1
|
Wang Y, Yin Z. Prediction of miRNA-disease association based on multisource inductive matrix completion. Sci Rep 2024; 14:27503. [PMID: 39528650 PMCID: PMC11555322 DOI: 10.1038/s41598-024-78212-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
MicroRNAs (miRNAs) are endogenous non-coding RNAs approximately 23 nucleotides in length, playing significant roles in various cellular processes. Numerous studies have shown that miRNAs are involved in the regulation of many human diseases. Accurate prediction of miRNA-disease associations is crucial for early diagnosis, treatment, and prognosis assessment of diseases. In this paper, we propose the Autoencoder Inductive Matrix Completion (AEIMC) model to identify potential miRNA-disease associations. The model captures interaction features from multiple similarity networks, including miRNA functional similarity, miRNA sequence similarity, disease semantic similarity, disease ontology similarity, and Gaussian interaction kernel similarity between miRNAs and diseases. Autoencoders are used to extract more complex and abstract data representations, which are then input into the inductive matrix completion model for association prediction. The effectiveness of the model is validated through cross-validation, stratified threshold evaluation, and case studies, while ablation experiments further confirm the necessity of introducing sequence and ontology similarities for the first time.
Collapse
Affiliation(s)
- YaWei Wang
- School of Mathematics, Physics and Statistics, Institute for Frontier Medical Technology, Center of Intelligent Computing and Applied Statistics, Shanghai University of Enginneering Science, Shanghai, 201620, China
| | - ZhiXiang Yin
- School of Mathematics, Physics and Statistics, Institute for Frontier Medical Technology, Center of Intelligent Computing and Applied Statistics, Shanghai University of Enginneering Science, Shanghai, 201620, China.
| |
Collapse
|
2
|
Fu L, Yao Z, Zhou Y, Peng Q, Lyu H. ACLNDA: an asymmetric graph contrastive learning framework for predicting noncoding RNA-disease associations in heterogeneous graphs. Brief Bioinform 2024; 25:bbae533. [PMID: 39441244 PMCID: PMC11497849 DOI: 10.1093/bib/bbae533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/27/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
Noncoding RNAs (ncRNAs), including long noncoding RNAs (lncRNAs) and microRNAs (miRNAs), play crucial roles in gene expression regulation and are significant in disease associations and medical research. Accurate ncRNA-disease association prediction is essential for understanding disease mechanisms and developing treatments. Existing methods often focus on single tasks like lncRNA-disease associations (LDAs), miRNA-disease associations (MDAs), or lncRNA-miRNA interactions (LMIs), and fail to exploit heterogeneous graph characteristics. We propose ACLNDA, an asymmetric graph contrastive learning framework for analyzing heterophilic ncRNA-disease associations. It constructs inter-layer adjacency matrices from the original lncRNA, miRNA, and disease associations, and uses a Top-K intra-layer similarity edges construction approach to form a triple-layer heterogeneous graph. Unlike traditional works, to account for both node attribute features (ncRNA/disease) and node preference features (association), ACLNDA employs an asymmetric yet simple graph contrastive learning framework to maximize one-hop neighborhood context and two-hop similarity, extracting ncRNA-disease features without relying on graph augmentations or homophily assumptions, reducing computational cost while preserving data integrity. Our framework is capable of being applied to a universal range of potential LDA, MDA, and LMI association predictions. Further experimental results demonstrate superior performance to other existing state-of-the-art baseline methods, which shows its potential for providing insights into disease diagnosis and therapeutic target identification. The source code and data of ACLNDA is publicly available at https://github.com/AI4Bread/ACLNDA.
Collapse
Affiliation(s)
- Laiyi Fu
- School of Automation Science and Engineering, Xi’an Jiaotong University, Xi’an, Shannxi 710049, China
- Research Institute, Xi’an Jiaotong University, Zhejiang, Hangzhou, Zhejiang 311200, China
- Sichuan Digital Economy Industry Development Research Institute, Chengdu, Sichuan 610036, China
| | - ZhiYuan Yao
- School of Automation Science and Engineering, Xi’an Jiaotong University, Xi’an, Shannxi 710049, China
| | - Yangyi Zhou
- School of Automation Science and Engineering, Xi’an Jiaotong University, Xi’an, Shannxi 710049, China
| | - Qinke Peng
- School of Automation Science and Engineering, Xi’an Jiaotong University, Xi’an, Shannxi 710049, China
| | - Hongqiang Lyu
- School of Automation Science and Engineering, Xi’an Jiaotong University, Xi’an, Shannxi 710049, China
| |
Collapse
|
3
|
Wen S, Liu Y, Yang G, Chen W, Wu H, Zhu X, Wang Y. A method for miRNA diffusion association prediction using machine learning decoding of multi-level heterogeneous graph Transformer encoded representations. Sci Rep 2024; 14:20490. [PMID: 39227405 PMCID: PMC11371806 DOI: 10.1038/s41598-024-68897-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/29/2024] [Indexed: 09/05/2024] Open
Abstract
MicroRNAs (miRNAs) are a key class of endogenous non-coding RNAs that play a pivotal role in regulating diseases. Accurately predicting the intricate relationships between miRNAs and diseases carries profound implications for disease diagnosis, treatment, and prevention. However, these prediction tasks are highly challenging due to the complexity of the underlying relationships. While numerous effective prediction models exist for validating these associations, they often encounter information distortion due to limitations in efficiently retaining information during the encoding-decoding process. Inspired by Multi-layer Heterogeneous Graph Transformer and Machine Learning XGboost classifier algorithm, this study introduces a novel computational approach based on multi-layer heterogeneous encoder-machine learning decoder structure for miRNA-disease association prediction (MHXGMDA). First, we employ the multi-view similarity matrices as the input coding for MHXGMDA. Subsequently, we utilize the multi-layer heterogeneous encoder to capture the embeddings of miRNAs and diseases, aiming to capture the maximum amount of relevant features. Finally, the information from all layers is concatenated to serve as input to the machine learning classifier, ensuring maximal preservation of encoding details. We conducted a comprehensive comparison of seven different classifier models and ultimately selected the XGBoost algorithm as the decoder. This algorithm leverages miRNA embedding features and disease embedding features to decode and predict the association scores between miRNAs and diseases. We applied MHXGMDA to predict human miRNA-disease associations on two benchmark datasets. Experimental findings demonstrate that our approach surpasses several leading methods in terms of both the area under the receiver operating characteristic curve and the area under the precision-recall curve.
Collapse
Affiliation(s)
- SiJian Wen
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, 230036, China
| | - YinBo Liu
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, 230036, China
| | - Guang Yang
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, 230036, China
| | - WenXi Chen
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, 230036, China
| | - HaiTao Wu
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, 230036, China
| | - XiaoLei Zhu
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, 230036, China.
| | - YongMei Wang
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, 230036, China.
- Anhui Provincial Engineering Laboratory for Beidou Precision Agriculture Information, Hefei, 230036, China.
| |
Collapse
|
4
|
Sun W, Zhang P, Zhang W, Xu J, Huang Y, Li L. Synchronous Mutual Learning Network and Asynchronous Multi-Scale Embedding Network for miRNA-Disease Association Prediction. Interdiscip Sci 2024; 16:532-553. [PMID: 38310628 DOI: 10.1007/s12539-023-00602-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 02/06/2024]
Abstract
MicroRNA (miRNA) serves as a pivotal regulator of numerous cellular processes, and the identification of miRNA-disease associations (MDAs) is crucial for comprehending complex diseases. Recently, graph neural networks (GNN) have made significant advancements in MDA prediction. However, these methods tend to learn one type of node representation from a single heterogeneous network, ignoring the importance of multiple network topologies and node attributes. Here, we propose SMDAP (Sequence hierarchical modeling-based Mirna-Disease Association Prediction framework), a novel GNN-based framework that incorporates multiple network topologies and various node attributes including miRNA seed and full-length sequences to predict potential MDAs. Specifically, SMDAP consists of two types of MDA representation: following a heterogeneous pattern, we construct a transfer learning-like synchronous mutual learning network to learn the first MDA representation in conjunction with the miRNA seed sequence. Meanwhile, following a homogeneous pattern, we design a subgraph-inspired asynchronous multi-scale embedding network to obtain the second MDA representation based on the miRNA full-length sequence. Subsequently, an adaptive fusion approach is designed to combine the two branches such that we can score the MDAs by the downstream classifier and infer novel MDAs. Comprehensive experiments demonstrate that SMDAP integrates the advantages of multiple network topologies and node attributes into two branch representations. Moreover, the area under the receiver operating characteristic curve is 0.9622 on DB1, which is a 5.06% increase from the baselines. The area under the precision-recall curve is 0.9777, which is a 7.33% increase from the baselines. In addition, case studies on three human cancers validated the predictive performance of SMDAP. Overall, SMDAP represents a powerful tool for MDA prediction.
Collapse
Affiliation(s)
- Weicheng Sun
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ping Zhang
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Weihan Zhang
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinsheng Xu
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | | | - Li Li
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
5
|
Ji C, Yu N, Wang Y, Ni J, Zheng C. SGLMDA: A Subgraph Learning-Based Method for miRNA-Disease Association Prediction. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:1191-1201. [PMID: 38446654 DOI: 10.1109/tcbb.2024.3373772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
MicroRNAs (miRNA) are endogenous non-coding RNAs, typically around 23 nucleotides in length. Many miRNAs have been founded to play crucial roles in gene regulation though post-transcriptional repression in animals. Existing studies suggest that the dysregulation of miRNA is closely associated with many human diseases. Discovering novel associations between miRNAs and diseases is essential for advancing our understanding of disease pathogenesis at molecular level. However, experimental validation is time-consuming and expensive. To address this challenge, numerous computational methods have been proposed for predicting miRNA-disease associations. Unfortunately, most existing methods face difficulties when applied to large-scale miRNA-disease complex networks. In this paper, we present a novel subgraph learning method named SGLMDA for predicting miRNA-disease associations. For miRNA-disease pairs, SGLMDA samples K-hop subgraphs from the global heterogeneous miRNA-disease graph. It then introduces a novel subgraph representation algorithm based on Graph Neural Network (GNN) for feature extraction and prediction. Extensive experiments conducted on benchmark datasets demonstrate that SGLMDA can effectively and robustly predict potential miRNA-disease associations. Compared to other state-of-the-art methods, SGLMDA achieves superior prediction performance in terms of Area Under the Curve (AUC) and Average Precision (AP) values during 5-fold Cross-Validation (5CV) on benchmark datasets such as HMDD v2.0 and HMDD v3.2. Additionally, case studies on Colon Neoplasms and Triple-Negative Breast Cancer (TNBC) further underscore the predictive power of SGLMDA.
