1
|
Gao M, Song C, Liu T. PLM-T3SE: Accurate Prediction of Type III Secretion Effectors Using Protein Language Model Embeddings. J Cell Biochem 2025; 126:e30642. [PMID: 39164870 DOI: 10.1002/jcb.30642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 08/22/2024]
Abstract
The Type III secretion effectors (T3SEs) are bacterial proteins synthesized by Gram-negative pathogens and delivered into host cells via the Type III secretion system (T3SS). These effectors usually play a pivotal role in the interactions between bacteria and hosts. Hence, the precise identification of T3SEs aids researchers in exploring the pathogenic mechanisms of bacterial infections. Since the diversity and complexity of T3SE sequences often make traditional experimental methods time-consuming, it is imperative to explore more efficient and convenient computational approaches for T3SE prediction. Inspired by the promising potential exhibited by pre-trained language models in protein recognition tasks, we proposed a method called PLM-T3SE that utilizes protein language models (PLMs) for effective recognition of T3SEs. First, we utilized PLM embeddings and evolutionary features from the position-specific scoring matrix (PSSM) profiles to transform protein sequences into fixed-length vectors for model training. Second, we employed the extreme gradient boosting (XGBoost) algorithm to rank these features based on their importance. Finally, a MLP neural network model was used to predict T3SEs based on the selected optimal feature set. Experimental results from the cross-validation and independent test demonstrated that our model exhibited superior performance compared to the existing models. Specifically, our model achieved an accuracy of 98.1%, which is 1.8%-42.4% higher than the state-of-the-art predictors based on the same independent data set test. These findings highlight the superiority of the PLM-T3SE and the remarkable characterization ability of PLM embeddings for T3SE prediction.
Collapse
Affiliation(s)
- Mengru Gao
- College of Information Technology, Shanghai Ocean University, Shanghai, China
| | - Chen Song
- College of Information Technology, Shanghai Ocean University, Shanghai, China
| | - Taigang Liu
- College of Information Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
2
|
Sui J, Chen J, Chen Y, Iwamori N, Sun J. GASIDN: identification of sub-Golgi proteins with multi-scale feature fusion. BMC Genomics 2024; 25:1019. [PMID: 39478465 PMCID: PMC11526662 DOI: 10.1186/s12864-024-10954-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024] Open
Abstract
The Golgi apparatus is a crucial component of the inner membrane system in eukaryotic cells, playing a central role in protein biosynthesis. Dysfunction of the Golgi apparatus has been linked to neurodegenerative diseases. Accurate identification of sub-Golgi protein types is therefore essential for developing effective treatments for such diseases. Due to the expensive and time-consuming nature of experimental methods for identifying sub-Golgi protein types, various computational methods have been developed as identification tools. However, the majority of these methods rely solely on neighboring features in the protein sequence and neglect the crucial spatial structure information of the protein.To discover alternative methods for accurately identifying sub-Golgi proteins, we have developed a model called GASIDN. The GASIDN model extracts multi-dimension features by utilizing a 1D convolution module on protein sequences and a graph learning module on contact maps constructed from AlphaFold2.The model utilizes the deep representation learning model SeqVec to initialize protein sequences. GASIDN achieved accuracy values of 98.4% and 96.4% in independent testing and ten-fold cross-validation, respectively, outperforming the majority of previous predictors. To the best of our knowledge, this is the first method that utilizes multi-scale feature fusion to identify and locate sub-Golgi proteins. In order to assess the generalizability and scalability of our model, we conducted experiments to apply it in the identification of proteins from other organelles, including plant vacuoles and peroxisomes. The results obtained from these experiments demonstrated promising outcomes, indicating the effectiveness and versatility of our model. The source code and datasets can be accessed at https://github.com/SJNNNN/GASIDN .
Collapse
Affiliation(s)
- Jianan Sui
- School of Information Science and Engineering, University of Jinan, Jinan, China
| | - Jiazi Chen
- Laboratory of Zoology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka-shi, Fukuoka, Japan
| | - Yuehui Chen
- School of Artificial Intelligence Institute and Information Science and Engineering, University of Jinan, Jinan, China.
| | - Naoki Iwamori
- Laboratory of Zoology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka-shi, Fukuoka, Japan
| | - Jin Sun
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| |
Collapse
|
3
|
Li J, Ren J, Dai W, Stubenrauch C, Finn RD, Wang J. Fungtion: A Server for Predicting and Visualizing Fungal Effector Proteins. J Mol Biol 2024; 436:168613. [PMID: 39237206 DOI: 10.1016/j.jmb.2024.168613] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 09/07/2024]
Abstract
Fungal pathogens pose significant threats to plant health by secreting effectors that manipulate plant-host defences. However, identifying effector proteins remains challenging, in part because they lack common sequence motifs. Here, we introduce Fungtion (Fungal effector prediction), a toolkit leveraging a hybrid framework to accurately predict and visualize fungal effectors. By combining global patterns learned from pretrained protein language models with refined information from known effectors, Fungtion achieves state-of-the-art prediction performance. Additionally, the interactive visualizations we have developed enable researchers to explore both sequence- and high-level relationships between the predicted and known effectors, facilitating effector function discovery, annotation, and hypothesis formulation regarding plant-pathogen interactions. We anticipate Fungtion to be a valuable resource for biologists seeking deeper insights into fungal effector functions and for computational biologists aiming to develop future methodologies for fungal effector prediction: https://step3.erc.monash.edu/Fungtion/.
Collapse
Affiliation(s)
- Jiahui Li
- Biomedicine Discovery Institute, Monash University, VIC 3800, Australia; Centre to Impact AMR, Monash University, VIC 3800, Australia
| | - Jinzheng Ren
- Biomedicine Discovery Institute, Monash University, VIC 3800, Australia; Centre to Impact AMR, Monash University, VIC 3800, Australia; College of Engineering, Computing and Cybernetics, Australian National University, Canberra, ACT 2600, Australia
| | - Wei Dai
- Biomedicine Discovery Institute, Monash University, VIC 3800, Australia; Centre to Impact AMR, Monash University, VIC 3800, Australia
| | - Christopher Stubenrauch
- Biomedicine Discovery Institute, Monash University, VIC 3800, Australia; Centre to Impact AMR, Monash University, VIC 3800, Australia
| | - Robert D Finn
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK.
| | - Jiawei Wang
- Biomedicine Discovery Institute, Monash University, VIC 3800, Australia; Centre to Impact AMR, Monash University, VIC 3800, Australia; European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK.
| |
Collapse
|
4
|
Zhang S, Zhao Y, Liang Y. AACFlow: an end-to-end model based on attention augmented convolutional neural network and flow-attention mechanism for identification of anticancer peptides. Bioinformatics 2024; 40:btae142. [PMID: 38452348 PMCID: PMC10973939 DOI: 10.1093/bioinformatics/btae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 03/09/2024] Open
Abstract
MOTIVATION Anticancer peptides (ACPs) have natural cationic properties and can act on the anionic cell membrane of cancer cells to kill cancer cells. Therefore, ACPs have become a potential anticancer drug with good research value and prospect. RESULTS In this article, we propose AACFlow, an end-to-end model for identification of ACPs based on deep learning. End-to-end models have more room to automatically adjust according to the data, making the overall fit better and reducing error propagation. The combination of attention augmented convolutional neural network (AAConv) and multi-layer convolutional neural network (CNN) forms a deep representation learning module, which is used to obtain global and local information on the sequence. Based on the concept of flow network, multi-head flow-attention mechanism is introduced to mine the deep features of the sequence to improve the efficiency of the model. On the independent test dataset, the ACC, Sn, Sp, and AUC values of AACFlow are 83.9%, 83.0%, 84.8%, and 0.892, respectively, which are 4.9%, 1.5%, 8.0%, and 0.016 higher than those of the baseline model. The MCC value is 67.85%. In addition, we visualize the features extracted by each module to enhance the interpretability of the model. Various experiments show that our model is more competitive in predicting ACPs.
Collapse
Affiliation(s)
- Shengli Zhang
- School of Mathematics and Statistics, Xidian University, Xi'an 710071, China
| | - Ya Zhao
- School of Mathematics and Statistics, Xidian University, Xi'an 710071, China
| | - Yunyun Liang
- School of Science, Xi’an Polytechnic University, Xi'an 710048, China
| |
Collapse
|
5
|
Tang X, Luo L, Wang S. TSE-ARF: An adaptive prediction method of effectors across secretion system types. Anal Biochem 2024; 686:115407. [PMID: 38030053 DOI: 10.1016/j.ab.2023.115407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/12/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
Bacterial effector proteins are secreted by a variety of protein secretion systems and play an important role in the interaction between the host and pathogenic bacteria. Therefore, it is important to find a fast and inexpensive method to discover bacterial effectors. In this study, we propose a multi-type secretion effector adaptive random forest (TSE-ARF) to adaptively identify secretion effectors across T1SE-T4SE and T6SE based only on protein sequences. First, we proposed two new feature descriptors by considering some characteristic protein information and fused them with some universal features to form a 290-dimensional feature vector with good versatility. Then, the TSE-ARF model was used to make classification predictions by parameter adaptation of different secretion effectors integrating Shuffled Frog Leaping Algorithm and random forest. The perfect performance in TSE-ARF under different data sets and settings shows its considerable generalization ability, with which more candidate effectors were screened in the whole genome. Source code is available at https://github.com/AIMOVE/TSE-ARF.
