sci 2023; 24:ijms24086896. [PMID: 37108059 PMCID: PMC10138423 DOI: 10.3390/ijms24086896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
Intrinsically disordered proteins (IDPs) account for more than 50% of the human proteome and are closely associated with tumors, cardiovascular diseases, and neurodegeneration, which have no fixed three-dimensional structure under physiological conditions. Due to the characteristic of conformational diversity, conventional experimental methods of structural biology, such as NMR, X-ray diffraction, and CryoEM, are unable to capture conformational ensembles. Molecular dynamics (MD) simulation can sample the dynamic conformations at the atomic level, which has become an effective method for studying the structure and function of IDPs. However, the high computational cost prevents MD simulations from being widely used for IDPs conformational sampling. In recent years, significant progress has been made in artificial intelligence, which makes it possible to solve the conformational reconstruction problem of IDP with fewer computational resources. Here, based on short MD simulations of different IDPs systems, we use variational autoencoders (VAEs) to achieve the generative reconstruction of IDPs structures and include a wider range of sampled conformations from longer simulations. Compared with the generative autoencoder (AEs), VAEs add an inference layer between the encoder and decoder in the latent space, which can cover the conformational landscape of IDPs more comprehensively and achieve the effect of enhanced sampling. Through experimental verification, the Cα RMSD between VAE-generated and MD simulation sampling conformations in the 5 IDPs test systems was significantly lower than that of AE. The Spearman correlation coefficient on the structure was higher than that of AE. VAE can also achieve excellent performance regarding structured proteins. In summary, VAEs can be used to effectively sample protein structures.
Collapse
Affiliation(s)
- Jun-Jie Zhu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ning-Jie Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ting Wei
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hai-Feng Chen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Center for Bioinformation Technology, Shanghai 200240, China
| |
Collapse
|
7
|
Tian H, Jiang X, Xiao S, La Force H, Larson EC, Tao P. LAST: Latent Space-Assisted Adaptive Sampling for Protein Trajectories. J Chem Inf Model 2023; 63:67-75. [PMID: 36472885 PMCID: PMC9904845 DOI: 10.1021/acs.jcim.2c01213] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Molecular dynamics (MD) simulation is widely used to study protein conformations and dynamics. However, conventional simulation suffers from being trapped in some local energy minima that are hard to escape. Thus, most of the computational time is spent sampling in the already visited regions. This leads to an inefficient sampling process and further hinders the exploration of protein movements in affordable simulation time. The advancement of deep learning provides new opportunities for protein sampling. Variational autoencoders are a class of deep learning models to learn a low-dimensional representation (referred to as the latent space) that can capture the key features of the input data. Based on this characteristic, we proposed a new adaptive sampling method, latent space-assisted adaptive sampling for protein trajectories (LAST), to accelerate the exploration of protein conformational space. This method comprises cycles of (i) variational autoencoder training, (ii) seed structure selection on the latent space, and (iii) conformational sampling through additional MD simulations. The proposed approach is validated through the sampling of four structures of two protein systems: two metastable states of Escherichia coli adenosine kinase (ADK) and two native states of Vivid (VVD). In all four conformations, seed structures were shown to lie on the boundary of conformation distributions. Moreover, large conformational changes were observed in a shorter simulation time when compared with structural dissimilarity sampling (SDS) and conventional MD (cMD) simulations in both systems. In metastable ADK simulations, LAST explored two transition paths toward two stable states, while SDS explored only one and cMD neither. In VVD light state simulations, LAST was three times faster than cMD simulation with a similar conformational space. Overall, LAST is comparable to SDS and is a promising tool in adaptive sampling. The LAST method is publicly available at https://github.com/smu-tao-group/LAST to facilitate related research.
Collapse
Affiliation(s)
- Hao Tian
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas75206, United States
| | - Xi Jiang
- Department of Statistical Science, Southern Methodist University, Dallas, Texas75206, United States
| | - Sian Xiao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas75206, United States
| | - Hunter La Force
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas75206, United States
| | - Eric C Larson
- Department of Computer Science, Southern Methodist University, Dallas, Texas75206, United States
| | - Peng Tao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas75206, United States
| |
Collapse
|
8
|
Ferruz N, Heinzinger M, Akdel M, Goncearenco A, Naef L, Dallago C. From sequence to function through structure: Deep learning for protein design. Comput Struct Biotechnol J 2022; 21:238-250. [PMID: 36544476 PMCID: PMC9755234 DOI: 10.1016/j.csbj.2022.11.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/05/2022] [Accepted: 11/05/2022] [Indexed: 11/20/2022] Open
Abstract
The process of designing biomolecules, in particular proteins, is witnessing a rapid change in available tooling and approaches, moving from design through physicochemical force fields, to producing plausible, complex sequences fast via end-to-end differentiable statistical models. To achieve conditional and controllable protein design, researchers at the interface of artificial intelligence and biology leverage advances in natural language processing (NLP) and computer vision techniques, coupled with advances in computing hardware to learn patterns from growing biological databases, curated annotations thereof, or both. Once learned, these patterns can be used to provide novel insights into mechanistic biology and the design of biomolecules. However, navigating and understanding the practical applications for the many recent protein design tools is complex. To facilitate this, we 1) document recent advances in deep learning (DL) assisted protein design from the last three years, 2) present a practical pipeline that allows to go from de novo-generated sequences to their predicted properties and web-powered visualization within minutes, and 3) leverage it to suggest a generated protein sequence which might be used to engineer a biosynthetic gene cluster to produce a molecular glue-like compound. Lastly, we discuss challenges and highlight opportunities for the protein design field.
Collapse
Key Words
- ADMM, Alternating Direction Method of Multipliers
- CNN, Convolutional Neural Network
- DL, Deep learning
- Deep learning
- Drug discovery
- FNN, fully-connected neural network
- GAN, Generative Adversarial Network
- GCN, Graph Convolutional Network
- GNN, Graph Neural Network
- GO, Gene Ontology
- GVP, Geometric Vector Perceptron
- LSTM, Long-Short Term Memory
- MLP, Multilayer Perceptron
- MSA, Multiple Sequence Alignment
- NLP, Natural Language Processing
- NSR, Natural Sequence Recovery
- Protein design
- Protein language models
- Protein prediction
- VAE, Variational Autoencoder
- pLM, protein Language Model
Collapse
Affiliation(s)
- Noelia Ferruz
- Institute of Informatics and Applications, University of Girona, Girona, Spain
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
| | - Michael Heinzinger
- Department of Informatics, Bioinformatics & Computational Biology, Technische Universität München, 85748 Garching, Germany
| | - Mehmet Akdel
- VantAI, 151 W 42nd Street, New York, NY 10036, United States
| | | | - Luca Naef
- VantAI, 151 W 42nd Street, New York, NY 10036, United States
| | - Christian Dallago
- Department of Informatics, Bioinformatics & Computational Biology, Technische Universität München, 85748 Garching, Germany
- VantAI, 151 W 42nd Street, New York, NY 10036, United States
- NVIDIA DE GmbH, Einsteinstraße 172, 81677 München, Germany
| |
Collapse
|