Collapse
|
6
|
Li Z, Wan L, Wang L, Wang W, Nie R. HHOMR: a hybrid high-order moment residual model for miRNA-disease association prediction. Brief Bioinform 2024; 25:bbae412. [PMID: 39175132 PMCID: PMC11341279 DOI: 10.1093/bib/bbae412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 07/23/2024] [Accepted: 08/04/2024] [Indexed: 08/24/2024] Open
Abstract
Numerous studies have demonstrated that microRNAs (miRNAs) are critically important for the prediction, diagnosis, and characterization of diseases. However, identifying miRNA-disease associations through traditional biological experiments is both costly and time-consuming. To further explore these associations, we proposed a model based on hybrid high-order moments combined with element-level attention mechanisms (HHOMR). This model innovatively fused hybrid higher-order statistical information along with structural and community information. Specifically, we first constructed a heterogeneous graph based on existing associations between miRNAs and diseases. HHOMR employs a structural fusion layer to capture structure-level embeddings and leverages a hybrid high-order moments encoder layer to enhance features. Element-level attention mechanisms are then used to adaptively integrate the features of these hybrid moments. Finally, a multi-layer perceptron is utilized to calculate the association scores between miRNAs and diseases. Through five-fold cross-validation on HMDD v2.0, we achieved a mean AUC of 93.28%. Compared with four state-of-the-art models, HHOMR exhibited superior performance. Additionally, case studies on three diseases-esophageal neoplasms, lymphoma, and prostate neoplasms-were conducted. Among the top 50 miRNAs with high disease association scores, 46, 47, and 45 associated with these diseases were confirmed by the dbDEMC and miR2Disease databases, respectively. Our results demonstrate that HHOMR not only outperforms existing models but also shows significant potential in predicting miRNA-disease associations.
Collapse
Affiliation(s)
- Zhengwei Li
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China
- Guangxi Academy of Science, Nanning, 530007, China
- School of Information Science and Engineering, Zaozhuang University, Zaozhuang, 277160, China
| | - Lipeng Wan
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China
| | - Lei Wang
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China
- Guangxi Academy of Science, Nanning, 530007, China
| | - Wenjing Wang
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China
| | - Ru Nie
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China
- Mine Digitization Engineering Research Center of the Ministry of Education, China University of Mining and Technology, Xuzhou 221116, China
| |
Collapse
|
7
|
Xuan P, Wang X, Cui H, Meng X, Nakaguchi T, Zhang T. Meta-Path Semantic and Global-Local Representation Learning Enhanced Graph Convolutional Model for Disease-Related miRNA Prediction. IEEE J Biomed Health Inform 2024; 28:4306-4316. [PMID: 38709611 DOI: 10.1109/jbhi.2024.3397003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Dysregulation of miRNAs is closely related to the progression of various diseases, so identifying disease-related miRNAs is crucial. Most recently proposed methods are based on graph reasoning, while they did not completely exploit the topological structure composed of the higher-order neighbor nodes and the global and local features of miRNA and disease nodes. We proposed a prediction method, MDAP, to learn semantic features of miRNA and disease nodes based on various meta-paths, as well as node features from the entire heterogeneous network perspective, and node pair attributes. Firstly, for both the miRNA and disease nodes, node category-wise meta-paths were constructed to integrate the similarity and association connection relationships. Each target node has its specific neighbor nodes for each meta-path, and the neighbors of longer meta-paths constitute its higher-order neighbor topological structure. Secondly, we constructed a meta-path specific graph convolutional network module to integrate the features of higher-order neighbors and their topology, and then learned the semantic representations of nodes. Thirdly, for the entire miRNA-disease heterogeneous network, a global-aware graph convolutional autoencoder was built to learn the network-view feature representations of nodes. We also designed semantic-level and representation-level attentions to obtain informative semantic features and node representations. Finally, the strategy based on the parallel convolutional-deconvolutional neural networks were designed to enhance the local feature learning for a pair of miRNA and disease nodes. The experiment results showed that MDAP outperformed other state-of-the-art methods, and the ablation experiments demonstrated the effectiveness of MDAP's major innovations. MDAP's ability in discovering potential disease-related miRNAs was further analyzed by the case studies over three diseases.
Collapse
|
8
|
Sheng N, Xie X, Wang Y, Huang L, Zhang S, Gao L, Wang H. A Survey of Deep Learning for Detecting miRNA- Disease Associations: Databases, Computational Methods, Challenges, and Future Directions. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:328-347. [PMID: 38194377 DOI: 10.1109/tcbb.2024.3351752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
MicroRNAs (miRNAs) are an important class of non-coding RNAs that play an essential role in the occurrence and development of various diseases. Identifying the potential miRNA-disease associations (MDAs) can be beneficial in understanding disease pathogenesis. Traditional laboratory experiments are expensive and time-consuming. Computational models have enabled systematic large-scale prediction of potential MDAs, greatly improving the research efficiency. With recent advances in deep learning, it has become an attractive and powerful technique for uncovering novel MDAs. Consequently, numerous MDA prediction methods based on deep learning have emerged. In this review, we first summarize publicly available databases related to miRNAs and diseases for MDA prediction. Next, we outline commonly used miRNA and disease similarity calculation and integration methods. Then, we comprehensively review the 48 existing deep learning-based MDA computation methods, categorizing them into classical deep learning and graph neural network-based techniques. Subsequently, we investigate the evaluation methods and metrics that are frequently used to assess MDA prediction performance. Finally, we discuss the performance trends of different computational methods, point out some problems in current research, and propose 9 potential future research directions. Data resources and recent advances in MDA prediction methods are summarized in the GitHub repository https://github.com/sheng-n/DL-miRNA-disease-association-methods.
Collapse
|
9
|
Ouyang D, Liang Y, Wang J, Li L, Ai N, Feng J, Lu S, Liao S, Liu X, Xie S. HGCLAMIR: Hypergraph contrastive learning with attention mechanism and integrated multi-view representation for predicting miRNA-disease associations. PLoS Comput Biol 2024; 20:e1011927. [PMID: 38652712 PMCID: PMC11037542 DOI: 10.1371/journal.pcbi.1011927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/19/2024] [Indexed: 04/25/2024] Open
Abstract
Existing studies have shown that the abnormal expression of microRNAs (miRNAs) usually leads to the occurrence and development of human diseases. Identifying disease-related miRNAs contributes to studying the pathogenesis of diseases at the molecular level. As traditional biological experiments are time-consuming and expensive, computational methods have been used as an effective complement to infer the potential associations between miRNAs and diseases. However, most of the existing computational methods still face three main challenges: (i) learning of high-order relations; (ii) insufficient representation learning ability; (iii) importance learning and integration of multi-view embedding representation. To this end, we developed a HyperGraph Contrastive Learning with view-aware Attention Mechanism and Integrated multi-view Representation (HGCLAMIR) model to discover potential miRNA-disease associations. First, hypergraph convolutional network (HGCN) was utilized to capture high-order complex relations from hypergraphs related to miRNAs and diseases. Then, we combined HGCN with contrastive learning to improve and enhance the embedded representation learning ability of HGCN. Moreover, we introduced view-aware attention mechanism to adaptively weight the embedded representations of different views, thereby obtaining the importance of multi-view latent representations. Next, we innovatively proposed integrated representation learning to integrate the embedded representation information of multiple views for obtaining more reasonable embedding information. Finally, the integrated representation information was fed into a neural network-based matrix completion method to perform miRNA-disease association prediction. Experimental results on the cross-validation set and independent test set indicated that HGCLAMIR can achieve better prediction performance than other baseline models. Furthermore, the results of case studies and enrichment analysis further demonstrated the accuracy of HGCLAMIR and unconfirmed potential associations had biological significance.
Collapse
Affiliation(s)
- Dong Ouyang
- Peng Cheng Laboratory, Shenzhen, China
- School of Biomedical Engineering, Guangdong Medical University, Dongguan, China
| | - Yong Liang
- Peng Cheng Laboratory, Shenzhen, China
- Pazhou Laboratory (Huangpu), Guangzhou, China
| | - Jinfeng Wang
- College of Mathematics and Informatics, South China Agricultural University, Guangzhou, China
| | - Le Li
- School of Computer Science and Engineering, Faculty of Innovation Engineering, Macau University of Science and Technology, Macau, China
| | - Ning Ai
- School of Computer Science and Engineering, Faculty of Innovation Engineering, Macau University of Science and Technology, Macau, China
| | - Junning Feng
- School of Computer Science and Engineering, Faculty of Innovation Engineering, Macau University of Science and Technology, Macau, China
| | - Shanghui Lu
- School of Computer Science and Engineering, Faculty of Innovation Engineering, Macau University of Science and Technology, Macau, China
| | - Shuilin Liao
- School of Computer Science and Engineering, Faculty of Innovation Engineering, Macau University of Science and Technology, Macau, China
| | - Xiaoying Liu
- Computer Engineering Technical College, Guangdong Polytechnic of Science and Technology, Zhuhai, China
| | - Shengli Xie
- Guangdong-HongKong-Macao Joint Laboratory for Smart Discrete Manufacturing, Guangzhou, China
| |
Collapse
|
10
|
Xuan P, Xiu J, Cui H, Zhang X, Nakaguchi T, Zhang T. Complementary feature learning across multiple heterogeneous networks and multimodal attribute learning for predicting disease-related miRNAs. iScience 2024; 27:108639. [PMID: 38303724 PMCID: PMC10831890 DOI: 10.1016/j.isci.2023.108639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/02/2023] [Accepted: 12/01/2023] [Indexed: 02/03/2024] Open
Abstract
Inferring the latent disease-related miRNAs is helpful for providing a deep insight into observing the disease pathogenesis. We propose a method, CMMDA, to encode and integrate the context relationship among multiple heterogeneous networks, the complementary information across these networks, and the pairwise multimodal attributes. We first established multiple heterogeneous networks according to the diverse disease similarities. The feature representation embedding the context relationship is formulated for each miRNA (disease) node based on transformer. We designed a co-attention fusion mechanism to encode the complementary information among multiple networks. In terms of a pair of miRNA and disease nodes, the pairwise attributes from multiple networks form a multimodal attribute embedding. A module based on depthwise separable convolution is constructed to enhance the encoding of the specific features from each modality. The experimental results and the ablation studies show that CMMDA's superior performance and the effectiveness of its major innovations.
