1
|
Aplakidou E, Vergoulidis N, Chasapi M, Venetsianou NK, Kokoli M, Panagiotopoulou E, Iliopoulos I, Karatzas E, Pafilis E, Georgakopoulos-Soares I, Kyrpides NC, Pavlopoulos GA, Baltoumas FA. Visualizing metagenomic and metatranscriptomic data: A comprehensive review. Comput Struct Biotechnol J 2024; 23:2011-2033. [PMID: 38765606 PMCID: PMC11101950 DOI: 10.1016/j.csbj.2024.04.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/22/2024] Open
Abstract
The fields of Metagenomics and Metatranscriptomics involve the examination of complete nucleotide sequences, gene identification, and analysis of potential biological functions within diverse organisms or environmental samples. Despite the vast opportunities for discovery in metagenomics, the sheer volume and complexity of sequence data often present challenges in processing analysis and visualization. This article highlights the critical role of advanced visualization tools in enabling effective exploration, querying, and analysis of these complex datasets. Emphasizing the importance of accessibility, the article categorizes various visualizers based on their intended applications and highlights their utility in empowering bioinformaticians and non-bioinformaticians to interpret and derive insights from meta-omics data effectively.
Collapse
Affiliation(s)
- Eleni Aplakidou
- Institute for Fundamental Biomedical Research, BSRC "Alexander Fleming", Vari, Greece
- Department of Informatics and Telecommunications, Data Science and Information Technologies program, University of Athens, 15784 Athens, Greece
| | - Nikolaos Vergoulidis
- Institute for Fundamental Biomedical Research, BSRC "Alexander Fleming", Vari, Greece
| | - Maria Chasapi
- Institute for Fundamental Biomedical Research, BSRC "Alexander Fleming", Vari, Greece
- Department of Informatics and Telecommunications, Data Science and Information Technologies program, University of Athens, 15784 Athens, Greece
| | - Nefeli K. Venetsianou
- Institute for Fundamental Biomedical Research, BSRC "Alexander Fleming", Vari, Greece
| | - Maria Kokoli
- Institute for Fundamental Biomedical Research, BSRC "Alexander Fleming", Vari, Greece
| | - Eleni Panagiotopoulou
- Institute for Fundamental Biomedical Research, BSRC "Alexander Fleming", Vari, Greece
- Department of Informatics and Telecommunications, Data Science and Information Technologies program, University of Athens, 15784 Athens, Greece
| | - Ioannis Iliopoulos
- Department of Basic Sciences, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Evangelos Karatzas
- Institute for Fundamental Biomedical Research, BSRC "Alexander Fleming", Vari, Greece
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Evangelos Pafilis
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), Heraklion, Greece
| | - Ilias Georgakopoulos-Soares
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Nikos C. Kyrpides
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Georgios A. Pavlopoulos
- Institute for Fundamental Biomedical Research, BSRC "Alexander Fleming", Vari, Greece
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
- Center of New Biotechnologies & Precision Medicine, Department of Medicine, School of Health Sciences, National and Kapodistrian University of Athens, Greece
- Hellenic Army Academy, 16673 Vari, Greece
| | - Fotis A. Baltoumas
- Institute for Fundamental Biomedical Research, BSRC "Alexander Fleming", Vari, Greece
| |
Collapse
|
2
|
Elfmann C, Dumann V, van den Berg T, Stülke J. A new framework for SubtiWiki, the database for the model organism Bacillus subtilis. Nucleic Acids Res 2024:gkae957. [PMID: 39441067 DOI: 10.1093/nar/gkae957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
Bacillus subtilis is a Gram-positive model bacterium and one of the most-studied and best understood organisms. The complex information resulting from its investigation is compiled in the database SubtiWiki (https://subtiwiki.uni-goettingen.de/v5) in an integrated and intuitive manner. To enhance the utility of SubtiWiki, we have added novel features such as a viewer to interrogate conserved genomic organization, a widget that shows mutant fitness data for all non-essential genes, and a widget showing protein structures, structure predictions and complex structures. Moreover, we have integrated metabolites as new entities. The new framework also includes a documented API, enabling programmatic access to data for computational tasks. Here we present the recent developments of SubtiWiki and the current state of the data for this organism.
