1
|
Taylor A, Prasad A, Mueller RL. Amphibian Segmentation Clock Models Suggest How Large Genome and Cell Sizes Slow Developmental Rate. Integr Org Biol 2024; 6:obae021. [PMID: 39006893 PMCID: PMC11245677 DOI: 10.1093/iob/obae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/20/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024] Open
Abstract
Evolutionary increases in genome size, cell volume, and nuclear volume have been observed across the tree of life, with positive correlations documented between all three traits. Developmental tempo slows as genomes, nuclei, and cells increase in size, yet the driving mechanisms are poorly understood. To bridge this gap, we use a mathematical model of the somitogenesis clock to link slowed developmental tempo with changes in intra-cellular gene expression kinetics induced by increasing genome size and nuclear volume. We adapt a well-known somitogenesis clock model to two model amphibian species that vary 10-fold in genome size: Xenopus laevis (3.1 Gb) and Ambystoma mexicanum (32 Gb). Based on simulations and backed by analytical derivations, we identify parameter changes originating from increased genome and nuclear size that slow gene expression kinetics. We simulate biological scenarios for which these parameter changes mathematically recapitulate slowed gene expression in A. mexicanum relative to X. laevis, and we consider scenarios for which additional alterations in gene product stability and chromatin packing are necessary. Results suggest that slowed degradation rates as well as changes induced by increasing nuclear volume and intron length, which remain relatively unexplored, are significant drivers of slowed developmental tempo.
Collapse
Affiliation(s)
- A Taylor
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - A Prasad
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - R Lockridge Mueller
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
2
|
Janesick A, Nguyen TTL, Aisaki KI, Igarashi K, Kitajima S, Chandraratna RAS, Kanno J, Blumberg B. Active repression by RARγ signaling is required for vertebrate axial elongation. Development 2014; 141:2260-70. [PMID: 24821986 DOI: 10.1242/dev.103705] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Retinoic acid receptor gamma 2 (RARγ2) is the major RAR isoform expressed throughout the caudal axial progenitor domain in vertebrates. During a microarray screen to identify RAR targets, we identified a subset of genes that pattern caudal structures or promote axial elongation and are upregulated by increased RAR-mediated repression. Previous studies have suggested that RAR is present in the caudal domain, but is quiescent until its activation in late stage embryos terminates axial elongation. By contrast, we show here that RARγ2 is engaged in all stages of axial elongation, not solely as a terminator of axial growth. In the absence of RA, RARγ2 represses transcriptional activity in vivo and maintains the pool of caudal progenitor cells and presomitic mesoderm. In the presence of RA, RARγ2 serves as an activator, facilitating somite differentiation. Treatment with an RARγ-selective inverse agonist (NRX205099) or overexpression of dominant-negative RARγ increases the expression of posterior Hox genes and that of marker genes for presomitic mesoderm and the chordoneural hinge. Conversely, when RAR-mediated repression is reduced by overexpressing a dominant-negative co-repressor (c-SMRT), a constitutively active RAR (VP16-RARγ2), or by treatment with an RARγ-selective agonist (NRX204647), expression of caudal genes is diminished and extension of the body axis is prematurely terminated. Hence, gene repression mediated by the unliganded RARγ2-co-repressor complex constitutes a novel mechanism to regulate and facilitate the correct expression levels and spatial restriction of key genes that maintain the caudal progenitor pool during axial elongation in Xenopus embryos.
Collapse
Affiliation(s)
- Amanda Janesick
- Department of Developmental and Cell Biology, 2011 Biological Sciences 3, University of California, Irvine, CA 92697-2300, USA
| | - Tuyen T L Nguyen
- Department of Developmental and Cell Biology, 2011 Biological Sciences 3, University of California, Irvine, CA 92697-2300, USA
| | - Ken-ichi Aisaki
- Division of Cellular and Molecular Toxicology, Biological Safety Research Center, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Katsuhide Igarashi
- Division of Cellular and Molecular Toxicology, Biological Safety Research Center, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Satoshi Kitajima
- Division of Cellular and Molecular Toxicology, Biological Safety Research Center, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | | | - Jun Kanno
- Division of Cellular and Molecular Toxicology, Biological Safety Research Center, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, 2011 Biological Sciences 3, University of California, Irvine, CA 92697-2300, USA Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697-2300, USA
| |
Collapse
|
3
|
Maguire RJ, Isaacs HV, Pownall ME. Early transcriptional targets of MyoD link myogenesis and somitogenesis. Dev Biol 2012; 371:256-68. [PMID: 22954963 DOI: 10.1016/j.ydbio.2012.08.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 07/10/2012] [Accepted: 08/22/2012] [Indexed: 12/20/2022]
Abstract
In order to identify early transcriptional targets of MyoD prior to skeletal muscle differentiation, we have undertaken a transcriptomic analysis on gastrula stage Xenopus embryos in which MyoD has been knocked-down. Our validated list of genes transcriptionally regulated by MyoD includes Esr1 and Esr2, which are known targets of Notch signalling, and Tbx6, mesogenin, and FoxC1; these genes are all are known to be essential for normal somitogenesis but are expressed surprisingly early in the mesoderm. In addition we found that MyoD is required for the expression of myf5 in the early mesoderm, in contrast to the reverse relationship of these two regulators in amniote somites. These data highlight a role for MyoD in the early mesoderm in regulating a set of genes that are essential for both myogenesis and somitogenesis.
Collapse
Affiliation(s)
- Richard J Maguire
- Biology Department, University of York, Heslington, York, North Yorkshire YO10 5YW, UK
| | | | | |
Collapse
|