Collapse
Affiliation(s)
- Ping Xuan
- School of Computer Science and Technology, Heilongjiang University, Harbin 150080, China
- Department of Computer Science, Shantou University, Shantou 515063, China
| | - Jinshan Xiu
- School of Computer Science and Technology, Heilongjiang University, Harbin 150080, China
| | - Hui Cui
- Department of Computer Science and Information Technology, La Trobe University, Melbourne, VIC 3083, Australia
| | - Xiaowen Zhang
- School of Computer Science and Technology, Heilongjiang University, Harbin 150080, China
| | - Toshiya Nakaguchi
- Center for Frontier Medical Engineering, Chiba University, Chiba 2638522, Japan
| | - Tiangang Zhang
- School of Computer Science and Technology, Heilongjiang University, Harbin 150080, China
- School of Mathematical Science, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
11
|
Li J, Chen J, Wang Z, Lei X. HoRDA: Learning higher-order structure information for predicting RNA-disease associations. Artif Intell Med 2024; 148:102775. [PMID: 38325924 DOI: 10.1016/j.artmed.2024.102775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 10/16/2023] [Accepted: 01/14/2024] [Indexed: 02/09/2024]
Abstract
CircRNA and miRNA are crucial non-coding RNAs, which are associated with biological diseases. Exploring the associations between RNAs and diseases often requires a significant time and financial investments, which has been greatly alleviated and improved with the application of deep learning methods in bioinformatics. However, existing methods often fail to achieve higher accuracy and cannot be universal between multiple RNAs. Moreover, complex RNA-disease associations hide important higher-order topology information. To address these issues, we learn higher-order structure information for predicting RNA-disease associations (HoRDA). Firstly, the correlations between RNAs and the correlations between diseases are fully explored by combining similarity and higher-order graph attention network. Then, a higher-order graph convolutional network is constructed to aggregate neighbor information, and further obtain the representations of RNAs and diseases. Meanwhile, due to the large number of complex and variable higher-order structures in biological networks, we design a higher-order negative sampling strategy to gain more desirable negative samples. Finally, the obtained embeddings of RNAs and diseases are feed into logistic regression model to acquire the probabilities of RNA-disease associations. Diverse simulation results demonstrate the superiority of the proposed method. In the end, the case study is conducted on breast neoplasms, colorectal neoplasms, and gastric neoplasms. We validate the proposed higher-order strategies through ablative and exploratory analyses and further demonstrate the practical applicability of HoRDA. HoRDA has a certain contribution in RNA-disease association prediction.
Collapse
Affiliation(s)
- Julong Li
- School of Computer Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Jianrui Chen
- School of Computer Science, Shaanxi Normal University, Xi'an, 710119, China.
| | - Zhihui Wang
- School of Computer Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Xiujuan Lei
- School of Computer Science, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
12
|
Jiao CN, Zhou F, Liu BM, Zheng CH, Liu JX, Gao YL. Multi-Kernel Graph Attention Deep Autoencoder for MiRNA-Disease Association Prediction. IEEE J Biomed Health Inform 2024; 28:1110-1121. [PMID: 38055359 DOI: 10.1109/jbhi.2023.3336247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Accumulating evidence indicates that microRNAs (miRNAs) can control and coordinate various biological processes. Consequently, abnormal expressions of miRNAs have been linked to various complex diseases. Recognizable proof of miRNA-disease associations (MDAs) will contribute to the diagnosis and treatment of human diseases. Nevertheless, traditional experimental verification of MDAs is laborious and limited to small-scale. Therefore, it is necessary to develop reliable and effective computational methods to predict novel MDAs. In this work, a multi-kernel graph attention deep autoencoder (MGADAE) method is proposed to predict potential MDAs. In detail, MGADAE first employs the multiple kernel learning (MKL) algorithm to construct an integrated miRNA similarity and disease similarity, providing more biological information for further feature learning. Second, MGADAE combines the known MDAs, disease similarity, and miRNA similarity into a heterogeneous network, then learns the representations of miRNAs and diseases through graph convolution operation. After that, an attention mechanism is introduced into MGADAE to integrate the representations from multiple graph convolutional network (GCN) layers. Lastly, the integrated representations of miRNAs and diseases are input into the bilinear decoder to obtain the final predicted association scores. Corresponding experiments prove that the proposed method outperforms existing advanced approaches in MDA prediction. Furthermore, case studies related to two human cancers provide further confirmation of the reliability of MGADAE in practice.
Collapse
|
13
|
Yang C, Wang Z, Zhang S, Li X, Wang X, Liu J, Li R, Zeng S. MVNMDA: A Multi-View Network Combing Semantic and Global Features for Predicting miRNA-Disease Association. Molecules 2023; 29:230. [PMID: 38202814 PMCID: PMC10780172 DOI: 10.3390/molecules29010230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/23/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
A growing body of experimental evidence suggests that microRNAs (miRNAs) are closely associated with specific human diseases and play critical roles in their development and progression. Therefore, identifying miRNA related to specific diseases is of great significance for disease screening and treatment. In the early stages, the identification of associations between miRNAs and diseases demanded laborious and time-consuming biological experiments that often carried a substantial risk of failure. With the exponential growth in the number of potential miRNA-disease association combinations, traditional biological experimental methods face difficulties in processing massive amounts of data. Hence, developing more efficient computational methods to predict possible miRNA-disease associations and prioritize them is particularly necessary. In recent years, numerous deep learning-based computational methods have been developed and have demonstrated excellent performance. However, most of these methods rely on external databases or tools to compute various auxiliary information. Unfortunately, these external databases or tools often cover only a limited portion of miRNAs and diseases, resulting in many miRNAs and diseases being unable to match with these computational methods. Therefore, there are certain limitations associated with the practical application of these methods. To overcome the above limitations, this study proposes a multi-view computational model called MVNMDA, which predicts potential miRNA-disease associations by integrating features of miRNA and diseases from local views, global views, and semantic views. Specifically, MVNMDA utilizes known association information to construct node initial features. Then, multiple networks are constructed based on known association to extract low-dimensional feature embedding of all nodes. Finally, a cascaded attention classifier is proposed to fuse features from coarse to fine, suppressing noise within the features and making precise predictions. To validate the effectiveness of the proposed method, extensive experiments were conducted on the HMDD v2.0 and HMDD v3.2 datasets. The experimental results demonstrate that MVNMDA achieves better performance compared to other computational methods. Additionally, the case study results further demonstrate the reliable predictive performance of MVNMDA.
Collapse
Affiliation(s)
| | - Zhen Wang
- School of Electronic Infomation, Xijing University, Xi’an 710123, China; (C.Y.); (S.Z.); (X.L.); (X.W.); (J.L.); (R.L.); (S.Z.)
| | | | | | | | | | | | | |
Collapse
|
14
|
Zhou F, Yin MM, Jiao CN, Zhao JX, Zheng CH, Liu JX. Predicting miRNA-Disease Associations Through Deep Autoencoder With Multiple Kernel Learning. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2023; 34:5570-5579. [PMID: 34860656 DOI: 10.1109/tnnls.2021.3129772] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Determining microRNA (miRNA)-disease associations (MDAs) is an integral part in the prevention, diagnosis, and treatment of complex diseases. However, wet experiments to discern MDAs are inefficient and expensive. Hence, the development of reliable and efficient data integrative models for predicting MDAs is of significant meaning. In the present work, a novel deep learning method for predicting MDAs through deep autoencoder with multiple kernel learning (DAEMKL) is presented. Above all, DAEMKL applies multiple kernel learning (MKL) in miRNA space and disease space to construct miRNA similarity network and disease similarity network, respectively. Then, for each disease or miRNA, its feature representation is learned from the miRNA similarity network and disease similarity network via the regression model. After that, the integrated miRNA feature representation and disease feature representation are input into deep autoencoder (DAE). Furthermore, the novel MDAs are predicted through reconstruction error. Ultimately, the AUC results show that DAEMKL achieves outstanding performance. In addition, case studies of three complex diseases further prove that DAEMKL has excellent predictive performance and can discover a large number of underlying MDAs. On the whole, our method DAEMKL is an effective method to identify MDAs.
Collapse
|
15
|
Ma Z, Kuang Z, Deng L. NGCICM: A Novel Deep Learning-Based Method for Predicting circRNA-miRNA Interactions. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:3080-3092. [PMID: 37027645 DOI: 10.1109/tcbb.2023.3248787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The circRNAs and miRNAs play an important role in the development of human diseases, and they can be widely used as biomarkers of diseases for disease diagnosis. In particular, circRNAs can act as sponge adsorbers for miRNAs and act together in certain diseases. However, the associations between the vast majority of circRNAs and diseases and between miRNAs and diseases remain unclear. Computational-based approaches are urgently needed to discover the unknown interactions between circRNAs and miRNAs. In this paper, we propose a novel deep learning algorithm based on Node2vec and Graph ATtention network (GAT), Conditional Random Field (CRF) layer and Inductive Matrix Completion (IMC) to predict circRNAs and miRNAs interactions (NGCICM). We construct a GAT-based encoder for deep feature learning by fusing the talking-heads attention mechanism and the CRF layer. The IMC-based decoder is also constructed to obtain interaction scores. The Area Under the receiver operating characteristic Curve (AUC) of the NGCICM method is 0.9697, 0.9932 and 0.9980, and the Area Under the Precision-Recall curve (AUPR) is 0.9671, 0.9935 and 0.9981, respectively, using 2-fold, 5-fold and 10-fold Cross-Validation (CV) as the benchmark. The experimental results confirm the effectiveness of the NGCICM algorithm in predicting the interactions between circRNAs and miRNAs.
