1
|
De Waele G, Menschaert G, Waegeman W. An antimicrobial drug recommender system using MALDI-TOF MS and dual-branch neural networks. eLife 2024; 13:RP93242. [PMID: 39540875 PMCID: PMC11563574 DOI: 10.7554/elife.93242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Timely and effective use of antimicrobial drugs can improve patient outcomes, as well as help safeguard against resistance development. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is currently routinely used in clinical diagnostics for rapid species identification. Mining additional data from said spectra in the form of antimicrobial resistance (AMR) profiles is, therefore, highly promising. Such AMR profiles could serve as a drop-in solution for drastically improving treatment efficiency, effectiveness, and costs. This study endeavors to develop the first machine learning models capable of predicting AMR profiles for the whole repertoire of species and drugs encountered in clinical microbiology. The resulting models can be interpreted as drug recommender systems for infectious diseases. We find that our dual-branch method delivers considerably higher performance compared to previous approaches. In addition, experiments show that the models can be efficiently fine-tuned to data from other clinical laboratories. MALDI-TOF-based AMR recommender systems can, hence, greatly extend the value of MALDI-TOF MS for clinical diagnostics. All code supporting this study is distributed on PyPI and is packaged at https://github.com/gdewael/maldi-nn.
Collapse
Affiliation(s)
- Gaetan De Waele
- Department of Data Analysis and Mathematical Modelling, Ghent University, Ghent, Belgium
| | - Gerben Menschaert
- Department of Data Analysis and Mathematical Modelling, Ghent University, Ghent, Belgium
| | - Willem Waegeman
- Department of Data Analysis and Mathematical Modelling, Ghent University, Ghent, Belgium
| |
Collapse
|
2
|
Ming Z, Chen X, Wang S, Liu H, Yuan Z, Wu M, Xia H. HostNet: improved sequence representation in deep neural networks for virus-host prediction. BMC Bioinformatics 2023; 24:455. [PMID: 38041071 PMCID: PMC10691023 DOI: 10.1186/s12859-023-05582-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 11/24/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND The escalation of viruses over the past decade has highlighted the need to determine their respective hosts, particularly for emerging ones that pose a potential menace to the welfare of both human and animal life. Yet, the traditional means of ascertaining the host range of viruses, which involves field surveillance and laboratory experiments, is a laborious and demanding undertaking. A computational tool with the capability to reliably predict host ranges for novel viruses can provide timely responses in the prevention and control of emerging infectious diseases. The intricate nature of viral-host prediction involves issues such as data imbalance and deficiency. Therefore, developing highly accurate computational tools capable of predicting virus-host associations is a challenging and pressing demand. RESULTS To overcome the challenges of virus-host prediction, we present HostNet, a deep learning framework that utilizes a Transformer-CNN-BiGRU architecture and two enhanced sequence representation modules. The first module, k-mer to vector, pre-trains a background vector representation of k-mers from a broad range of virus sequences to address the issue of data deficiency. The second module, an adaptive sliding window, truncates virus sequences of various lengths to create a uniform number of informative and distinct samples for each sequence to address the issue of data imbalance. We assess HostNet's performance on a benchmark dataset of "Rabies lyssavirus" and an in-house dataset of "Flavivirus". Our results show that HostNet surpasses the state-of-the-art deep learning-based method in host-prediction accuracies and F1 score. The enhanced sequence representation modules, significantly improve HostNet's training generalization, performance in challenging classes, and stability. CONCLUSION HostNet is a promising framework for predicting virus hosts from genomic sequences, addressing challenges posed by sparse and varying-length virus sequence data. Our results demonstrate its potential as a valuable tool for virus-host prediction in various biological contexts. Virus-host prediction based on genomic sequences using deep neural networks is a promising approach to identifying their potential hosts accurately and efficiently, with significant impacts on public health, disease prevention, and vaccine development.
Collapse
Affiliation(s)
- Zhaoyan Ming
- School of Computer and Computing Science, Hangzhou City University, Hangzhou, 310015, China
| | - Xiangjun Chen
- Polytechnic Institute, Zhejiang University, Hangzhou, 310058, China
| | - Shunlong Wang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Hong Liu
- Institute of Biomedicine, Shandong University of Technology, Zibo, 255000, China
| | - Zhiming Yuan
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Minghui Wu
- School of Computer and Computing Science, Hangzhou City University, Hangzhou, 310015, China.
| | - Han Xia
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Wuhan, 430071, China.