Collapse
Affiliation(s)
- Xianjun Tang
- Department of Computer Science and Engineering, School of Information Science and Engineering, Yunnan University, Kunming, 650504, Yunnan, China
| | - Longfei Luo
- Department of Computer Science and Engineering, School of Information Science and Engineering, Yunnan University, Kunming, 650504, Yunnan, China
| | - Shunfang Wang
- Department of Computer Science and Engineering, School of Information Science and Engineering, Yunnan University, Kunming, 650504, Yunnan, China; Yunnan Key Laboratory of Intelligent Systems and Computing, Yunnan University, Kunming, Yunnan, China.
| |
Collapse
|
6
|
Sui J, Chen J, Chen Y, Iwamori N, Sun J. Identification of plant vacuole proteins by using graph neural network and contact maps. BMC Bioinformatics 2023; 24:357. [PMID: 37740195 PMCID: PMC10517492 DOI: 10.1186/s12859-023-05475-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 09/12/2023] [Indexed: 09/24/2023] Open
Abstract
Plant vacuoles are essential organelles in the growth and development of plants, and accurate identification of their proteins is crucial for understanding their biological properties. In this study, we developed a novel model called GraphIdn for the identification of plant vacuole proteins. The model uses SeqVec, a deep representation learning model, to initialize the amino acid sequence. We utilized the AlphaFold2 algorithm to obtain the structural information of corresponding plant vacuole proteins, and then fed the calculated contact maps into a graph convolutional neural network. GraphIdn achieved accuracy values of 88.51% and 89.93% in independent testing and fivefold cross-validation, respectively, outperforming previous state-of-the-art predictors. As far as we know, this is the first model to use predicted protein topology structure graphs to identify plant vacuole proteins. Furthermore, we assessed the effectiveness and generalization capability of our GraphIdn model by applying it to identify and locate peroxisomal proteins, which yielded promising outcomes. The source code and datasets can be accessed at https://github.com/SJNNNN/GraphIdn .
Collapse
Affiliation(s)
- Jianan Sui
- School of Information Science and Engineering, University of Jinan, Jinan, China
| | - Jiazi Chen
- Laboratory of Zoology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka-Shi, Fukuoka, Japan
| | - Yuehui Chen
- School of Artificial Intelligence Institute and Information Science and Engineering, University of Jinan, Jinan, China.
| | - Naoki Iwamori
- Laboratory of Zoology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka-Shi, Fukuoka, Japan
| | - Jin Sun
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| |
Collapse
|
7
|
Zhang X, Guo H, Zhang F, Wang X, Wu K, Qiu S, Liu B, Wang Y, Hu Y, Li J. HNetGO: protein function prediction via heterogeneous network transformer. Brief Bioinform 2023; 24:bbab556. [PMID: 37861172 PMCID: PMC10588005 DOI: 10.1093/bib/bbab556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/18/2021] [Accepted: 12/04/2021] [Indexed: 10/21/2023] Open
Abstract
Protein function annotation is one of the most important research topics for revealing the essence of life at molecular level in the post-genome era. Current research shows that integrating multisource data can effectively improve the performance of protein function prediction models. However, the heavy reliance on complex feature engineering and model integration methods limits the development of existing methods. Besides, models based on deep learning only use labeled data in a certain dataset to extract sequence features, thus ignoring a large amount of existing unlabeled sequence data. Here, we propose an end-to-end protein function annotation model named HNetGO, which innovatively uses heterogeneous network to integrate protein sequence similarity and protein-protein interaction network information and combines the pretraining model to extract the semantic features of the protein sequence. In addition, we design an attention-based graph neural network model, which can effectively extract node-level features from heterogeneous networks and predict protein function by measuring the similarity between protein nodes and gene ontology term nodes. Comparative experiments on the human dataset show that HNetGO achieves state-of-the-art performance on cellular component and molecular function branches.
Collapse
Affiliation(s)
- Xiaoshuai Zhang
- School of Computer Science and Technology, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Huannan Guo
- General Hospital of Heilongjiang Province Land Reclamation Bureau, Harbin 150086, China
| | - Fan Zhang
- Center NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Xuan Wang
- School of Computer Science and Technology, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Kaitao Wu
- School of Computer Science and Technology, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Shizheng Qiu
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Bo Liu
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Yadong Wang
- School of Computer Science and Technology, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Yang Hu
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Junyi Li
- School of Computer Science and Technology, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| |
Collapse
|
8
|
Wang C, Yang Q. ScerePhoSite: An interpretable method for identifying fungal phosphorylation sites in proteins using sequence-based features. Comput Biol Med 2023; 158:106798. [PMID: 36966555 DOI: 10.1016/j.compbiomed.2023.106798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/03/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023]
Abstract
Protein phosphorylation plays a vital role in signal transduction pathways and diverse cellular processes. To date, a tremendous number of in silico tools have been designed for phosphorylation site identification, but few of them are suitable for the identification of fungal phosphorylation sites. This largely hampers the functional investigation of fungal phosphorylation. In this paper, we present ScerePhoSite, a machine learning method for fungal phosphorylation site identification. The sequence fragments are represented by hybrid physicochemical features, and then LGB-based feature importance combined with the sequential forward search method is used to choose the optimal feature subset. As a result, ScerePhoSite surpasses current available tools and shown a more robust and balanced performance. Furthermore, the impact and contribution of specific features on the model performance were investigated by SHAP values. We expect ScerePhoSite to be a useful bioinformatics tool that complements hands-on experiments for the pre-screening of possible phosphorylation sites and facilitates our functional understanding of phosphorylation modification in fungi. The source code and datasets are accessible at https://github.com/wangchao-malab/ScerePhoSite/.
Collapse
|
9
|
Mardikoraem M, Woldring D. Protein Fitness Prediction Is Impacted by the Interplay of Language Models, Ensemble Learning, and Sampling Methods. Pharmaceutics 2023; 15:1337. [PMID: 37242577 PMCID: PMC10224321 DOI: 10.3390/pharmaceutics15051337] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Advances in machine learning (ML) and the availability of protein sequences via high-throughput sequencing techniques have transformed the ability to design novel diagnostic and therapeutic proteins. ML allows protein engineers to capture complex trends hidden within protein sequences that would otherwise be difficult to identify in the context of the immense and rugged protein fitness landscape. Despite this potential, there persists a need for guidance during the training and evaluation of ML methods over sequencing data. Two key challenges for training discriminative models and evaluating their performance include handling severely imbalanced datasets (e.g., few high-fitness proteins among an abundance of non-functional proteins) and selecting appropriate protein sequence representations (numerical encodings). Here, we present a framework for applying ML over assay-labeled datasets to elucidate the capacity of sampling techniques and protein encoding methods to improve binding affinity and thermal stability prediction tasks. For protein sequence representations, we incorporate two widely used methods (One-Hot encoding and physiochemical encoding) and two language-based methods (next-token prediction, UniRep; masked-token prediction, ESM). Elaboration on performance is provided over protein fitness, protein size, and sampling techniques. In addition, an ensemble of protein representation methods is generated to discover the contribution of distinct representations and improve the final prediction score. We then implement multiple criteria decision analysis (MCDA; TOPSIS with entropy weighting), using multiple metrics well-suited for imbalanced data, to ensure statistical rigor in ranking our methods. Within the context of these datasets, the synthetic minority oversampling technique (SMOTE) outperformed undersampling while encoding sequences with One-Hot, UniRep, and ESM representations. Moreover, ensemble learning increased the predictive performance of the affinity-based dataset by 4% compared to the best single-encoding candidate (F1-score = 97%), while ESM alone was rigorous enough in stability prediction (F1-score = 92%).
Collapse
Affiliation(s)
- Mehrsa Mardikoraem
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Daniel Woldring
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
10
|
Yan K, Lv H, Wen J, Guo Y, Xu Y, Liu B. PreTP-Stack: Prediction of Therapeutic Peptides Based on the Stacked Ensemble Learing. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:1337-1344. [PMID: 35700248 DOI: 10.1109/tcbb.2022.3183018] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Therapeutic peptide prediction is critical for drug development and therapeutic therapy. Researchers have developed several computational methods to identify different therapeutic peptide types. However, most computational methods focus on identifying the specific type of therapeutic peptides and fail to accurately predict all types of therapeutic peptides. Moreover, it is still challenging to utilize different properties features to predict the therapeutic peptides. In this study, a novel stacking framework PreTP-Stack is proposed for predicting different types of therapeutic peptide. PreTP-Stack is constructed based on ten different features and four predictors (Random Forest, Linear Discriminant Analysis, XGBoost and Support Vector Machine). Then the proposed method constructs an auto-weighted multi-view learning model as a final meta-classifier to enhance the performance of the basic models. Experimental results showed that the proposed method achieved better or highly comparable performance with the state-of-the-art methods for predicting eight types of therapeutic peptides A user-friendly web-server predictor is available at http://bliulab.net/PreTP-Stack.
Collapse
|
11
|
Su W, Xie XQ, Liu XW, Gao D, Ma CY, Zulfiqar H, Yang H, Lin H, Yu XL, Li YW. iRNA-ac4C: A novel computational method for effectively detecting N4-acetylcytidine sites in human mRNA. Int J Biol Macromol 2023; 227:1174-1181. [PMID: 36470433 DOI: 10.1016/j.ijbiomac.2022.11.299] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/10/2022] [Accepted: 11/25/2022] [Indexed: 12/07/2022]
Abstract
RNA N4-acetylcytidine (ac4C) is the acetylation of cytidine at the nitrogen-4 position, which is a highly conserved RNA modification and involves a variety of biological processes. Hence, accurate identification of genome-wide ac4C sites is vital for understanding regulation mechanism of gene expression. In this work, a novel predictor, named iRNA-ac4C, was established to identify ac4C sites in human mRNA based on three feature extraction methods, including nucleotide composition, nucleotide chemical property, and accumulated nucleotide frequency. Subsequently, minimum-Redundancy-Maximum-Relevance combined with incremental feature selection strategies was utilized to select the optimal feature subset. According to the optimal feature subset, the best ac4C classification model was trained by gradient boosting decision tree with 10-fold cross-validation. The results of independent testing set indicated that our proposed method could produce encouraging generalization capabilities. For the convenience of other researchers, we established a user-friendly web server which is freely available at http://lin-group.cn/server/iRNA-ac4C/. We hope that the tool could provide guide for wet-experimental scholars.