Collapse
|
16
|
He Q, Qiao W, Fang H, Bao Y. Improving the identification of miRNA-disease associations with multi-task learning on gene-disease networks. Brief Bioinform 2023; 24:bbad203. [PMID: 37287133 DOI: 10.1093/bib/bbad203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/24/2023] [Accepted: 05/10/2023] [Indexed: 06/09/2023] Open
Abstract
MicroRNAs (miRNAs) are a family of non-coding RNA molecules with vital roles in regulating gene expression. Although researchers have recognized the importance of miRNAs in the development of human diseases, it is very resource-consuming to use experimental methods for identifying which dysregulated miRNA is associated with a specific disease. To reduce the cost of human effort, a growing body of studies has leveraged computational methods for predicting the potential miRNA-disease associations. However, the extant computational methods usually ignore the crucial mediating role of genes and suffer from the data sparsity problem. To address this limitation, we introduce the multi-task learning technique and develop a new model called MTLMDA (Multi-Task Learning model for predicting potential MicroRNA-Disease Associations). Different from existing models that only learn from the miRNA-disease network, our MTLMDA model exploits both miRNA-disease and gene-disease networks for improving the identification of miRNA-disease associations. To evaluate model performance, we compare our model with competitive baselines on a real-world dataset of experimentally supported miRNA-disease associations. Empirical results show that our model performs best using various performance metrics. We also examine the effectiveness of model components via ablation study and further showcase the predictive power of our model for six types of common cancers. The data and source code are available from https://github.com/qwslle/MTLMDA.
Collapse
Affiliation(s)
- Qiang He
- College of Medicine and Biological Information Engineering, Northeastern University, 110169 Shenyang, China
| | - Wei Qiao
- College of Medicine and Biological Information Engineering, Northeastern University, 110169 Shenyang, China
| | - Hui Fang
- Research Institute for Interdisciplinary Science and School of Information Management and Engineering, Shanghai University of Finance and Economics, 200434 Shanghai, China
| | - Yang Bao
- Antai College of Economics and Management, Shanghai Jiao Tong University, 200030 Shanghai, China
| |
Collapse
|
17
|
Hou J, Wei H, Liu B. iPiDA-SWGCN: Identification of piRNA-disease associations based on Supplementarily Weighted Graph Convolutional Network. PLoS Comput Biol 2023; 19:e1011242. [PMID: 37339125 DOI: 10.1371/journal.pcbi.1011242] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 06/05/2023] [Indexed: 06/22/2023] Open
Abstract
Accurately identifying potential piRNA-disease associations is of great importance in uncovering the pathogenesis of diseases. Recently, several machine-learning-based methods have been proposed for piRNA-disease association detection. However, they are suffering from the high sparsity of piRNA-disease association network and the Boolean representation of piRNA-disease associations ignoring the confidence coefficients. In this study, we propose a supplementarily weighted strategy to solve these disadvantages. Combined with Graph Convolutional Networks (GCNs), a novel predictor called iPiDA-SWGCN is proposed for piRNA-disease association prediction. There are three main contributions of iPiDA-SWGCN: (i) Potential piRNA-disease associations are preliminarily supplemented in the sparse piRNA-disease network by integrating various basic predictors to enrich network structure information. (ii) The original Boolean piRNA-disease associations are assigned with different relevance confidence to learn node representations from neighbour nodes in varying degrees. (iii) The experimental results show that iPiDA-SWGCN achieves the best performance compared with the other state-of-the-art methods, and can predict new piRNA-disease associations.
Collapse
Affiliation(s)
- Jialu Hou
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
| | - Hang Wei
- School of Computer Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Bin Liu
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
18
|
S S, E R V, Krishnakumar U. Improving miRNA Disease Association Prediction Accuracy Using Integrated Similarity Information and Deep Autoencoders. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:1125-1136. [PMID: 35914051 DOI: 10.1109/tcbb.2022.3195514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
MicroRNAs (miRNAs) are short endogenous non-encoding RNA molecules (22nt) that have a vital role in many biological and molecular processes inside the human body. Abnormal and dysregulated expressions of miRNAs are correlated with many complex disorders. Time-consuming wet-lab biological experiments are costly and labour-intensive. So, the situation demands feasible and efficient computational approaches for predicting promising miRNAs associated with diseases. Here a two-stage feature pruning approach based on miRNA feature similarity fusion that uses deep attention autoencoder and recursive feature elimination with cross-validation (RFECV) is proposed for predicting unknown miRNA-disease associations. In the first stage, an attention autoencoder captures highly influential features from the fused feature vector. For further pruning of features, RFECV is applied. The resultant features were given to a Random Forest classifier for association prediction. The Highest AUC of 94.41% is attained when all miRNA similarity measures are merged with disease similarities. Case studies were done on two diseases-lymphoma and leukaemia, to examine the reliability of the approach. Comparative analysis shows that the proposed approach outperforms recent methodologies for predicting miRNA-disease associations.
Collapse
|
19
|
Zhang H, Fang J, Sun Y, Xie G, Lin Z, Gu G. Predicting miRNA-Disease Associations via Node-Level Attention Graph Auto-Encoder. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:1308-1318. [PMID: 35503834 DOI: 10.1109/tcbb.2022.3170843] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Previous studies have confirmed microRNA (miRNA), small single-stranded non-coding RNA, participates in various biological processes and plays vital roles in many complex human diseases. Therefore, developing an efficient method to infer potential miRNA disease associations could greatly help understand operational mechanisms for diseases at the molecular level. However, during these early stages for miRNA disease prediction, traditional biological experiments are laborious and expensive. Therefore, this study proposes a novel method called AGAEMD (node-level Attention Graph Auto-Encoder to predict potential MiRNA Disease associations). We first create a heterogeneous matrix incorporating miRNA similarity, disease similarity, and known miRNA-disease associations. Then these matrixes are input into a node-level attention encoder-decoder network which utilizes low dimensional dense embeddings to represent nodes and calculate association scores. To verify the effectiveness of the proposed method, we conduct a series of experiments on two benchmark datasets (the Human MicroRNA Disease Database v2.0 and v3.2) and report the averages over 10 runs in comparison with several state-of-the-art methods. Experimental results have demonstrated the excellent performance of AGAEMD in comparison with other methods. Three important diseases (Colon Neoplasms, Lung Neoplasms, Lupus Vulgaris) were applied in case studies. The results comfirm the reliable predictive performance of AGAEMD.
Collapse
|
20
|
Jabeer A, Temiz M, Bakir-Gungor B, Yousef M. miRdisNET: Discovering microRNA biomarkers that are associated with diseases utilizing biological knowledge-based machine learning. Front Genet 2023; 13:1076554. [PMID: 36712859 PMCID: PMC9877296 DOI: 10.3389/fgene.2022.1076554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/30/2022] [Indexed: 01/14/2023] Open
Abstract
During recent years, biological experiments and increasing evidence have shown that microRNAs play an important role in the diagnosis and treatment of human complex diseases. Therefore, to diagnose and treat human complex diseases, it is necessary to reveal the associations between a specific disease and related miRNAs. Although current computational models based on machine learning attempt to determine miRNA-disease associations, the accuracy of these models need to be improved, and candidate miRNA-disease relations need to be evaluated from a biological perspective. In this paper, we propose a computational model named miRdisNET to predict potential miRNA-disease associations. Specifically, miRdisNET requires two types of data, i.e., miRNA expression profiles and known disease-miRNA associations as input files. First, we generate subsets of specific diseases by applying the grouping component. These subsets contain miRNA expressions with class labels associated with each specific disease. Then, we assign an importance score to each group by using a machine learning method for classification. Finally, we apply a modeling component and obtain outputs. One of the most important outputs of miRdisNET is the performance of miRNA-disease prediction. Compared with the existing methods, miRdisNET obtained the highest AUC value of .9998. Another output of miRdisNET is a list of significant miRNAs for disease under study. The miRNAs identified by miRdisNET are validated via referring to the gold-standard databases which hold information on experimentally verified microRNA-disease associations. miRdisNET has been developed to predict candidate miRNAs for new diseases, where miRNA-disease relation is not yet known. In addition, miRdisNET presents candidate disease-disease associations based on shared miRNA knowledge. The miRdisNET tool and other supplementary files are publicly available at: https://github.com/malikyousef/miRdisNET.
Collapse
Affiliation(s)
- Amhar Jabeer
- Department of Computer Engineering, Faculty of Engineering, Abdullah Gul University, Kayseri, Turkey
| | - Mustafa Temiz
- Department of Computer Engineering, Faculty of Engineering, Abdullah Gul University, Kayseri, Turkey
| | - Burcu Bakir-Gungor
- Department of Computer Engineering, Faculty of Engineering, Abdullah Gul University, Kayseri, Turkey
| | - Malik Yousef
- Department of Information Systems, Zefat Academic College, Zefat, Israel
- Galilee Digital Health Research Center (GDH), Zefat Academic College, Zefat, Israel
| |
Collapse
|
21
|
Huang L, Zhang L, Chen X. Updated review of advances in microRNAs and complex diseases: towards systematic evaluation of computational models. Brief Bioinform 2022; 23:6712303. [PMID: 36151749 DOI: 10.1093/bib/bbac407] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/11/2022] [Accepted: 08/20/2022] [Indexed: 12/14/2022] Open
Abstract
Currently, there exist no generally accepted strategies of evaluating computational models for microRNA-disease associations (MDAs). Though K-fold cross validations and case studies seem to be must-have procedures, the value of K, the evaluation metrics, and the choice of query diseases as well as the inclusion of other procedures (such as parameter sensitivity tests, ablation studies and computational cost reports) are all determined on a case-by-case basis and depending on the researchers' choices. In the current review, we include a comprehensive analysis on how 29 state-of-the-art models for predicting MDAs were evaluated. Based on the analytical results, we recommend a feasible evaluation workflow that would suit any future model to facilitate fair and systematic assessment of predictive performance.
Collapse
Affiliation(s)
- Li Huang
- Academy of Arts and Design, Tsinghua University, Beijing, 10084, China.,The Future Laboratory, Tsinghua University, Beijing, 10084, China
| | - Li Zhang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China
| | - Xing Chen
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China.,Artificial Intelligence Research Institute, China University of Mining and Technology, Xuzhou, 221116, China
| |
Collapse
|
22
|
Gao M, Liu S, Qi Y, Guo X, Shang X. GAE-LGA: integration of multi-omics data with graph autoencoders to identify lncRNA-PCG associations. Brief Bioinform 2022; 23:6775590. [PMID: 36305456 DOI: 10.1093/bib/bbac452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) can disrupt the biological functions of protein-coding genes (PCGs) to cause cancer. However, the relationship between lncRNAs and PCGs remains unclear and difficult to predict. Machine learning has achieved a satisfactory performance in association prediction, but to our knowledge, it is currently less used in lncRNA-PCG association prediction. Therefore, we introduce GAE-LGA, a powerful deep learning model with graph autoencoders as components, to recognize potential lncRNA-PCG associations. GAE-LGA jointly explored lncRNA-PCG learning and cross-omics correlation learning for effective lncRNA-PCG association identification. The functional similarity and multi-omics similarity of lncRNAs and PCGs were accumulated and encoded by graph autoencoders to extract feature representations of lncRNAs and PCGs, which were subsequently used for decoding to obtain candidate lncRNA-PCG pairs. Comprehensive evaluation demonstrated that GAE-LGA can successfully capture lncRNA-PCG associations with strong robustness and outperformed other machine learning-based identification methods. Furthermore, multi-omics features were shown to improve the performance of lncRNA-PCG association identification. In conclusion, GAE-LGA can act as an efficient application for lncRNA-PCG association prediction with the following advantages: It fuses multi-omics information into the similarity network, making the feature representation more accurate; it can predict lncRNA-PCG associations for new lncRNAs and identify potential lncRNA-PCG associations with high accuracy.