- University of Chinese Academy of Sciences, Beijing, 100190, China.
- Hubei Jiangxia Laboratory, Wuhan, 430200, China.
| |
Collapse
|
3
|
Wei J, Chen S, Zong L, Gao X, Li Y. Protein-RNA interaction prediction with deep learning: structure matters. Brief Bioinform 2022; 23:bbab540. [PMID: 34929730 PMCID: PMC8790951 DOI: 10.1093/bib/bbab540] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/14/2021] [Accepted: 11/22/2021] [Indexed: 12/11/2022] Open
Abstract
Protein-RNA interactions are of vital importance to a variety of cellular activities. Both experimental and computational techniques have been developed to study the interactions. Because of the limitation of the previous database, especially the lack of protein structure data, most of the existing computational methods rely heavily on the sequence data, with only a small portion of the methods utilizing the structural information. Recently, AlphaFold has revolutionized the entire protein and biology field. Foreseeably, the protein-RNA interaction prediction will also be promoted significantly in the upcoming years. In this work, we give a thorough review of this field, surveying both the binding site and binding preference prediction problems and covering the commonly used datasets, features and models. We also point out the potential challenges and opportunities in this field. This survey summarizes the development of the RNA-binding protein-RNA interaction field in the past and foresees its future development in the post-AlphaFold era.
Collapse
Affiliation(s)
- Junkang Wei
- Department of Computer Science and Engineering (CSE), The Chinese
University of Hong Kong (CUHK), 999077, Hong Kong SAR, China
| | - Siyuan Chen
- Computational Bioscience Research Center (CBRC),
King Abdullah University of Science and Technology (KAUST),
23955-6900, Thuwal, Saudi Arabia
| | - Licheng Zong
- Department of Computer Science and Engineering (CSE), The Chinese
University of Hong Kong (CUHK), 999077, Hong Kong SAR, China
| | - Xin Gao
- Computational Bioscience Research Center (CBRC),
King Abdullah University of Science and Technology (KAUST),
23955-6900, Thuwal, Saudi Arabia
| | - Yu Li
- Department of Computer Science and Engineering (CSE), The Chinese
University of Hong Kong (CUHK), 999077, Hong Kong SAR, China
- The CUHK Shenzhen Research Institute, Hi-Tech Park, 518057,
Shenzhen, China
| |
Collapse
|
4
|
Iuchi H, Matsutani T, Yamada K, Iwano N, Sumi S, Hosoda S, Zhao S, Fukunaga T, Hamada M. Representation learning applications in biological sequence analysis. Comput Struct Biotechnol J 2021; 19:3198-3208. [PMID: 34141139 PMCID: PMC8190442 DOI: 10.1016/j.csbj.2021.05.039] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/10/2021] [Accepted: 05/20/2021] [Indexed: 12/16/2022] Open
Abstract
Although remarkable advances have been reported in high-throughput sequencing, the ability to aptly analyze a substantial amount of rapidly generated biological (DNA/RNA/protein) sequencing data remains a critical hurdle. To tackle this issue, the application of natural language processing (NLP) to biological sequence analysis has received increased attention. In this method, biological sequences are regarded as sentences while the single nucleic acids/amino acids or k-mers in these sequences represent the words. Embedding is an essential step in NLP, which performs the conversion of these words into vectors. Specifically, representation learning is an approach used for this transformation process, which can be applied to biological sequences. Vectorized biological sequences can then be applied for function and structure estimation, or as input for other probabilistic models. Considering the importance and growing trend for the application of representation learning to biological research, in the present study, we have reviewed the existing knowledge in representation learning for biological sequence analysis.
Collapse
Affiliation(s)
- Hitoshi Iuchi
- Waseda Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555, Japan
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 169-8555, Japan
| | - Taro Matsutani
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 169-8555, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Keisuke Yamada
- School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Natsuki Iwano
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Shunsuke Sumi
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Shion Hosoda
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 169-8555, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Shitao Zhao
- Waseda Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Tsukasa Fukunaga
- Waseda Institute for Advanced Study, Waseda University, Tokyo 169-0051, Japan
- Department of Computer Science, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-0032, Japan
| | - Michiaki Hamada
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 169-8555, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan
- School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan
- Graduate School of Medicine, Nippon Medical School, Tokyo 113-8602, Japan
| |
Collapse
|