Collapse
Affiliation(s)
- Wei Su
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xue-Qin Xie
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xiao-Wei Liu
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Dong Gao
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Cai-Yi Ma
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Hasan Zulfiqar
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Hui Yang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Hao Lin
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Xiao-Long Yu
- School of Materials Science and Engineering, Hainan University, Haikou 570228, China.
| | - Yan-Wen Li
- School of Information Science and Technology, Northeast Normal University, Changchun 130117, China; Key Laboratory of Intelligent Information Processing of Jilin Province, Northeast Normal University, Changchun 130117, China; Institute of Computational Biology, Northeast Normal University, Changchun 130117, China.
| |
Collapse
|
12
|
Wang C, Zou Q. Prediction of protein solubility based on sequence physicochemical patterns and distributed representation information with DeepSoluE. BMC Biol 2023; 21:12. [PMID: 36694239 PMCID: PMC9875434 DOI: 10.1186/s12915-023-01510-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/05/2023] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Protein solubility is a precondition for efficient heterologous protein expression at the basis of most industrial applications and for functional interpretation in basic research. However, recurrent formation of inclusion bodies is still an inevitable roadblock in protein science and industry, where only nearly a quarter of proteins can be successfully expressed in soluble form. Despite numerous solubility prediction models having been developed over time, their performance remains unsatisfactory in the context of the current strong increase in available protein sequences. Hence, it is imperative to develop novel and highly accurate predictors that enable the prioritization of highly soluble proteins to reduce the cost of actual experimental work. RESULTS In this study, we developed a novel tool, DeepSoluE, which predicts protein solubility using a long-short-term memory (LSTM) network with hybrid features composed of physicochemical patterns and distributed representation of amino acids. Comparison results showed that the proposed model achieved more accurate and balanced performance than existing tools. Furthermore, we explored specific features that have a dominant impact on the model performance as well as their interaction effects. CONCLUSIONS DeepSoluE is suitable for the prediction of protein solubility in E. coli; it serves as a bioinformatics tool for prescreening of potentially soluble targets to reduce the cost of wet-experimental studies. The publicly available webserver is freely accessible at http://lab.malab.cn/~wangchao/softs/DeepSoluE/ .
Collapse
Affiliation(s)
- Chao Wang
- grid.411307.00000 0004 1790 5236School of Software Engineering, Chengdu University of Information Technology, Chengdu, China
| | - Quan Zou
- grid.54549.390000 0004 0369 4060Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
13
|
Yu H, Luo X. IPPF-FE: an integrated peptide and protein function prediction framework based on fused features and ensemble models. Brief Bioinform 2023; 24:6834141. [PMID: 36403184 DOI: 10.1093/bib/bbac476] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/23/2022] [Accepted: 10/05/2022] [Indexed: 11/21/2022] Open
Abstract
The prediction of peptide and protein function is important for research and industrial applications, and many machine learning methods have been developed for this purpose. The existing models have encountered many challenges, including the lack of effective and comprehensive features and the limited applicability of each model. Here, we introduce an Integrated Peptide and Protein function prediction Framework based on Fused features and Ensemble models (IPPF-FE), which can accurately capture the relationship between features and labels. The results indicated that IPPF-FE outperformed existing state-of-the-art (SOTA) models on more than 8 different categories of peptide and protein tasks. In addition, t-distributed Stochastic Neighbour Embedding demonstrated the advantages of IPPF-FE. We anticipate that our method will become a versatile tool for peptide and protein prediction tasks and shed light on the future development of related models. The model is open source and available in the GitHub repository https://github.com/Luo-SynBioLab/IPPF-FE.
Collapse
Affiliation(s)
- Han Yu
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaozhou Luo
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
14
|
Su W, Deng S, Gu Z, Yang K, Ding H, Chen H, Zhang Z. Prediction of apoptosis protein subcellular location based on amphiphilic pseudo amino acid composition. Front Genet 2023; 14:1157021. [PMID: 36926588 PMCID: PMC10011625 DOI: 10.3389/fgene.2023.1157021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Introduction: Apoptosis proteins play an important role in the process of cell apoptosis, which makes the rate of cell proliferation and death reach a relative balance. The function of apoptosis protein is closely related to its subcellular location, it is of great significance to study the subcellular locations of apoptosis proteins. Many efforts in bioinformatics research have been aimed at predicting their subcellular location. However, the subcellular localization of apoptotic proteins needs to be carefully studied. Methods: In this paper, based on amphiphilic pseudo amino acid composition and support vector machine algorithm, a new method was proposed for the prediction of apoptosis proteins\x{2019} subcellular location. Results and Discussion: The method achieved good performance on three data sets. The Jackknife test accuracy of the three data sets reached 90.5%, 93.9% and 84.0%, respectively. Compared with previous methods, the prediction accuracies of APACC_SVM were improved.
Collapse
Affiliation(s)
- Wenxia Su
- College of Science, Inner Mongolia Agriculture University, Hohhot, China
| | - Shuyi Deng
- School of Life Science and Technology, Center for Information Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhifeng Gu
- School of Life Science and Technology, Center for Information Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Keli Yang
- Nonlinear Research Institute, Baoji University of Arts and Sciences, Baoji, China
| | - Hui Ding
- School of Life Science and Technology, Center for Information Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Hui Chen
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu, China
| | - Zhaoyue Zhang
- School of Life Science and Technology, Center for Information Biology, University of Electronic Science and Technology of China, Chengdu, China.,School of Healthcare Technology, Chengdu Neusoft University, Chengdu, China
| |
Collapse
|
15
|
Ao C, Jiao S, Wang Y, Yu L, Zou Q. Biological Sequence Classification: A Review on Data and General Methods. RESEARCH (WASHINGTON, D.C.) 2022; 2022:0011. [PMID: 39285948 PMCID: PMC11404319 DOI: 10.34133/research.0011] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/25/2022] [Indexed: 09/19/2024]
Abstract
With the rapid development of biotechnology, the number of biological sequences has grown exponentially. The continuous expansion of biological sequence data promotes the application of machine learning in biological sequences to construct predictive models for mining biological sequence information. There are many branches of biological sequence classification research. In this review, we mainly focus on the function and modification classification of biological sequences based on machine learning. Sequence-based prediction and analysis are the basic tasks to understand the biological functions of DNA, RNA, proteins, and peptides. However, there are hundreds of classification models developed for biological sequences, and the quite varied specific methods seem dizzying at first glance. Here, we aim to establish a long-term support website (http://lab.malab.cn/~acy/BioseqData/home.html), which provides readers with detailed information on the classification method and download links to relevant datasets. We briefly introduce the steps to build an effective model framework for biological sequence data. In addition, a brief introduction to single-cell sequencing data analysis methods and applications in biology is also included. Finally, we discuss the current challenges and future perspectives of biological sequence classification research.
Collapse
Affiliation(s)
- Chunyan Ao
- School of Computer Science and Technology, Xidian University, Xi'an, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Shihu Jiao
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| | - Yansu Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Liang Yu
- School of Computer Science and Technology, Xidian University, Xi'an, China
| | - Quan Zou
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
16
|
Banerjee P, Tan X, Russell WK, Kurie JM. Analysis of Golgi Secretory Functions in Cancer. Methods Mol Biol 2022; 2557:785-810. [PMID: 36512251 DOI: 10.1007/978-1-0716-2639-9_47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancer cells utilize secretory pathways for paracrine signaling and extracellular matrix remodeling to facilitate directional cell migration, invasion, and metastasis. The Golgi apparatus is a central secretory signaling hub that is often deregulated in cancer. Here we described technologies that utilize microscopic, biochemical, and proteomic approaches to analyze Golgi secretory functions in genetically heterogeneous cancer cell lines.
Collapse
Affiliation(s)
- Priyam Banerjee
- Frits and Rita Markus Bio-Imaging Resource Center, The Rockefeller University, New York, NY, USA
| | - Xiaochao Tan
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - William K Russell
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Jonathan M Kurie
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
17
|
Zhang H, Wang Y, Pan Z, Sun X, Mou M, Zhang B, Li Z, Li H, Zhu F. ncRNAInter: a novel strategy based on graph neural network to discover interactions between lncRNA and miRNA. Brief Bioinform 2022; 23:6747810. [PMID: 36198065 DOI: 10.1093/bib/bbac411] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/04/2022] [Accepted: 08/23/2022] [Indexed: 12/14/2022] Open
Abstract
In recent years, many studies have illustrated the significant role that non-coding RNA (ncRNA) plays in biological activities, in which lncRNA, miRNA and especially their interactions have been proved to affect many biological processes. Some in silico methods have been proposed and applied to identify novel lncRNA-miRNA interactions (LMIs), but there are still imperfections in their RNA representation and information extraction approaches, which imply there is still room for further improving their performances. Meanwhile, only a few of them are accessible at present, which limits their practical applications. The construction of a new tool for LMI prediction is thus imperative for the better understanding of their relevant biological mechanisms. This study proposed a novel method, ncRNAInter, for LMI prediction. A comprehensive strategy for RNA representation and an optimized deep learning algorithm of graph neural network were utilized in this study. ncRNAInter was robust and showed better performance of 26.7% higher Matthews correlation coefficient than existing reputable methods for human LMI prediction. In addition, ncRNAInter proved its universal applicability in dealing with LMIs from various species and successfully identified novel LMIs associated with various diseases, which further verified its effectiveness and usability. All source code and datasets are freely available at https://github.com/idrblab/ncRNAInter.