Collapse
Affiliation(s)
- Meihong Gao
- School of Computer Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Shuhui Liu
- School of Computer Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yang Qi
- School of Computer Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xinpeng Guo
- School of Computer Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xuequn Shang
- School of Computer Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
23
|
Li L, Gao Z, Zheng CH, Qi R, Wang YT, Ni JC. Predicting miRNA-Disease Association Based on Improved Graph Regression. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:3604-3613. [PMID: 34757912 DOI: 10.1109/tcbb.2021.3127017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Recently, as a growing number of associations between microRNAs (miRNAs) and diseases are discovered, researchers gradually realize that miRNAs are closely related to several complicated biological processes and human diseases. Hence, it is especially important to construct availably models to infer associations between miRNAs and diseases. In this study, we presented Improved Graph Regression for miRNA-Disease Association Prediction (IGRMDA) to observe potential relationship between miRNAs and diseases. In order to reduce the inherent noise existing in the acquired biological datasets, we utilized matrix decomposition algorithm to process miRNA functional similarity and disease semantic similarity and then combining them with existing similarity information to obtain final miRNA similarity data and disease similarity data. Then, we applied miRNA-disease association data, miRNA similarity data and disease similarity data to form corresponding latent spaces. Furthermore, we performed improved graph regression algorithm in latent spaces, which included miRNA-disease association space, miRNA similarity space and disease similarity space. Non-negative matrix factorization and partial least squares were used in the graph regression process to obtain important related attributes. The cross validation experiments and case studies were also implemented to prove the effectiveness of IGRMDA, which showed that IGRMDA could predict potential associations between miRNAs and diseases.
Collapse
|
24
|
Shang J, Yang Y, Li F, Guan B, Liu JX, Sun Y. BLNIMDA: identifying miRNA-disease associations based on weighted bi-level network. BMC Genomics 2022; 23:686. [PMID: 36199016 PMCID: PMC9533620 DOI: 10.1186/s12864-022-08908-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/26/2022] [Indexed: 11/12/2022] Open
Abstract
Background MicroRNAs (miRNAs) have been confirmed to be inextricably linked to the emergence of human complex diseases. The identification of the disease-related miRNAs has gradually become a routine way to unveil the genetic mechanisms of examined disorders. Methods In this study, a method BLNIMDA based on a weighted bi-level network was proposed for predicting hidden associations between miRNAs and diseases. For this purpose, the known associations between miRNAs and diseases as well as integrated similarities between miRNAs and diseases are mapped into a bi-level network. Based on the developed bi-level network, the miRNA-disease associations (MDAs) are defined as strong associations, potential associations and no associations. Then, each miRNA-disease pair (MDP) is assigned two information properties according to the bidirectional information distribution strategy, i.e., associations of miRNA towards disease and vice-versa. Finally, two affinity weights for each MDP obtained from the information properties and the association type are then averaged as the final association score of the MDP. Highlights of the BLNIMDA lie in the definition of MDA types, and the introduction of affinity weights evaluation from the bidirectional information distribution strategy and defined association types, which ensure the comprehensiveness and accuracy of the final prediction score of MDAs. Results Five-fold cross-validation and leave-one-out cross-validation are used to evaluate the performance of the BLNIMDA. The results of the Area Under Curve show that the BLNIMDA has many advantages over the other seven selected computational methods. Furthermore, the case studies based on four common diseases and miRNAs prove that the BLNIMDA has good predictive performance. Conclusions Therefore, the BLNIMDA is an effective method for predicting hidden MDAs. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08908-8.
Collapse
Affiliation(s)
- Junliang Shang
- School of Computer Science, Qufu Normal University, 276826, Rizhao, China
| | - Yi Yang
- School of Computer Science, Qufu Normal University, 276826, Rizhao, China
| | - Feng Li
- School of Computer Science, Qufu Normal University, 276826, Rizhao, China
| | - Boxin Guan
- School of Computer Science, Qufu Normal University, 276826, Rizhao, China
| | - Jin-Xing Liu
- School of Computer Science, Qufu Normal University, 276826, Rizhao, China
| | - Yan Sun
- School of Computer Science, Qufu Normal University, 276826, Rizhao, China.
| |
Collapse
|
25
|
Bang D, Gu J, Park J, Jeong D, Koo B, Yi J, Shin J, Jung I, Kim S, Lee S. A Survey on Computational Methods for Investigation on ncRNA-Disease Association through the Mode of Action Perspective. Int J Mol Sci 2022; 23:ijms231911498. [PMID: 36232792 PMCID: PMC9570358 DOI: 10.3390/ijms231911498] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/18/2022] [Accepted: 09/26/2022] [Indexed: 02/01/2023] Open
Abstract
Molecular and sequencing technologies have been successfully used in decoding biological mechanisms of various diseases. As revealed by many novel discoveries, the role of non-coding RNAs (ncRNAs) in understanding disease mechanisms is becoming increasingly important. Since ncRNAs primarily act as regulators of transcription, associating ncRNAs with diseases involves multiple inference steps. Leveraging the fast-accumulating high-throughput screening results, a number of computational models predicting ncRNA-disease associations have been developed. These tools suggest novel disease-related biomarkers or therapeutic targetable ncRNAs, contributing to the realization of precision medicine. In this survey, we first introduce the biological roles of different ncRNAs and summarize the databases containing ncRNA-disease associations. Then, we suggest a new trend in recent computational prediction of ncRNA-disease association, which is the mode of action (MoA) network perspective. This perspective includes integrating ncRNAs with mRNA, pathway and phenotype information. In the next section, we describe computational methodologies widely used in this research domain. Existing computational studies are then summarized in terms of their coverage of the MoA network. Lastly, we discuss the potential applications and future roles of the MoA network in terms of integrating biological mechanisms for ncRNA-disease associations.
Collapse
Affiliation(s)
- Dongmin Bang
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Korea
| | - Jeonghyeon Gu
- Interdisciplinary Program in Artificial Intelligence, Seoul National University, Seoul 08826, Korea
| | - Joonhyeong Park
- Department of Computer Science and Engineering, Seoul National University, Seoul 08826, Korea
| | - Dabin Jeong
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Korea
| | - Bonil Koo
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Korea
| | - Jungseob Yi
- Interdisciplinary Program in Artificial Intelligence, Seoul National University, Seoul 08826, Korea
| | - Jihye Shin
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Korea
| | - Inuk Jung
- Department of Computer Science and Engineering, Kyungpook National University, Daegu 41566, Korea
| | - Sun Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Korea
- Interdisciplinary Program in Artificial Intelligence, Seoul National University, Seoul 08826, Korea
- Department of Computer Science and Engineering, Seoul National University, Seoul 08826, Korea
- MOGAM Institute for Biomedical Research, Yongin-si 16924, Korea
| | - Sunho Lee
- AIGENDRUG Co., Ltd., Seoul 08826, Korea
- Correspondence:
| |
Collapse
|
26
|
Huang L, Zhang L, Chen X. Updated review of advances in microRNAs and complex diseases: taxonomy, trends and challenges of computational models. Brief Bioinform 2022; 23:6686738. [PMID: 36056743 DOI: 10.1093/bib/bbac358] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/24/2022] [Accepted: 07/30/2022] [Indexed: 12/12/2022] Open
Abstract
Since the problem proposed in late 2000s, microRNA-disease association (MDA) predictions have been implemented based on the data fusion paradigm. Integrating diverse data sources gains a more comprehensive research perspective, and brings a challenge to algorithm design for generating accurate, concise and consistent representations of the fused data. After more than a decade of research progress, a relatively simple algorithm like the score function or a single computation layer may no longer be sufficient for further improving predictive performance. Advanced model design has become more frequent in recent years, particularly in the form of reasonably combing multiple algorithms, a process known as model fusion. In the current review, we present 29 state-of-the-art models and introduce the taxonomy of computational models for MDA prediction based on model fusion and non-fusion. The new taxonomy exhibits notable changes in the algorithmic architecture of models, compared with that of earlier ones in the 2017 review by Chen et al. Moreover, we discuss the progresses that have been made towards overcoming the obstacles to effective MDA prediction since 2017 and elaborated on how future models can be designed according to a set of new schemas. Lastly, we analysed the strengths and weaknesses of each model category in the proposed taxonomy and proposed future research directions from diverse perspectives for enhancing model performance.
Collapse
Affiliation(s)
- Li Huang
- Academy of Arts and Design, Tsinghua University, Beijing, 10084, China.,The Future Laboratory, Tsinghua University, Beijing, 10084, China
| | - Li Zhang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China
| | - Xing Chen
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China.,Artificial Intelligence Research Institute, China University of Mining and Technology, Xuzhou, 221116, China
| |
Collapse
|
27
|
Yao D, Zhang T, Zhan X, Zhang S, Zhan X, Zhang C. Geometric complement heterogeneous information and random forest for predicting lncRNA-disease associations. Front Genet 2022; 13:995532. [PMID: 36092871 PMCID: PMC9448985 DOI: 10.3389/fgene.2022.995532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/01/2022] [Indexed: 11/20/2022] Open
Abstract
More and more evidences have showed that the unnatural expression of long non-coding RNA (lncRNA) is relevant to varieties of human diseases. Therefore, accurate identification of disease-related lncRNAs can help to understand lncRNA expression at the molecular level and to explore more effective treatments for diseases. Plenty of lncRNA-disease association prediction models have been raised but it is still a challenge to recognize unknown lncRNA-disease associations. In this work, we have proposed a computational model for predicting lncRNA-disease associations based on geometric complement heterogeneous information and random forest. Firstly, geometric complement heterogeneous information was used to integrate lncRNA-miRNA interactions and miRNA-disease associations verified by experiments. Secondly, lncRNA and disease features consisted of their respective similarity coefficients were fused into input feature space. Thirdly, an autoencoder was adopted to project raw high-dimensional features into low-dimension space to learn representation for lncRNAs and diseases. Finally, the low-dimensional lncRNA and disease features were fused into input feature space to train a random forest classifier for lncRNA-disease association prediction. Under five-fold cross-validation, the AUC (area under the receiver operating characteristic curve) is 0.9897 and the AUPR (area under the precision-recall curve) is 0.7040, indicating that the performance of our model is better than several state-of-the-art lncRNA-disease association prediction models. In addition, case studies on colon and stomach cancer indicate that our model has a good ability to predict disease-related lncRNAs.
Collapse
Affiliation(s)
- Dengju Yao
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin, China
- *Correspondence: Dengju Yao,
| | - Tao Zhang
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin, China
| | - Xiaojuan Zhan
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin, China
- College of Computer Science and Technology, Heilongjiang Institute of Technology, Harbin, China
| | - Shuli Zhang
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin, China
| | - Xiaorong Zhan
- Department of Endocrinology and Metabolism, Hospital of South University of Science and Technology, Shenzhen, China
| | - Chao Zhang
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, China
| |
Collapse
|
28
|
Sun Z, Li J, Yang Y, Tong Y, Li H, Wang C, Du L, Jiang Y. Ratiometric Fluorescent Biosensor Based on Self-Assembled Fluorescent Gold Nanoparticles and Duplex-Specific Nuclease-Assisted Signal Amplification for Sensitive Detection of Exosomal miRNA. Bioconjug Chem 2022; 33:1698-1706. [PMID: 35960898 DOI: 10.1021/acs.bioconjchem.2c00309] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The sensitive detection of cancer-associated exosomal microRNAs shows enormous potential in cancer diagnosis. Herein, a ratiometric fluorescent biosensor based on self-assembled fluorescent gold nanoparticles (Au NPs) and duplex-specific nuclease (DSN)-assisted signal amplification was fabricated for sensitive detection of colorectal cancer (CRC)-associated exosomal miR-92a-3p. In this biosensing system, the hairpin DNA modified with sulfhydryl and fluorescent dye Atto-425 at both ends is conjugated to fluorescent Au NPs through Au-S bonds, resulting in the quenching of Atto-425. The miR-92a-3p can open the hairpin of DNA and forms an miR-92a-3p/DNA heteroduplex, triggering the specific cleavage of DSN for the DNA in the heteroduplex. As a result, Atto-425 leaves the fluorescent Au NPs and recovers the fluorescence emission. The released miR-92a-3p can hybridize with another hairpin DNA and lead to a stronger fluorescence recovery of Atto-425 to form a signal amplification cycle. The stable fluorescence of Au NPs and the changing fluorescence of Atto-425 constitute a ratiometric fluorescent system reflecting the concentration of miR-92a-3p. This biosensor exhibits excellent specificity and can distinguish CRC patients from healthy individuals by detecting miR-92a-3p extracted from clinical exosome samples, showing the potential in CRC diagnosis.
Collapse
Affiliation(s)
- Zhiwei Sun
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, 250061, China.,Shenzhen Research Institute of Shandong University, Shenzhen, 518057, China
| | - Juan Li
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Yufei Yang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, 250061, China
| | - Yao Tong
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Hui Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, 250061, China
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, 250033, China.,Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, 250033, China.,Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, 250033, China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Yanyan Jiang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, 250061, China.,Shenzhen Research Institute of Shandong University, Shenzhen, 518057, China
| |
Collapse
|
29
|
Identification of MiRNA–Disease Associations Based on Information of Multi-Module and Meta-Path. Molecules 2022; 27:molecules27144443. [PMID: 35889314 PMCID: PMC9321348 DOI: 10.3390/molecules27144443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/01/2022] [Accepted: 07/08/2022] [Indexed: 12/10/2022] Open
Abstract
Cumulative research reveals that microRNAs (miRNAs) are involved in many critical biological processes including cell proliferation, differentiation and apoptosis. It is of great significance to figure out the associations between miRNAs and human diseases that are the basis for finding biomarkers for diagnosis and targets for treatment. To overcome the time-consuming and labor-intensive problems faced by traditional experiments, a computational method was developed to identify potential associations between miRNAs and diseases based on the graph attention network (GAT) with different meta-path mode and support vector (SVM). Firstly, we constructed a multi-module heterogeneous network based on the meta-path and learned the latent features of different modules by GAT. Secondly, we found the average of the latent features with weight to obtain a final node representation. Finally, we characterized miRNA–disease-association pairs with the node representation and trained an SVM to recognize potential associations. Based on the five-fold cross-validation and benchmark datasets, the proposed method achieved an area under the precision–recall curve (AUPR) of 0.9379 and an area under the receiver–operating characteristic curve (AUC) of 0.9472. The results demonstrate that our method has an outstanding practical application performance and can provide a reference for the discovery of new biomarkers and therapeutic targets.
Collapse
|
30
|
Li G, Fang T, Zhang Y, Liang C, Xiao Q, Luo J. Predicting miRNA-disease associations based on graph attention network with multi-source information. BMC Bioinformatics 2022; 23:244. [PMID: 35729531 PMCID: PMC9215044 DOI: 10.1186/s12859-022-04796-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There is a growing body of evidence from biological experiments suggesting that microRNAs (miRNAs) play a significant regulatory role in both diverse cellular activities and pathological processes. Exploring miRNA-disease associations not only can decipher pathogenic mechanisms but also provide treatment solutions for diseases. As it is inefficient to identify undiscovered relationships between diseases and miRNAs using biotechnology, an explosion of computational methods have been advanced. However, the prediction accuracy of existing models is hampered by the sparsity of known association network and single-category feature, which is hard to model the complicated relationships between diseases and miRNAs. RESULTS In this study, we advance a new computational framework (GATMDA) to discover unknown miRNA-disease associations based on graph attention network with multi-source information, which effectively fuses linear and non-linear features. In our method, the linear features of diseases and miRNAs are constructed by disease-lncRNA correlation profiles and miRNA-lncRNA correlation profiles, respectively. Then, the graph attention network is employed to extract the non-linear features of diseases and miRNAs by aggregating information of each neighbor with different weights. Finally, the random forest algorithm is applied to infer the disease-miRNA correlation pairs through fusing linear and non-linear features of diseases and miRNAs. As a result, GATMDA achieves impressive performance: an average AUC of 0.9566 with five-fold cross validation, which is superior to other previous models. In addition, case studies conducted on breast cancer, colon cancer and lymphoma indicate that 50, 50 and 48 out of the top fifty prioritized candidates are verified by biological experiments. CONCLUSIONS The extensive experimental results justify the accuracy and utility of GATMDA and we could anticipate that it may regard as a utility tool for identifying unobserved disease-miRNA relationships.
Collapse
Affiliation(s)
- Guanghui Li
- School of Information Engineering, East China Jiaotong University, Nanchang, China.
| | - Tao Fang
- School of Information Engineering, East China Jiaotong University, Nanchang, China
| | - Yuejin Zhang
- School of Information Engineering, East China Jiaotong University, Nanchang, China
| | - Cheng Liang
- School of Information Science and Engineering, Shandong Normal University, Jinan, China
| | - Qiu Xiao
- College of Information Science and Engineering, Hunan Normal University, Changsha, China
| | - Jiawei Luo
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China.
| |
Collapse
|
31
|
Lou Z, Cheng Z, Li H, Teng Z, Liu Y, Tian Z. Predicting miRNA-disease associations via learning multimodal networks and fusing mixed neighborhood information. Brief Bioinform 2022; 23:6582005. [PMID: 35524503 DOI: 10.1093/bib/bbac159] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/29/2022] [Accepted: 04/10/2022] [Indexed: 12/13/2022] Open
Abstract
MOTIVATION In recent years, a large number of biological experiments have strongly shown that miRNAs play an important role in understanding disease pathogenesis. The discovery of miRNA-disease associations is beneficial for disease diagnosis and treatment. Since inferring these associations through biological experiments is time-consuming and expensive, researchers have sought to identify the associations utilizing computational approaches. Graph Convolutional Networks (GCNs), which exhibit excellent performance in link prediction problems, have been successfully used in miRNA-disease association prediction. However, GCNs only consider 1st-order neighborhood information at one layer but fail to capture information from high-order neighbors to learn miRNA and disease representations through information propagation. Therefore, how to aggregate information from high-order neighborhood effectively in an explicit way is still challenging. RESULTS To address such a challenge, we propose a novel method called mixed neighborhood information for miRNA-disease association (MINIMDA), which could fuse mixed high-order neighborhood information of miRNAs and diseases in multimodal networks. First, MINIMDA constructs the integrated miRNA similarity network and integrated disease similarity network respectively with their multisource information. Then, the embedding representations of miRNAs and diseases are obtained by fusing mixed high-order neighborhood information from multimodal network which are the integrated miRNA similarity network, integrated disease similarity network and the miRNA-disease association networks. Finally, we concentrate the multimodal embedding representations of miRNAs and diseases and feed them into the multilayer perceptron (MLP) to predict their underlying associations. Extensive experimental results show that MINIMDA is superior to other state-of-the-art methods overall. Moreover, the outstanding performance on case studies for esophageal cancer, colon tumor and lung cancer further demonstrates the effectiveness of MINIMDA. AVAILABILITY AND IMPLEMENTATION https://github.com/chengxu123/MINIMDA and http://120.79.173.96/.