Collapse
Affiliation(s)
- Hanyu Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Yunxia Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ziqi Pan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiuna Sun
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Minjie Mou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bing Zhang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Zhaorong Li
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Honglin Li
- School of Computer Science and Technology, East China Normal University, Shanghai 200062, China.,Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, Shanghai 200237, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| |
Collapse
|
18
|
Xu D, Liu B, Wang J, Zhang Z. Bibliometric analysis of artificial intelligence for biotechnology and applied microbiology: Exploring research hotspots and frontiers. Front Bioeng Biotechnol 2022; 10:998298. [PMID: 36277390 PMCID: PMC9585160 DOI: 10.3389/fbioe.2022.998298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
Background: In the biotechnology and applied microbiology sectors, artificial intelligence (AI) has been extensively used in disease diagnostics, drug research and development, functional genomics, biomarker recognition, and medical imaging diagnostics. In our study, from 2000 to 2021, science publications focusing on AI in biotechnology were reviewed, and quantitative, qualitative, and modeling analyses were performed. Methods: On 6 May 2022, the Web of Science Core Collection (WoSCC) was screened for AI applications in biotechnology and applied microbiology; 3,529 studies were identified between 2000 and 2022, and analyzed. The following information was collected: publication, country or region, references, knowledgebase, institution, keywords, journal name, and research hotspots, and examined using VOSviewer and CiteSpace V bibliometric platforms. Results: We showed that 128 countries published articles related to AI in biotechnology and applied microbiology; the United States had the most publications. In addition, 584 global institutions contributed to publications, with the Chinese Academy of Science publishing the most. Reference clusters from studies were categorized into ten headings: deep learning, prediction, support vector machines (SVM), object detection, feature representation, synthetic biology, amyloid, human microRNA precursors, systems biology, and single cell RNA-Sequencing. Research frontier keywords were represented by microRNA (2012–2020) and protein-protein interactions (PPIs) (2012–2020). Conclusion: We systematically, objectively, and comprehensively analyzed AI-related biotechnology and applied microbiology literature, and additionally, identified current hot spots and future trends in this area. Our review provides researchers with a comprehensive overview of the dynamic evolution of AI in biotechnology and applied microbiology and identifies future key research areas.
Collapse
Affiliation(s)
- Dongyu Xu
- Department of Computer, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, China
| | - Bing Liu
- Department of Bone Oncology, The People’s Hospital of Liaoning Province, Shenyang, Liaoning, China
| | - Jian Wang
- Department of Pathogenic Biology, School of Basic Medicine, China Medical University, Shenyang, Liaoning, China
| | - Zhichang Zhang
- Department of Computer, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, China
- *Correspondence: Zhichang Zhang,
| |
Collapse
|
19
|
Zhang T, Jia Y, Li H, Xu D, Zhou J, Wang G. CRISPRCasStack: a stacking strategy-based ensemble learning framework for accurate identification of Cas proteins. Brief Bioinform 2022; 23:6674167. [PMID: 35998924 DOI: 10.1093/bib/bbac335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/13/2022] [Accepted: 07/23/2022] [Indexed: 11/12/2022] Open
Abstract
CRISPR-Cas system is an adaptive immune system widely found in most bacteria and archaea to defend against exogenous gene invasion. One of the most critical steps in the study of exploring and classifying novel CRISPR-Cas systems and their functional diversity is the identification of Cas proteins in CRISPR-Cas systems. The discovery of novel Cas proteins has also laid the foundation for technologies such as CRISPR-Cas-based gene editing and gene therapy. Currently, accurate and efficient screening of Cas proteins from metagenomic sequences and proteomic sequences remains a challenge. For Cas proteins with low sequence conservation, existing tools for Cas protein identification based on homology cannot guarantee identification accuracy and efficiency. In this paper, we have developed a novel stacking-based ensemble learning framework for Cas protein identification, called CRISPRCasStack. In particular, we applied the SHAP (SHapley Additive exPlanations) method to analyze the features used in CRISPRCasStack. Sufficient experimental validation and independent testing have demonstrated that CRISPRCasStack can address the accuracy deficiencies and inefficiencies of the existing state-of-the-art tools. We also provide a toolkit to accurately identify and analyze potential Cas proteins, Cas operons, CRISPR arrays and CRISPR-Cas locus in prokaryotic sequences. The CRISPRCasStack toolkit is available at https://github.com/yrjia1015/CRISPRCasStack.
Collapse
Affiliation(s)
- Tianjiao Zhang
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, 150040, China
| | - Yuran Jia
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, 150040, China
| | - Hongfei Li
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, 150040, China
| | - Dali Xu
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, 150040, China
| | - Jie Zhou
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, 150040, China
| | - Guohua Wang
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, 150040, China
| |
Collapse
|
20
|
Identify Bitter Peptides by Using Deep Representation Learning Features. Int J Mol Sci 2022; 23:ijms23147877. [PMID: 35887225 PMCID: PMC9315524 DOI: 10.3390/ijms23147877] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/01/2022] [Accepted: 07/14/2022] [Indexed: 02/04/2023] Open
Abstract
A bitter taste often identifies hazardous compounds and it is generally avoided by most animals and humans. Bitterness of hydrolyzed proteins is caused by the presence of bitter peptides. To improve palatability, bitter peptides need to be identified experimentally in a time-consuming and expensive process, before they can be removed or degraded. Here, we report the development of a machine learning prediction method, iBitter-DRLF, which is based on a deep learning pre-trained neural network feature extraction method. It uses three sequence embedding techniques, soft symmetric alignment (SSA), unified representation (UniRep), and bidirectional long short-term memory (BiLSTM). These were initially combined into various machine learning algorithms to build several models. After optimization, the combined features of UniRep and BiLSTM were finally selected, and the model was built in combination with a light gradient boosting machine (LGBM). The results showed that the use of deep representation learning greatly improves the ability of the model to identify bitter peptides, achieving accurate prediction based on peptide sequence data alone. By helping to identify bitter peptides, iBitter-DRLF can help research into improving the palatability of peptide therapeutics and dietary supplements in the future. A webserver is available, too.
Collapse
|
21
|
Wang J. Editorial: Methods and Applications in Molecular Phylogenetics. Front Genet 2022; 13:923409. [PMID: 35910209 PMCID: PMC9332192 DOI: 10.3389/fgene.2022.923409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/27/2022] [Indexed: 11/25/2022] Open
|
22
|
Xu C, Zhang R, Duan M, Zhou Y, Bao J, Lu H, Wang J, Hu M, Hu Z, Zhou F, Zhu W. A polygenic stacking classifier revealed the complicated platelet transcriptomic landscape of adult immune thrombocytopenia. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 28:477-487. [PMID: 35505964 PMCID: PMC9046129 DOI: 10.1016/j.omtn.2022.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/01/2022] [Indexed: 01/19/2023]
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disease with the typical symptom of a low platelet count in blood. ITP demonstrated age and sex biases in both occurrences and prognosis, and adult ITP was mainly induced by the living environments. The current diagnosis guideline lacks the integration of molecular heterogenicity. This study recruited the largest cohort of platelet transcriptome samples. A comprehensive procedure of feature selection, feature engineering, and stacking classification was carried out to detect the ITP biomarkers using RNA sequencing (RNA-seq) transcriptomes. The 40 detected biomarkers were loaded to train the final ITP detection model, with an overall accuracy 0.974. The biomarkers suggested that ITP onset may be associated with various transcribed components, including protein-coding genes, long intergenic non-coding RNA (lincRNA) genes, and pseudogenes with apparent transcriptions. The delivered ITP detection model may also be utilized as a complementary ITP diagnosis tool. The code and the example dataset is freely available on http://www.healthinformaticslab.org/supp/resources.php
Collapse
Affiliation(s)
- Chengfeng Xu
- Department of Hematology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai 200437, China
| | - Ruochi Zhang
- College of Computer Science and Technology, Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin 130012, China
| | - Meiyu Duan
- College of Computer Science and Technology, Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin 130012, China
| | - Yongming Zhou
- Department of Hematology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai 200437, China
| | - Jizhang Bao
- Department of Hematology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai 200437, China
| | - Hao Lu
- Department of Hematology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai 200437, China
| | - Jie Wang
- Department of Hematology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai 200437, China
| | - Minghui Hu
- Department of Hematology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai 200437, China
| | - Zhaoyang Hu
- Fun-Med Pharmaceutical Technology (Shanghai) Co., Ltd., RM. A310, 115 Xinjunhuan Road, Minhang District, Shanghai 201100, China
- Corresponding author Zhaoyang Hu, PhD, Fengneng Pharmaceutical Technology (Shanghai) Co., Ltd., RM. A310, 115 Xinjunhuan Road, Minhang District, Shanghai 201100, China.
| | - Fengfeng Zhou
- College of Computer Science and Technology, Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin 130012, China
- Corresponding author Fengfeng Zhou, PhD, College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin 130012, China.
| | - Wenwei Zhu
- Department of Hematology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai 200437, China
- Corresponding author Wenwei Zhu, PhD, Department of Hematology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai 200437, China.
| |
Collapse
|
23
|
Wang Y, Luo X, Zou Q. Effector-GAN: prediction of fungal effector proteins based on pretrained deep representation learning methods and generative adversarial networks. Bioinformatics 2022; 38:3541-3548. [PMID: 35640972 DOI: 10.1093/bioinformatics/btac374] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/05/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Phytopathogenic fungi secrete effector proteins to subvert host defenses and facilitate infection. Systematic analysis and prediction of candidate fungal effector proteins is crucial for experimental validation and biological control of plant disease. However, two problems are still considered intractable to be solved in fungal effector prediction: one is the high-level diversity in effector sequences that increases the difficulty of protein feature learning, and the other is the class imbalance between effector and non-effector samples in the training dataset. RESULTS In our study, pretrained deep representation learning methods are presented to represent multiple characteristics of sequences for predicting fungal effectors and generative adversarial networks are adapted to create synthetic feature samples to address the data imbalance problem. Compared with the state-of-the-art fungal effector prediction methods, Effector-GAN shows an overall improvement in accuracy in the independent test set. AVAILABILITY AND IMPLEMENTATION Effector-GAN offers a user-friendly interface to inspect potential fungal effector proteins (http://lab.malab.cn/~wys/webserver/Effector-GAN). The Python script can be downloaded from http://lab.malab.cn/~wys/gitlab/effector-gan.