Collapse
Affiliation(s)
- Zhengzheng Lou
- School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450000, China
| | - Zhaoxu Cheng
- School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450000, China
| | - Hui Li
- School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450000, China
| | - Zhixia Teng
- College of Information and Computer Engineering, Northeast Forestry University, Harbin 150040, China
| | - Yang Liu
- Departments of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Zhen Tian
- School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
32
|
Wang W, Zhang X, Dai DQ. springD2A: capturing uncertainty in disease-drug association prediction with model integration. Bioinformatics 2022; 38:1353-1360. [PMID: 34864881 DOI: 10.1093/bioinformatics/btab820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 11/23/2021] [Accepted: 11/30/2021] [Indexed: 01/05/2023] Open
Abstract
MOTIVATION Drug repositioning that aims to find new indications for existing drugs has been an efficient strategy for drug discovery. In the scenario where we only have confirmed disease-drug associations as positive pairs, a negative set of disease-drug pairs is usually constructed from the unknown disease-drug pairs in previous studies, where we do not know whether drugs and diseases can be associated, to train a model for disease-drug association prediction (drug repositioning). Drugs and diseases in these negative pairs can potentially be associated, but most studies have ignored them. RESULTS We present a method, springD2A, to capture the uncertainty in the negative pairs, and to discriminate between positive and unknown pairs because the former are more reliable. In springD2A, we introduce a spring-like penalty for the loss of negative pairs, which is strong if they are too close in a unit sphere, but mild if they are at a moderate distance. We also design a sequential sampling in which the probability of an unknown disease-drug pair sampled as negative is proportional to its score predicted as positive. Multiple models are learned during sequential sampling, and we adopt parameter- and feature-based ensemble schemes to boost performance. Experiments show springD2A is an effective tool for drug-repositioning. AVAILABILITY AND IMPLEMENTATION A python implementation of springD2A and datasets used in this study are available at https://github.com/wangyuanhao/springD2A. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Weiwen Wang
- Intelligent Data Center, School of Mathematics, Sun Yat-Sen University, Guangzhou 510000, China
| | - Xiwen Zhang
- Intelligent Data Center, School of Mathematics, Sun Yat-Sen University, Guangzhou 510000, China
| | - Dao-Qing Dai
- Intelligent Data Center, School of Mathematics, Sun Yat-Sen University, Guangzhou 510000, China
| |
Collapse
|
33
|
Predicting miRNA-Disease Association Based on Neural Inductive Matrix Completion with Graph Autoencoders and Self-Attention Mechanism. Biomolecules 2022; 12:biom12010064. [PMID: 35053212 PMCID: PMC8774034 DOI: 10.3390/biom12010064] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 02/06/2023] Open
Abstract
Many studies have clarified that microRNAs (miRNAs) are associated with many human diseases. Therefore, it is essential to predict potential miRNA-disease associations for disease pathogenesis and treatment. Numerous machine learning and deep learning approaches have been adopted to this problem. In this paper, we propose a Neural Inductive Matrix completion-based method with Graph Autoencoders (GAE) and Self-Attention mechanism for miRNA-disease associations prediction (NIMGSA). Some of the previous works based on matrix completion ignore the importance of label propagation procedure for inferring miRNA-disease associations, while others cannot integrate matrix completion and label propagation effectively. Varying from previous studies, NIMGSA unifies inductive matrix completion and label propagation via neural network architecture, through the collaborative training of two graph autoencoders. This neural inductive matrix completion-based method is also an implementation of self-attention mechanism for miRNA-disease associations prediction. This end-to-end framework can strengthen the robustness and preciseness of both matrix completion and label propagation. Cross validations indicate that NIMGSA outperforms current miRNA-disease prediction methods. Case studies demonstrate that NIMGSA is competent in detecting potential miRNA-disease associations.
Collapse
|
34
|
GCAEMDA: Predicting miRNA-disease associations via graph convolutional autoencoder. PLoS Comput Biol 2021; 17:e1009655. [PMID: 34890410 PMCID: PMC8694430 DOI: 10.1371/journal.pcbi.1009655] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/22/2021] [Accepted: 11/17/2021] [Indexed: 01/02/2023] Open
Abstract
microRNAs (miRNAs) are small non-coding RNAs related to a number of complicated biological processes. A growing body of studies have suggested that miRNAs are closely associated with many human diseases. It is meaningful to consider disease-related miRNAs as potential biomarkers, which could greatly contribute to understanding the mechanisms of complex diseases and benefit the prevention, detection, diagnosis and treatment of extraordinary diseases. In this study, we presented a novel model named Graph Convolutional Autoencoder for miRNA-Disease Association Prediction (GCAEMDA). In the proposed model, we utilized miRNA-miRNA similarities, disease-disease similarities and verified miRNA-disease associations to construct a heterogeneous network, which is applied to learn the embeddings of miRNAs and diseases. In addition, we separately constructed miRNA-based and disease-based sub-networks. Combining the embeddings of miRNAs and diseases, graph convolutional autoencoder (GCAE) was utilized to calculate association scores of miRNA-disease on two sub-networks, respectively. Furthermore, we obtained final prediction scores between miRNAs and diseases by adopting an average ensemble way to integrate the prediction scores from two types of subnetworks. To indicate the accuracy of GCAEMDA, we applied different cross validation methods to evaluate our model whose performances were better than the state-of-the-art models. Case studies on a common human diseases were also implemented to prove the effectiveness of GCAEMDA. The results demonstrated that GCAEMDA was beneficial to infer potential associations of miRNA-disease. Numerous studies have demonstrated that miRNAs are closely related to several common human diseases, so observing unverified associations between miRNAs and diseases is conducive to the diagnose and treatment of complex diseases. Considerable models proposed to infer potential miRNA-disease associations have made the prediction more effective and productive. We constructed GCAEMDA model to acquire more accuracy prediction result by integrating graph convolutional network and autoencoder to make prediction based on multi-source miRNA and disease information. The five-fold cross validation and global leave-one-out cross validation were implemented to evaluate the performance of our model. Consequently, GCAEMDA reached AUCs of 0.9415 and 0.9505 respectively that were distinctly higher than AUCs of other comparative models. Furthermore, we carried out case studies on lung neoplasms and breast neoplasms to demonstrate the practical application of the model, 47 and 47 of top-50 candidate miRNAs were confirmed by experimental reports. In summary, GCAEMDA could be considered as an effective and accuracy model to reveal relationship between miRNAs and diseases.
Collapse
|
35
|
Ma Z, Kuang Z, Deng L. CRPGCN: predicting circRNA-disease associations using graph convolutional network based on heterogeneous network. BMC Bioinformatics 2021; 22:551. [PMID: 34772332 PMCID: PMC8588735 DOI: 10.1186/s12859-021-04467-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/01/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The existing studies show that circRNAs can be used as a biomarker of diseases and play a prominent role in the treatment and diagnosis of diseases. However, the relationships between the vast majority of circRNAs and diseases are still unclear, and more experiments are needed to study the mechanism of circRNAs. Nowadays, some scholars use the attributes between circRNAs and diseases to study and predict their associations. Nonetheless, most of the existing experimental methods use less information about the attributes of circRNAs, which has a certain impact on the accuracy of the final prediction results. On the other hand, some scholars also apply experimental methods to predict the associations between circRNAs and diseases. But such methods are usually expensive and time-consuming. Based on the above shortcomings, follow-up research is needed to propose a more efficient calculation-based method to predict the associations between circRNAs and diseases. RESULTS In this study, a novel algorithm (method) is proposed, which is based on the Graph Convolutional Network (GCN) constructed with Random Walk with Restart (RWR) and Principal Component Analysis (PCA) to predict the associations between circRNAs and diseases (CRPGCN). In the construction of CRPGCN, the RWR algorithm is used to improve the similarity associations of the computed nodes with their neighbours. After that, the PCA method is used to dimensionality reduction and extract features, it makes the connection between circRNAs with higher similarity and diseases closer. Finally, The GCN algorithm is used to learn the features between circRNAs and diseases and calculate the final similarity scores, and the learning datas are constructed from the adjacency matrix, similarity matrix and feature matrix as a heterogeneous adjacency matrix and a heterogeneous feature matrix. CONCLUSIONS After 2-fold cross-validation, 5-fold cross-validation and 10-fold cross-validation, the area under the ROC curve of the CRPGCN is 0.9490, 0.9720 and 0.9722, respectively. The CRPGCN method has a valuable effect in predict the associations between circRNAs and diseases.
Collapse
Affiliation(s)
- Zhihao Ma
- School of Computer and Information Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Zhufang Kuang
- School of Computer and Information Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Lei Deng
- School of Computer Science and Engineering, Central South University, Changsha, China
| |
Collapse
|
36
|
Zhang ZW, Gao Z, Zheng CH, Li L, Qi SM, Wang YT. WVMDA: Predicting miRNA-Disease Association Based on Weighted Voting. Front Genet 2021; 12:742992. [PMID: 34659363 PMCID: PMC8511643 DOI: 10.3389/fgene.2021.742992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/09/2021] [Indexed: 11/15/2022] Open
Abstract
An increasing number of experiments had verified that miRNA expression is related to human diseases. The miRNA expression profile may be an indicator of clinical diagnosis and provides a new direction for the prevention and treatment of complex diseases. In this work, we present a weighted voting-based model for predicting miRNA–disease association (WVMDA). To reasonably build a network of similarity, we established credibility similarity based on the reliability of known associations and used it to improve the original incomplete similarity. To eliminate noise interference as much as possible while maintaining more reliable similarity information, we developed a filter. More importantly, to ensure the fairness and efficiency of weighted voting, we focus on the design of weighting. Finally, cross-validation experiments and case studies are undertaken to verify the efficacy of the proposed model. The results showed that WVMDA could efficiently identify miRNAs associated with the disease.
Collapse
Affiliation(s)
- Zhen-Wei Zhang
- School of Cyberspace Security, Qufu Normal University, Qufu, China
| | - Zhen Gao
- School of Computer Science and Technology, Anhui University, Hefei, China
| | - Chun-Hou Zheng
- School of Cyberspace Security, Qufu Normal University, Qufu, China.,School of Computer Science and Technology, Anhui University, Hefei, China
| | - Lei Li
- School of Cyberspace Security, Qufu Normal University, Qufu, China
| | - Su-Min Qi
- School of Cyberspace Security, Qufu Normal University, Qufu, China
| | - Yu-Tian Wang
- School of Cyberspace Security, Qufu Normal University, Qufu, China
| |
Collapse
|
37
|
Xuan P, Wang D, Cui H, Zhang T, Nakaguchi T. Integration of pairwise neighbor topologies and miRNA family and cluster attributes for miRNA-disease association prediction. Brief Bioinform 2021; 23:6385813. [PMID: 34634106 DOI: 10.1093/bib/bbab428] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/01/2021] [Accepted: 09/19/2021] [Indexed: 12/14/2022] Open
Abstract
Identifying disease-related microRNAs (miRNAs) assists the understanding of disease pathogenesis. Existing research methods integrate multiple kinds of data related to miRNAs and diseases to infer candidate disease-related miRNAs. The attributes of miRNA nodes including their family and cluster belonging information, however, have not been deeply integrated. Besides, the learning of neighbor topology representation of a pair of miRNA and disease is a challenging issue. We present a disease-related miRNA prediction method by encoding and integrating multiple representations of miRNA and disease nodes learnt from the generative and adversarial perspective. We firstly construct a bilayer heterogeneous network of miRNA and disease nodes, and it contains multiple types of connections among these nodes, which reflect neighbor topology of miRNA-disease pairs, and the attributes of miRNA nodes, especially miRNA-related families and clusters. To learn enhanced pairwise neighbor topology, we propose a generative and adversarial model with a convolutional autoencoder-based generator to encode the low-dimensional topological representation of the miRNA-disease pair and multi-layer convolutional neural network-based discriminator to discriminate between the true and false neighbor topology embeddings. Besides, we design a novel feature category-level attention mechanism to learn the various importance of different features for final adaptive fusion and prediction. Comparison results with five miRNA-disease association methods demonstrated the superior performance of our model and technical contributions in terms of area under the receiver operating characteristic curve and area under the precision-recall curve. The results of recall rates confirmed that our model can find more actual miRNA-disease associations among top-ranked candidates. Case studies on three cancers further proved the ability to detect potential candidate miRNAs.
Collapse
Affiliation(s)
- Ping Xuan
- School of Computer Science and Technology, Heilongjiang University, Harbin 150080, China
| | - Dong Wang
- School of Computer Science and Technology, Heilongjiang University, Harbin 150080, China
| | - Hui Cui
- Department of Computer Science and Information Technology, La Trobe University, Melbourne 3083, Australia
| | - Tiangang Zhang
- School of Mathematical Science, Heilongjiang University, Harbin 150080, China
| | - Toshiya Nakaguchi
- Center for Frontier Medical Engineering, Chiba University, Chiba 2638522, Japan
| |
Collapse
|
38
|
Ji C, Wang Y, Ni J, Zheng C, Su Y. Predicting miRNA-Disease Associations Based on Heterogeneous Graph Attention Networks. Front Genet 2021; 12:727744. [PMID: 34512733 PMCID: PMC8424198 DOI: 10.3389/fgene.2021.727744] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 08/02/2021] [Indexed: 11/23/2022] Open
Abstract
In recent years, more and more evidence has shown that microRNAs (miRNAs) play an important role in the regulation of post-transcriptional gene expression, and are closely related to human diseases. Many studies have also revealed that miRNAs can be served as promising biomarkers for the potential diagnosis and treatment of human diseases. The interactions between miRNA and human disease have rarely been demonstrated, and the underlying mechanism of miRNA is not clear. Therefore, computational approaches has attracted the attention of researchers, which can not only save time and money, but also improve the efficiency and accuracy of biological experiments. In this work, we proposed a Heterogeneous Graph Attention Networks (GAT) based method for miRNA-disease associations prediction, named HGATMDA. We constructed a heterogeneous graph for miRNAs and diseases, introduced weighted DeepWalk and GAT methods to extract features of miRNAs and diseases from the graph. Moreover, a fully-connected neural networks is used to predict correlation scores between miRNA-disease pairs. Experimental results under five-fold cross validation (five-fold CV) showed that HGATMDA achieved better prediction performance than other state-of-the-art methods. In addition, we performed three case studies on breast neoplasms, lung neoplasms and kidney neoplasms. The results showed that for the three diseases mentioned above, 50 out of top 50 candidates were confirmed by the validation datasets. Therefore, HGATMDA is suitable as an effective tool to identity potential diseases-related miRNAs.
Collapse
Affiliation(s)
- Cunmei Ji
- School of Cyber Science and Engineering, Qufu Normal University, Qufu, China
| | - Yutian Wang
- School of Cyber Science and Engineering, Qufu Normal University, Qufu, China
| | - Jiancheng Ni
- School of Cyber Science and Engineering, Qufu Normal University, Qufu, China
| | - Chunhou Zheng
- School of Artificial Intelligence, Anhui University, Hefei, China
| | - Yansen Su
- School of Artificial Intelligence, Anhui University, Hefei, China
| |
Collapse
|
39
|
Chen XJ, Hua XY, Jiang ZR. ANMDA: anti-noise based computational model for predicting potential miRNA-disease associations. BMC Bioinformatics 2021; 22:358. [PMID: 34215183 PMCID: PMC8254275 DOI: 10.1186/s12859-021-04266-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 06/11/2021] [Indexed: 11/24/2022] Open
Abstract
Background A growing proportion of research has proved that microRNAs (miRNAs) can regulate the function of target genes and have close relations with various diseases. Developing computational methods to exploit more potential miRNA-disease associations can provide clues for further functional research. Results Inspired by the work of predecessors, we discover that the noise hiding in the data can affect the prediction performance and then propose an anti-noise algorithm (ANMDA) to predict potential miRNA-disease associations. Firstly, we calculate the similarity in miRNAs and diseases to construct features and obtain positive samples according to the Human MicroRNA Disease Database version 2.0 (HMDD v2.0). Then, we apply k-means on the undetected miRNA-disease associations and sample the negative examples equally from the k-cluster. Further, we construct several data subsets through sampling with replacement to feed on the light gradient boosting machine (LightGBM) method. Finally, the voting method is applied to predict potential miRNA-disease relationships. As a result, ANMDA can achieve an area under the receiver operating characteristic curve (AUROC) of 0.9373 ± 0.0005 in five-fold cross-validation, which is superior to several published methods. In addition, we analyze the predicted miRNA-disease associations with high probability and compare them with the data in HMDD v3.0 in the case study. The results show ANMDA is a novel and practical algorithm that can be used to infer potential miRNA-disease associations. Conclusion The results indicate the noise hiding in the data has an obvious impact on predicting potential miRNA-disease associations. We believe ANMDA can achieve better results from this task with more methods used in dealing with the data noise. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-021-04266-6.
Collapse
Affiliation(s)
- Xue-Jun Chen
- School of Computer Science and Technology, East China Normal University, Shanghai, 200062, China
| | - Xin-Yun Hua
- School of Computer Science and Technology, East China Normal University, Shanghai, 200062, China
| | - Zhen-Ran Jiang
- School of Computer Science and Technology, East China Normal University, Shanghai, 200062, China.
| |
Collapse
|
40
|
Li J, Peng D, Xie Y, Dai Z, Zou X, Li Z. Novel Potential Small Molecule-MiRNA-Cancer Associations Prediction Model Based on Fingerprint, Sequence, and Clinical Symptoms. J Chem Inf Model 2021; 61:2208-2219. [PMID: 33899462 DOI: 10.1021/acs.jcim.0c01458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
As an important biomarker in organisms, miRNA is closely related to various small molecules and diseases. Research on small molecule-miRNA-cancer associations is helpful for the development of cancer treatment drugs and the discovery of pathogenesis. It is very urgent to develop theoretical methods for identifying potential small molecular-miRNA-cancer associations, because experimental approaches are usually time-consuming, laborious, and expensive. To overcome this problem, we developed a new computational method, in which features derived from structure, sequence, and symptoms were utilized to characterize small molecule, miRNA, and cancer, respectively. A feature vector was construct to characterize small molecule-miRNA-cancer association by concatenating these features, and a random forest algorithm was utilized to construct a model for recognizing potential association. Based on the 5-fold cross-validation and benchmark data set, the model achieved an accuracy of 93.20 ± 0.52%, a precision of 93.22 ± 0.51%, a recall of 93.20 ± 0.53%, and an F1-measure of 93.20 ± 0.52%. The areas under the receiver operating characteristic curve and precision recall curve were 0.9873 and 0.9870. The real prediction ability and application performance of the developed method have also been further evaluated and verified through an independent data set test and case study. Some potential small molecules and miRNAs related to cancer have been identified and are worthy of further experimental research. It is anticipated that our model could be regarded as a useful high-throughput virtual screening tool for drug research and development. All source codes can be downloaded from https://github.com/LeeKamlong/Multi-class-SMMCA.
Collapse
Affiliation(s)
- Jinlong Li
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
| | - Dongdong Peng
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
| | - Yun Xie
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
| | - Zong Dai
- School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Xiaoyong Zou
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Zhanchao Li
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of Traditional Chinese Medicine, Guangzhou 510006, People's Republic of China
| |
Collapse
|
41
|
Liu D, Huang Y, Nie W, Zhang J, Deng L. SMALF: miRNA-disease associations prediction based on stacked autoencoder and XGBoost. BMC Bioinformatics 2021; 22:219. [PMID: 33910505 PMCID: PMC8082881 DOI: 10.1186/s12859-021-04135-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/14/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Identifying miRNA and disease associations helps us understand disease mechanisms of action from the molecular level. However, it is usually blind, time-consuming, and small-scale based on biological experiments. Hence, developing computational methods to predict unknown miRNA and disease associations is becoming increasingly important. RESULTS In this work, we develop a computational framework called SMALF to predict unknown miRNA-disease associations. SMALF first utilizes a stacked autoencoder to learn miRNA latent feature and disease latent feature from the original miRNA-disease association matrix. Then, SMALF obtains the feature vector of representing miRNA-disease by integrating miRNA functional similarity, miRNA latent feature, disease semantic similarity, and disease latent feature. Finally, XGBoost is utilized to predict unknown miRNA-disease associations. We implement cross-validation experiments. Compared with other state-of-the-art methods, SAMLF achieved the best AUC value. We also construct three case studies, including hepatocellular carcinoma, colon cancer, and breast cancer. The results show that 10, 10, and 9 out of the top ten predicted miRNAs are verified in MNDR v3.0 or miRCancer, respectively. CONCLUSION The comprehensive experimental results demonstrate that SMALF is effective in identifying unknown miRNA-disease associations.
Collapse
Affiliation(s)
- Dayun Liu
- School of Computer Science and Engineering, Central South University, Hunan, 410083, China
| | - Yibiao Huang
- School of Computer Science and Engineering, Central South University, Hunan, 410083, China
| | - Wenjuan Nie
- School of Computer Science and Engineering, Central South University, Hunan, 410083, China
| | - Jiaxuan Zhang
- Department of Cognitive Science, University of California San Diego, La Jolla, 92093, USA
| | - Lei Deng
- School of Computer Science and Engineering, Central South University, Hunan, 410083, China.
| |
Collapse
|