Collapse
Affiliation(s)
- Yansu Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China.,School of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen, 518000, China
| | - Ximei Luo
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China.,School of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen, 518000, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
| |
Collapse
|
24
|
Nakai K, Wei L. Recent Advances in the Prediction of Subcellular Localization of Proteins and Related Topics. FRONTIERS IN BIOINFORMATICS 2022; 2:910531. [PMID: 36304291 PMCID: PMC9580943 DOI: 10.3389/fbinf.2022.910531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Prediction of subcellular localization of proteins from their amino acid sequences has a long history in bioinformatics and is still actively developing, incorporating the latest advances in machine learning and proteomics. Notably, deep learning-based methods for natural language processing have made great contributions. Here, we review recent advances in the field as well as its related fields, such as subcellular proteomics and the prediction/recognition of subcellular localization from image data.
Collapse
Affiliation(s)
- Kenta Nakai
- Institute of Medical Science, The University of Tokyo, Minato-Ku, Japan
- *Correspondence: Kenta Nakai,
| | - Leyi Wei
- School of Software, Shandong University, Jinan, China
| |
Collapse
|
25
|
Chen D, Li Y. PredMHC: An Effective Predictor of Major Histocompatibility Complex Using Mixed Features. Front Genet 2022; 13:875112. [PMID: 35547252 PMCID: PMC9081368 DOI: 10.3389/fgene.2022.875112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/07/2022] [Indexed: 12/03/2022] Open
Abstract
The major histocompatibility complex (MHC) is a large locus on vertebrate DNA that contains a tightly linked set of polymorphic genes encoding cell surface proteins essential for the adaptive immune system. The groups of proteins encoded in the MHC play an important role in the adaptive immune system. Therefore, the accurate identification of the MHC is necessary to understand its role in the adaptive immune system. An effective predictor called PredMHC is established in this study to identify the MHC from protein sequences. Firstly, PredMHC encoded a protein sequence with mixed features including 188D, APAAC, KSCTriad, CKSAAGP, and PAAC. Secondly, three classifiers including SGD, SMO, and random forest were trained on the mixed features of the protein sequence. Finally, the prediction result was obtained by the voting of the three classifiers. The experimental results of the 10-fold cross-validation test in the training dataset showed that PredMHC can obtain 91.69% accuracy. Experimental results on comparison with other features, classifiers, and existing methods showed the effectiveness of PredMHC in predicting the MHC.
Collapse
Affiliation(s)
- Dong Chen
- College of Electrical and Information Engineering, Quzhou University, Quzhou, China
| | - Yanjuan Li
- College of Electrical and Information Engineering, Quzhou University, Quzhou, China
| |
Collapse
|
26
|
Yan K, Lv H, Guo Y, Chen Y, Wu H, Liu B. TPpred-ATMV: therapeutic peptide prediction by adaptive multi-view tensor learning model. Bioinformatics 2022; 38:2712-2718. [PMID: 35561206 DOI: 10.1093/bioinformatics/btac200] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/17/2022] [Accepted: 04/06/2022] [Indexed: 11/12/2022] Open
Abstract
MOTIVATION Therapeutic peptide prediction is important for the discovery of efficient therapeutic peptides and drug development. Researchers have developed several computational methods to identify different therapeutic peptide types. However, these computational methods focus on identifying some specific types of therapeutic peptides, failing to predict the comprehensive types of therapeutic peptides. Moreover, it is still challenging to utilize different properties to predict the therapeutic peptides. RESULTS In this study, an adaptive multi-view based on the tensor learning framework TPpred-ATMV is proposed for predicting different types of therapeutic peptides. TPpred-ATMV constructs the class and probability information based on various sequence features. We constructed the latent subspace among the multi-view features and constructed an auto-weighted multi-view tensor learning model to utilize the high correlation based on the multi-view features. Experimental results showed that the TPpred-ATMV is better than or highly comparable with the other state-of-the-art methods for predicting eight types of therapeutic peptides. AVAILABILITY AND IMPLEMENTATION The code of TPpred-ATMV is accessed at: https://github.com/cokeyk/TPpred-ATMV. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Ke Yan
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Hongwu Lv
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Yichen Guo
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Yongyong Chen
- Bio-Computing Research Center, Harbin Institute of Technology, Shenzhen 518055, China
| | - Hao Wu
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Bin Liu
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
27
|
Zhang J, Yan K, Chen Q, Liu B. PreRBP-TL: prediction of species-specific RNA-binding proteins based on transfer learning. Bioinformatics 2022; 38:2135-2143. [PMID: 35176130 DOI: 10.1093/bioinformatics/btac106] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 11/18/2021] [Accepted: 02/15/2022] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION RNA-binding proteins (RBPs) play crucial roles in post-transcriptional regulation. Accurate identification of RBPs helps to understand gene expression, regulation, etc. In recent years, some computational methods were proposed to identify RBPs. However, these methods fail to accurately identify RBPs from some specific species with limited data, such as bacteria. RESULTS In this study, we introduce a computational method called PreRBP-TL for identifying species-specific RBPs based on transfer learning. The weights of the prediction model were initialized by pretraining with the large general RBP dataset and then fine-tuned with the small species-specific RPB dataset by using transfer learning. The experimental results show that the PreRBP-TL achieves better performance for identifying the species-specific RBPs from Human, Arabidopsis, Escherichia coli and Salmonella, outperforming eight state-of-the-art computational methods. It is anticipated PreRBP-TL will become a useful method for identifying RBPs. AVAILABILITY AND IMPLEMENTATION For the convenience of researchers to identify RBPs, the web server of PreRBP-TL was established, freely available at http://bliulab.net/PreRBP-TL. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jun Zhang
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, Guangdong 518055, China
| | - Ke Yan
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Qingcai Chen
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, Guangdong 518055, China
| | - Bin Liu
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, Guangdong 518055, China.,School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China.,Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
28
|
Li H, Pang Y, Liu B, Yu L. MoRF-FUNCpred: Molecular Recognition Feature Function Prediction Based on Multi-Label Learning and Ensemble Learning. Front Pharmacol 2022; 13:856417. [PMID: 35350759 PMCID: PMC8957949 DOI: 10.3389/fphar.2022.856417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/14/2022] [Indexed: 01/13/2023] Open
Abstract
Intrinsically disordered regions (IDRs) without stable structure are important for protein structures and functions. Some IDRs can be combined with molecular fragments to make itself completed the transition from disordered to ordered, which are called molecular recognition features (MoRFs). There are five main functions of MoRFs: molecular recognition assembler (MoR_assembler), molecular recognition chaperone (MoR_chaperone), molecular recognition display sites (MoR_display_sites), molecular recognition effector (MoR_effector), and molecular recognition scavenger (MoR_scavenger). Researches on functions of molecular recognition features are important for pharmaceutical and disease pathogenesis. However, the existing computational methods can only predict the MoRFs in proteins, failing to distinguish their different functions. In this paper, we treat MoRF function prediction as a multi-label learning task and solve it with the Binary Relevance (BR) strategy. Finally, we use Support Vector Machine (SVM), Logistic Regression (LR), Decision Tree (DT), and Random Forest (RF) as basic models to construct MoRF-FUNCpred through ensemble learning. Experimental results show that MoRF-FUNCpred performs well for MoRF function prediction. To the best knowledge of ours, MoRF-FUNCpred is the first predictor for predicting the functions of MoRFs. Availability and Implementation: The stand alone package of MoRF-FUNCpred can be accessed from https://github.com/LiangYu-Xidian/MoRF-FUNCpred.
Collapse
Affiliation(s)
- Haozheng Li
- School of Computer Science and Technology, Xidian University, Xi'an, China
| | - Yihe Pang
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
| | - Bin Liu
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China.,Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, China
| | - Liang Yu
- School of Computer Science and Technology, Xidian University, Xi'an, China
| |
Collapse
|
29
|
Ahmed Z, Zulfiqar H, Khan AA, Gul I, Dao FY, Zhang ZY, Yu XL, Tang L. iThermo: A Sequence-Based Model for Identifying Thermophilic Proteins Using a Multi-Feature Fusion Strategy. Front Microbiol 2022; 13:790063. [PMID: 35273581 PMCID: PMC8902591 DOI: 10.3389/fmicb.2022.790063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/10/2022] [Indexed: 01/20/2023] Open
Abstract
Thermophilic proteins have important application value in biotechnology and industrial processes. The correct identification of thermophilic proteins provides important information for the application of these proteins in engineering. The identification method of thermophilic proteins based on biochemistry is laborious, time-consuming, and high cost. Therefore, there is an urgent need for a fast and accurate method to identify thermophilic proteins. Considering this urgency, we constructed a reliable benchmark dataset containing 1,368 thermophilic and 1,443 non-thermophilic proteins. A multi-layer perceptron (MLP) model based on a multi-feature fusion strategy was proposed to discriminate thermophilic proteins from non-thermophilic proteins. On independent data set, the proposed model could achieve an accuracy of 96.26%, which demonstrates that the model has a good application prospect. In order to use the model conveniently, a user-friendly software package called iThermo was established and can be freely accessed at http://lin-group.cn/server/iThermo/index.html. The high accuracy of the model and the practicability of the developed software package indicate that this study can accelerate the discovery and engineering application of thermally stable proteins.
Collapse
Affiliation(s)
- Zahoor Ahmed
- School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Hasan Zulfiqar
- School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Abdullah Aman Khan
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China.,Sichuan Artificial Intelligence Research Institute, Yibin, China
| | - Ijaz Gul
- School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China.,Tsinghua Shenzhen International Graduate School, Institute of Biopharmaceutical and Health Engineering, Tsinghua University, Shenzhen, China
| | - Fu-Ying Dao
- School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhao-Yue Zhang
- School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiao-Long Yu
- School of Materials Science and Engineering, Hainan University, Haikou, China
| | - Lixia Tang
- School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
30
|
Cai J, Xiao G, Su R. GC6mA-Pred: A deep learning approach to identify DNA N6-methyladenine sites in the rice genome. Methods 2022; 204:14-21. [PMID: 35149214 DOI: 10.1016/j.ymeth.2022.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/31/2022] [Accepted: 02/05/2022] [Indexed: 12/11/2022] Open
Abstract
MOTIVATION DNA N6-methyladenine (6mA) is a pivotal DNA modification for various biological processes. More accurate prediction of 6mA methylation sites plays an irreplaceable part in grasping the internal rationale of related biological activities. However, the existing prediction methods only extract information from a single dimension, which has some limitations. Therefore, it is very necessary to obtain the information of 6mA sites from different dimensions, so as to establish a reliable prediction method. RESULTS In this study, a neural network based bioinformatics model named GC6mA-Pred is proposed to predict N6-methyladenine modifications in DNA sequences. GC6mA-Pred extracts significant information from both sequence level and graph level. In the sequence level, GC6mA-Pred uses a three-layer convolution neural network (CNN) model to represent the sequence. In the graph level, GC6mA-Pred employs graph neural network (GNN) method to integrate various information contained in the chemical molecular formula corresponding to DNA sequence. In our newly built dataset, GC6mA-Pred shows better performance than other existing models. The results of comparative experiments have illustrated that GC6mA-Pred is capable of producing a marked effect in accurately identifying DNA 6mA modifications.
Collapse
Affiliation(s)
- Jianhua Cai
- Fujian Provincial Key Laboratory of Information Processing and Intelligent Control, College of Computer and Control Engineering, Minjiang University, Fuzhou, China; College of Mathematics and Computer Science, Fuzhou University, Fuzhou, PR China
| | - Guobao Xiao
- Fujian Provincial Key Laboratory of Information Processing and Intelligent Control, College of Computer and Control Engineering, Minjiang University, Fuzhou, China.
| | - Ran Su
- College of Intelligence and Computing, Tianjin University, Tianjin, China.
| |
Collapse
|
31
|
Zhai Y, Zhang J, Zhang T, Gong Y, Zhang Z, Zhang D, Zhao Y. AOPM: Application of Antioxidant Protein Classification Model in Predicting the Composition of Antioxidant Drugs. Front Pharmacol 2022; 12:818115. [PMID: 35115948 PMCID: PMC8803896 DOI: 10.3389/fphar.2021.818115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/20/2021] [Indexed: 11/18/2022] Open
Abstract
Antioxidant proteins can not only balance the oxidative stress in the body, but are also an important component of antioxidant drugs. Accurate identification of antioxidant proteins is essential to help humans fight diseases and develop new drugs. In this paper, we developed a friendly method AOPM to identify antioxidant proteins. 188D and the Composition of k-spaced Amino Acid Pairs were adopted as the feature extraction method. In addition, the Max-Relevance-Max-Distance algorithm (MRMD) and random forest were the feature selection and classifier, respectively. We used 5-folds cross-validation and independent test dataset to evaluate our model. On the test dataset, AOPM presented a higher performance compared with the state-of-the-art methods. The sensitivity, specificity, accuracy, Matthew’s Correlation Coefficient and an Area Under the Curve reached 87.3, 94.2, 92.0%, 0.815 and 0.972, respectively. In addition, AOPM still has excellent performance in predicting the catalytic enzymes of antioxidant drugs. This work proved the feasibility of virtual drug screening based on sequence information and provided new ideas and solutions for drug development.
Collapse
Affiliation(s)
- Yixiao Zhai
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Jingyu Zhang
- Department of Neurology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tianjiao Zhang
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Yue Gong
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Zixiao Zhang
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Dandan Zhang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Dandan Zhang, ; Yuming Zhao,
| | - Yuming Zhao
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
- *Correspondence: Dandan Zhang, ; Yuming Zhao,
| |
Collapse
|
32
|
Yu L, Zheng Y, Gao L. MiRNA-disease association prediction based on meta-paths. Brief Bioinform 2022; 23:6501422. [PMID: 35018405 DOI: 10.1093/bib/bbab571] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/02/2021] [Accepted: 12/11/2021] [Indexed: 01/09/2023] Open
Abstract
Since miRNAs can participate in the posttranscriptional regulation of gene expression, they may provide ideas for the development of new drugs or become new biomarkers for drug targets or disease diagnosis. In this work, we propose an miRNA-disease association prediction method based on meta-paths (MDPBMP). First, an miRNA-disease-gene heterogeneous information network was constructed, and seven symmetrical meta-paths were defined according to different semantics. After constructing the initial feature vector for the node, the vector information carried by all nodes on the meta-path instance is extracted and aggregated to update the feature vector of the starting node. Then, the vector information obtained by the nodes on different meta-paths is aggregated. Finally, miRNA and disease embedding feature vectors are used to calculate their associated scores. Compared with the other methods, MDPBMP obtained the highest AUC value of 0.9214. Among the top 50 predicted miRNAs for lung neoplasms, esophageal neoplasms, colon neoplasms and breast neoplasms, 49, 48, 49 and 50 have been verified. Furthermore, for breast neoplasms, we deleted all the known associations between breast neoplasms and miRNAs from the training set. These results also show that for new diseases without known related miRNA information, our model can predict their potential miRNAs. Code and data are available at https://github.com/LiangYu-Xidian/MDPBMP.
Collapse
Affiliation(s)
- Liang Yu
- School of Computer Science and Technology, Xidian University, Xi'an 710071, P.R. China
| | - Yujia Zheng
- School of Computer Science and Technology, Xidian University, Xi'an 710071, P.R. China
| | - Lin Gao
- School of Computer Science and Technology, Xidian University, Xi'an 710071, P.R. China
| |
Collapse
|
33
|
Jiao S, Zou Q. Identification of plant vacuole proteins by exploiting deep representation learning features. Comput Struct Biotechnol J 2022; 20:2921-2927. [PMID: 35765653 PMCID: PMC9207291 DOI: 10.1016/j.csbj.2022.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 12/04/2022] Open
Abstract
Plant vacuoles are the most important organelles for plant growth, development, and defense, and they play an important role in many types of stress responses. An important function of vacuole proteins is the transport of various classes of amino acids, ions, sugars, and other molecules. Accurate identification of vacuole proteins is crucial for revealing their biological functions. Several automatic and rapid computational tools have been proposed for the subcellular localization of proteins. Regrettably, they are not specific for the identification of plant vacuole proteins. To the best of our knowledge, there is only one computational software specifically trained for plant vacuolar proteins. Although its accuracy is acceptable, the prediction performance and stability of this method in practical applications can still be improved. Hence, in this study, a new predictor named iPVP-DRLF was developed to identify plant vacuole proteins specifically and effectively. This prediction software is designed using the light gradient boosting machine (LGBM) algorithm and hybrid features composed of classic sequence features and deep representation learning features. iPVP-DRLF achieved fivefold cross-validation and independent test accuracy values of 88.25 % and 87.16 %, respectively, both outperforming previous state-of-the-art predictors. Moreover, the blind dataset test results also showed that the performance of iPVP-DRLF was significantly better than the existing tools. The results of comparative experiments confirmed that deep representation learning features have an advantage over other classic sequence features in the identification of plant vacuole proteins. We believe that iPVP-DRLF would serve as an effective computational technique for plant vacuole protein prediction and facilitate related future research. The online server is freely accessible at https://lab.malab.cn/~acy/iPVP-DRLF. In addition, the source code and datasets are also accessible at https://github.com/jiaoshihu/iPVP-DRLF.
Collapse
Affiliation(s)
- Shihu Jiao
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| | - Quan Zou
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
- Corresponding author at: Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China.
| |
Collapse
|
34
|
Lv H, Zhang Y, Wang JS, Yuan SS, Sun ZJ, Dao FY, Guan ZX, Lin H, Deng KJ. iRice-MS: An integrated XGBoost model for detecting multitype post-translational modification sites in rice. Brief Bioinform 2021; 23:6447435. [PMID: 34864888 DOI: 10.1093/bib/bbab486] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/05/2021] [Accepted: 10/23/2021] [Indexed: 12/13/2022] Open
Abstract
Post-translational modification (PTM) refers to the covalent and enzymatic modification of proteins after protein biosynthesis, which orchestrates a variety of biological processes. Detecting PTM sites in proteome scale is one of the key steps to in-depth understanding their regulation mechanisms. In this study, we presented an integrated method based on eXtreme Gradient Boosting (XGBoost), called iRice-MS, to identify 2-hydroxyisobutyrylation, crotonylation, malonylation, ubiquitination, succinylation and acetylation in rice. For each PTM-specific model, we adopted eight feature encoding schemes, including sequence-based features, physicochemical property-based features and spatial mapping information-based features. The optimal feature set was identified from each encoding, and their respective models were established. Extensive experimental results show that iRice-MS always display excellent performance on 5-fold cross-validation and independent dataset test. In addition, our novel approach provides the superiority to other existing tools in terms of AUC value. Based on the proposed model, a web server named iRice-MS was established and is freely accessible at http://lin-group.cn/server/iRice-MS.
Collapse
Affiliation(s)
- Hao Lv
- Center for Informational Biology at University of Electronic Science and Technology of China, China
| | - Yang Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, China
| | - Jia-Shu Wang
- Center for Informational Biology at University of Electronic Science and Technology of China, China
| | - Shi-Shi Yuan
- Center for Informational Biology at University of Electronic Science and Technology of China, China
| | - Zi-Jie Sun
- Center for Informational Biology at University of Electronic Science and Technology of China, China
| | - Fu-Ying Dao
- Center for Informational Biology at University of Electronic Science and Technology of China, China
| | - Zheng-Xing Guan
- Center for Informational Biology at University of Electronic Science and Technology of China, China
| | - Hao Lin
- Center for Informational Biology at University of Electronic Science and Technology of China, China
| | - Ke-Jun Deng
- Center for Informational Biology at University of Electronic Science and Technology of China, China
| |
Collapse
|
35
|
Prediction of Metal Ion Binding Sites of Transmembrane Proteins. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:2327832. [PMID: 34721655 PMCID: PMC8556105 DOI: 10.1155/2021/2327832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/01/2021] [Indexed: 12/22/2022]
Abstract
The metal ion binding of transmembrane proteins (TMPs) plays a fundamental role in biological processes, pharmaceutics, and medicine, but it is hard to extract enough TMP structures in experimental techniques to discover their binding mechanism comprehensively. To predict the metal ion binding sites for TMPs on a large scale, we present a simple and effective two-stage prediction method TMP-MIBS, to identify the corresponding binding residues using TMP sequences. At present, there is no specific research on the metal ion binding prediction of TMPs. Thereby, we compared our model with the published tools which do not distinguish TMPs from water-soluble proteins. The results in the independent verification dataset show that TMP-MIBS has superior performance. This paper explores the interaction mechanism between TMPs and metal ions, which is helpful to understand the structure and function of TMPs and is of great significance to further construct transport mechanisms and identify potential drug targets.
Collapse
|
36
|
Wang X, Li F, Qiu W, Xu B, Li Y, Lian X, Yu H, Zhang Z, Wang J, Li Z, Xue W, Zhu F. SYNBIP: synthetic binding proteins for research, diagnosis and therapy. Nucleic Acids Res 2021; 50:D560-D570. [PMID: 34664670 PMCID: PMC8728148 DOI: 10.1093/nar/gkab926] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/13/2021] [Accepted: 10/14/2021] [Indexed: 12/11/2022] Open
Abstract
The success of protein engineering and design has extensively expanded the protein space, which presents a promising strategy for creating next-generation proteins of diverse functions. Among these proteins, the synthetic binding proteins (SBPs) are smaller, more stable, less immunogenic, and better of tissue penetration than others, which make the SBP-related data attracting extensive interest from worldwide scientists. However, no database has been developed to systematically provide the valuable information of SBPs yet. In this study, a database named ‘Synthetic Binding Proteins for Research, Diagnosis, and Therapy (SYNBIP)’ was thus introduced. This database is unique in (a) comprehensively describing thousands of SBPs from the perspectives of scaffolds, biophysical & functional properties, etc.; (b) panoramically illustrating the binding targets & the broad application of each SBP and (c) enabling a similarity search against the sequences of all SBPs and their binding targets. Since SBP is a human-made protein that has not been found in nature, the discovery of novel SBPs relied heavily on experimental protein engineering and could be greatly facilitated by in-silico studies (such as AI and computational modeling). Thus, the data provided in SYNBIP could lay a solid foundation for the future development of novel SBPs. The SYNBIP is accessible without login requirement at both official (https://idrblab.org/synbip/) and mirror (http://synbip.idrblab.net/) sites.
Collapse
Affiliation(s)
- Xiaona Wang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Fengcheng Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Wenqi Qiu
- Department of Surgery, HKU-SZH & Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Binbin Xu
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Yanlin Li
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Xichen Lian
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hongyan Yu
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Zhao Zhang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Jianxin Wang
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Zhaorong Li
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Weiwei Xue
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Feng Zhu
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.,College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.,Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| |
Collapse
|
37
|
Wang Y, Xu L, Zou Q, Lin C. prPred-DRLF: Plant R protein predictor using deep representation learning features. Proteomics 2021; 22:e2100161. [PMID: 34569713 DOI: 10.1002/pmic.202100161] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/30/2021] [Accepted: 09/21/2021] [Indexed: 12/17/2022]
Abstract
Plant resistance (R) proteins play a significant role in the detection of pathogen invasion. Accurately predicting plant R proteins is a key task in phytopathology. Most plant R protein predictors are dependent on traditional feature extraction methods. Recently, deep representation learning methods have been successfully applied in solving protein classification problems. Motivated by this, we propose a new computational approach, called prPred-DRLF, which uses deep representation learning feature models to encode the amino acids as numerical vectors. The results show that the fused features of bidirectional long short-term memory (BiLSTM) embedding and unified representation (UniRep) embedding have a better performance than other features for plant R protein identification using a light gradient boosting machine (LGBM) classifier. The model was evaluated using an independent test achieving an accuracy of 0.956, F1-score of 0.933, and area under the receiver operating characteristic (ROC) curve (AUC) of 0.997. Meanwhile, compared with the state-of-the-art prPred and HMMER method, prPred-DRLF shows an overall improvement in accuracy, F1-score, AUC, and recall. prPred-DRLF is a higher-performance plant R protein prediction tool based on two kinds of deep representation learning technologies and offers a user-friendly interface for inspecting possible plant R proteins. We hope that prPred-DRLF will become a useful tool for biological research. A user-friendly webserver for prPred-DRLF is freely accessible at http://lab.malab.cn/soft/prPred-DRLF. The Python script can be downloaded from https://github.com/Wangys-prog/prPred-DRLF.
Collapse
Affiliation(s)
- Yansu Wang
- School of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen, China.,Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Lei Xu
- School of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China.,Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang, China
| | - Chen Lin
- School of Informatics, Xiamen University, Xiamen, China
| |
Collapse
|
38
|
Chen X, Lin Y, Qu Q, Ning B, Chen H, Li X. An epistasis and heterogeneity analysis method based on maximum correlation and maximum consistence criteria. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:7711-7726. [PMID: 34814271 DOI: 10.3934/mbe.2021382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Tumor heterogeneity significantly increases the difficulty of tumor treatment. The same drugs and treatment methods have different effects on different tumor subtypes. Therefore, tumor heterogeneity is one of the main sources of poor prognosis, recurrence and metastasis. At present, there have been some computational methods to study tumor heterogeneity from the level of genome, transcriptome, and histology, but these methods still have certain limitations. In this study, we proposed an epistasis and heterogeneity analysis method based on genomic single nucleotide polymorphism (SNP) data. First of all, a maximum correlation and maximum consistence criteria was designed based on Bayesian network score K2 and information entropy for evaluating genomic epistasis. As the number of SNPs increases, the epistasis combination space increases sharply, resulting in a combination explosion phenomenon. Therefore, we next use an improved genetic algorithm to search the SNP epistatic combination space for identifying potential feasible epistasis solutions. Multiple epistasis solutions represent different pathogenic gene combinations, which may lead to different tumor subtypes, that is, heterogeneity. Finally, the XGBoost classifier is trained with feature SNPs selected that constitute multiple sets of epistatic solutions to verify that considering tumor heterogeneity is beneficial to improve the accuracy of tumor subtype prediction. In order to demonstrate the effectiveness of our method, the power of multiple epistatic recognition and the accuracy of tumor subtype classification measures are evaluated. Extensive simulation results show that our method has better power and prediction accuracy than previous methods.
Collapse
Affiliation(s)
- Xia Chen
- School of Basic Education, Changsha Aeronautical Vocational and Technical College, Changsha, Hunan 410124, China
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Yexiong Lin
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Qiang Qu
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Bin Ning
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Haowen Chen
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Xiong Li
- School of Software, East China Jiaotong University, Nanchang 330013, China
| |
Collapse
|
39
|
Shao J, Chen J, Liu B. ProtRe-CN: Protein Remote Homology Detection by Combining Classification Methods and Network Methods via Learning to Rank. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; PP:1-1. [PMID: 34460380 DOI: 10.1109/tcbb.2021.3108168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Protein remote homology detection is one of fundamental research tasks for downstream analysis (i.e., protein structure and function prediction). Many advanced methods are proposed from different views with complementary detection ability, such as the classification method, the network method, and the ranking method. A framework integrating these heterogeneous methods is urgently desired to reduce the false positive rate and predictive bias. We propose a novel ranking method called ProtRe-CN by fusing the classification methods and network methods via Learning to Rank. Experimental results on the benchmark dataset and the independent dataset show that ProtRe-CN outperforms other existing state-of-the-art predictors. ProtRe-CN improves the detective performance via correcting the false positives in the ranking list by combining the heterogeneous methods. The web server of ProtRe-CN can be accessed at http://bliulab.net/ProtRe-CN.
Collapse
|
40
|
Feng C, Wei H, Yang D, Feng B, Ma Z, Han S, Zou Q, Shi H. ORS-Pred: An optimized reduced scheme-based identifier for antioxidant proteins. Proteomics 2021; 21:e2100017. [PMID: 34009737 DOI: 10.1002/pmic.202100017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/22/2021] [Accepted: 05/12/2021] [Indexed: 12/30/2022]
Abstract
Antioxidant proteins can terminate a chain of reactions caused by free radicals and protect cells from damage. To identify antioxidant proteins rapidly, a computational model was proposed based on the optimized recoding scheme, sequence information and machine learning methods. First, over 600 recoding schemes were collected to build a scheme set. Then, the original sequence was recoded as a reduced expression whose g-gap dipeptides (g = 0, 1, 2) were used as the features of proteins. Furthermore, a random forest method was used to evaluate the classification ability of the obtained dipeptide features. After going through all schemes, the best predictive performance scheme was chosen as the optimized reduction scheme. Finally, for the RF method, a grid search strategy was used to select a better parameter combination to identify antioxidant proteins. In the experiment, the present method correctly recognized 90.13-99.87% of the antioxidant samples. Other experimental results also proved that the present method was efficient to identify antioxidant proteins. Finally, we also developed a web server that was freely accessible to researchers.
Collapse
Affiliation(s)
- Changli Feng
- Department of Information Science and Technology, Taishan University, Taian, China
| | - Haiyan Wei
- Department of Teachers and Education, Taishan University, Taian, China
| | - Deyun Yang
- Department of Information Science and Technology, Taishan University, Taian, China
| | - Bin Feng
- Department of Information Science and Technology, Taishan University, Taian, China
| | - Zhaogui Ma
- Department of Information Science and Technology, Taishan University, Taian, China
| | - Shuguang Han
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China.,China and Hainan Key Laboratory for Computational Science and Application, Hainan Normal University, Haikou, China
| | - Hua Shi
- School of Opto-electronic and Communication Engineering, Xiamen University of Technology, Xiamen, China
| |
Collapse
|
41
|
Zhao S, Meng J, Luan Y. LncRNA-Encoded Short Peptides Identification Using Feature Subset Recombination and Ensemble Learning. Interdiscip Sci 2021; 14:101-112. [PMID: 34304369 DOI: 10.1007/s12539-021-00464-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 11/28/2022]
Abstract
Long non-coding RNA (lncRNA), which is a type of non-coding RNA, was reported to contain short open reading frames (sORFs). SORFs-encoded short peptides (SEPs) have been demonstrated to play a crucial role in regulating the biological processes such as growth, development, and resistance response. The identification of SEPs is vital to further understanding their function. However, there is still a lack of methods for identifying SEPs effectively and rapidly. In this study, a novel method for lncRNA-encoded short peptides identification based on feature subset recombination and ensemble learning, lncPepid, is developed. lncPepid transforms the data of Zea mays and Arabidopsis thaliana into hybrid features from two aspects including sequence composition and physicochemical properties separately. It optimizes hybrid features by proposing a novel weighted iteration-based feature selection method to recombine a stable subset that characterizes SEPs effectively. Different classification models with different optimized features are constructed and tested separately. The outputs of the optimal models are integrated for ensemble classification to improve efficiency. Experimental results manifest that the geometric mean of sensitivity and specificity of lncPepid is about 70% on the identification of functional SEPs derived from multiple species. It is an effective and rapid method for the identification of lncRNA-encoded short peptides. This study can be extended to the research on SEPs from other species and have crucial implications for further findings and studies of functional genomics.
Collapse
Affiliation(s)
- Siyuan Zhao
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, Liaoning, China
| | - Jun Meng
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, Liaoning, China.
| | - Yushi Luan
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, Liaoning, China
| |
Collapse
|
42
|
Zulfiqar H, Yuan SS, Huang QL, Sun ZJ, Dao FY, Yu XL, Lin H. Identification of cyclin protein using gradient boost decision tree algorithm. Comput Struct Biotechnol J 2021; 19:4123-4131. [PMID: 34527186 PMCID: PMC8346528 DOI: 10.1016/j.csbj.2021.07.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022] Open
Abstract
Cyclin proteins are capable to regulate the cell cycle by forming a complex with cyclin-dependent kinases to activate cell cycle. Correct recognition of cyclin proteins could provide key clues for studying their functions. However, their sequences share low similarity, which results in poor prediction for sequence similarity-based methods. Thus, it is urgent to construct a machine learning model to identify cyclin proteins. This study aimed to develop a computational model to discriminate cyclin proteins from non-cyclin proteins. In our model, protein sequences were encoded by seven kinds of features that are amino acid composition, composition of k-spaced amino acid pairs, tri peptide composition, pseudo amino acid composition, geary correlation, normalized moreau-broto autocorrelation and composition/transition/distribution. Afterward, these features were optimized by using analysis of variance (ANOVA) and minimum redundancy maximum relevance (mRMR) with incremental feature selection (IFS) technique. A gradient boost decision tree (GBDT) classifier was trained on the optimal features. Five-fold cross-validated results showed that our model would identify cyclins with an accuracy of 93.06% and AUC value of 0.971, which are higher than the two recent studies on the same data.
Collapse
Affiliation(s)
- Hasan Zulfiqar
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Shi-Shi Yuan
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Qin-Lai Huang
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Zi-Jie Sun
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Fu-Ying Dao
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xiao-Long Yu
- School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Hao Lin
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
43
|
Dong GF, Zheng L, Huang SH, Gao J, Zuo YC. Amino Acid Reduction Can Help to Improve the Identification of Antimicrobial Peptides and Their Functional Activities. Front Genet 2021; 12:669328. [PMID: 33959153 PMCID: PMC8093877 DOI: 10.3389/fgene.2021.669328] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/23/2021] [Indexed: 02/03/2023] Open
Abstract
Antimicrobial peptides (AMPs) are considered as potential substitutes of antibiotics in the field of new anti-infective drug design. There have been several machine learning algorithms and web servers in identifying AMPs and their functional activities. However, there is still room for improvement in prediction algorithms and feature extraction methods. The reduced amino acid (RAA) alphabet effectively solved the problems of simplifying protein complexity and recognizing the structure conservative region. This article goes into details about evaluating the performances of more than 5,000 amino acid reduced descriptors generated from 74 types of amino acid reduced alphabet in the first stage and the second stage to construct an excellent two-stage classifier, Identification of Antimicrobial Peptides by Reduced Amino Acid Cluster (iAMP-RAAC), for identifying AMPs and their functional activities, respectively. The results show that the first stage AMP classifier is able to achieve the accuracy of 97.21 and 97.11% for the training data set and independent test dataset. In the second stage, our classifier still shows good performance. At least three of the four metrics, sensitivity (SN), specificity (SP), accuracy (ACC), and Matthews correlation coefficient (MCC), exceed the calculation results in the literature. Further, the ANOVA with incremental feature selection (IFS) is used for feature selection to further improve prediction performance. The prediction performance is further improved after the feature selection of each stage. At last, a user-friendly web server, iAMP-RAAC, is established at http://bioinfor.imu.edu. cn/iampraac.
Collapse
Affiliation(s)
- Gai-Fang Dong
- Inner Mongolia Autonomous Region Key Laboratory of Big Data Research and Application of Agriculture and Animal Husbandry, College of Computer and Information Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Lei Zheng
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Sheng-Hui Huang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Jing Gao
- Inner Mongolia Autonomous Region Key Laboratory of Big Data Research and Application of Agriculture and Animal Husbandry, College of Computer and Information Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Yong-Chun Zuo
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
44
|
Feng P, Chen W. iRNA-m5U: A sequence based predictor for identifying 5-methyluridine modification sites in Saccharomyces cerevisiae. Methods 2021; 203:28-31. [PMID: 33882361 DOI: 10.1016/j.ymeth.2021.04.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/11/2021] [Accepted: 04/15/2021] [Indexed: 01/28/2023] Open
Abstract
The 5-methyluridine (m5U)modification plays important roles in a series of biological processes. Accurate identification of m5U sites will be helpful to decode its biological functions. Although experimental techniques have been proposed to detect m5U, they are still expensive and time consuming. In the present work, a support vector machine based method, called iRNA-m5U, was developed to identify the m5U sites in the Saccharomyces cerevisiae transcriptome. The performance of iRNA-m5U was validated based on different datasets. The accuracies obtained by iRNA-m5U is promising, indicating that it holds the potential to become an useful tool for the identification of m5U sites.
Collapse
Affiliation(s)
- Pengmian Feng
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611730, China
| | - Wei Chen
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611730, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611730, China; School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China.
| |
Collapse
|
45
|
Recent Advances in Predicting Protein S-Nitrosylation Sites. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5542224. [PMID: 33628788 PMCID: PMC7892234 DOI: 10.1155/2021/5542224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 01/09/2023]
Abstract
Protein S-nitrosylation (SNO) is a process of covalent modification of nitric oxide (NO) and its derivatives and cysteine residues. SNO plays an essential role in reversible posttranslational modifications of proteins. The accurate prediction of SNO sites is crucial in revealing a certain biological mechanism of NO regulation and related drug development. Identification of the sites of SNO in proteins is currently a very hot topic. In this review, we briefly summarize recent advances in computationally identifying SNO sites. The challenges and future perspectives for identifying SNO sites are also discussed. We anticipate that this review will provide insights into research on SNO site prediction.
Collapse
|
46
|
Wang Y, Wang P, Guo Y, Huang S, Chen Y, Xu L. prPred: A Predictor to Identify Plant Resistance Proteins by Incorporating k-Spaced Amino Acid (Group) Pairs. Front Bioeng Biotechnol 2021; 8:645520. [PMID: 33553134 PMCID: PMC7859348 DOI: 10.3389/fbioe.2020.645520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 12/31/2020] [Indexed: 11/13/2022] Open
Abstract
To infect plants successfully, pathogens adopt various strategies to overcome their physical and chemical barriers and interfere with the plant immune system. Plants deploy a large number of resistance (R) proteins to detect invading pathogens. The R proteins are encoded by resistance genes that contain cell surface-localized receptors and intracellular receptors. In this study, a new plant R protein predictor called prPred was developed based on a support vector machine (SVM), which can accurately distinguish plant R proteins from other proteins. Experimental results showed that the accuracy, precision, sensitivity, specificity, F1-score, MCC, and AUC of prPred were 0.935, 1.000, 0.806, 1.000, 0.893, 0.857, and 0.948, respectively, on an independent test set. Moreover, the predictor integrated the HMMscan search tool and Phobius to identify protein domain families and transmembrane protein regions to differentiate subclasses of R proteins. prPred is available at https://github.com/Wangys-prog/prPred. The tool requires a valid Python installation and is run from the command line.
Collapse
Affiliation(s)
- Yansu Wang
- School of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen, China
| | - Pingping Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yingjie Guo
- School of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen, China
| | - Shan Huang
- Department of Neurology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yu Chen
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Lei Xu
- School of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen, China
| |
Collapse
|