Collapse
Affiliation(s)
- Christoph Elfmann
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August University Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany
| | - Vincenz Dumann
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August University Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany
| | - Tim van den Berg
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August University Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany
| | - Jörg Stülke
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August University Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany
| |
Collapse
|
3
|
He S, Taher NM, Simard AR, Hvorecny KL, Ragusa MJ, Bahl CD, Hickman AB, Dyda F, Madden DR. Molecular basis for the transcriptional regulation of an epoxide-based virulence circuit in Pseudomonas aeruginosa. Nucleic Acids Res 2024:gkae889. [PMID: 39413156 DOI: 10.1093/nar/gkae889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 08/30/2024] [Accepted: 10/03/2024] [Indexed: 10/18/2024] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa infects the airways of people with cystic fibrosis (CF) and produces a virulence factor Cif that is associated with worse outcomes. Cif is an epoxide hydrolase that reduces cell-surface abundance of the cystic fibrosis transmembrane conductance regulator (CFTR) and sabotages pro-resolving signals. Its expression is regulated by a divergently transcribed TetR family transcriptional repressor. CifR represents the first reported epoxide-sensing bacterial transcriptional regulator, but neither its interaction with cognate operator sequences nor the mechanism of activation has been investigated. Using biochemical and structural approaches, we uncovered the molecular mechanisms controlling this complex virulence operon. We present here the first molecular structures of CifR alone and in complex with operator DNA, resolved in a single crystal lattice. Significant conformational changes between these two structures suggest how CifR regulates the expression of the virulence gene cif. Interactions between the N-terminal extension of CifR with the DNA minor groove of the operator play a significant role in the operator recognition of CifR. We also determined that cysteine residue Cys107 is critical for epoxide sensing and DNA release. These results offer new insights into the stereochemical regulation of an epoxide-based virulence circuit in a critically important clinical pathogen.
Collapse
Affiliation(s)
- Susu He
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Noor M Taher
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Adam R Simard
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Kelli L Hvorecny
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Michael J Ragusa
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
- Department of Chemistry, Dartmouth, Hanover, NH 03755, USA
| | - Christopher D Bahl
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Alison B Hickman
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Fred Dyda
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dean R Madden
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
- Department of Chemistry, Dartmouth, Hanover, NH 03755, USA
| |
Collapse
|
4
|
Anso I, Zouhir S, Sana TG, Krasteva PV. Structural basis for synthase activation and cellulose modification in the E. coli Type II Bcs secretion system. Nat Commun 2024; 15:8799. [PMID: 39394223 PMCID: PMC11470070 DOI: 10.1038/s41467-024-53113-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/24/2024] [Indexed: 10/13/2024] Open
Abstract
Bacterial cellulosic polymers constitute a prevalent class of biofilm matrix exopolysaccharides that are synthesized by several types of bacterial cellulose secretion (Bcs) systems, which include conserved cyclic diguanylate (c-di-GMP)-dependent cellulose synthase modules together with diverse accessory subunits. In E. coli, the biogenesis of phosphoethanolamine (pEtN)-modified cellulose relies on the BcsRQABEFG macrocomplex, encompassing inner-membrane and cytosolic subunits, and an outer membrane porin, BcsC. Here, we use cryogenic electron microscopy to shed light on the molecular mechanisms of BcsA-dependent recruitment and stabilization of a trimeric BcsG pEtN-transferase for polymer modification, and a dimeric BcsF-dependent recruitment of an otherwise cytosolic BcsE2R2Q2 regulatory complex. We further demonstrate that BcsE, a secondary c-di-GMP sensor, can remain dinucleotide-bound and retain the essential-for-secretion BcsRQ partners onto the synthase even in the absence of direct c-di-GMP-synthase complexation, likely lowering the threshold for c-di-GMP-dependent synthase activation. Such activation-by-proxy mechanism could allow Bcs secretion system activity even in the absence of substantial intracellular c-di-GMP increase, and is reminiscent of other widespread synthase-dependent polysaccharide secretion systems where dinucleotide sensing and/or synthase stabilization are carried out by key co-polymerase subunits.
Collapse
Affiliation(s)
- Itxaso Anso
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600, Pessac, France
- Structural Biology of Biofilms Group, European Institute of Chemistry and Biology (IECB), 2 Rue Robert Escarpit, Pessac, F-33600, France
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain
| | - Samira Zouhir
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600, Pessac, France
- Structural Biology of Biofilms Group, European Institute of Chemistry and Biology (IECB), 2 Rue Robert Escarpit, Pessac, F-33600, France
- Laboratoire de Biologie et Pharmacologie Appliquée (LBPA), CNRS UMR8113, ENS Paris-Saclay, Université Paris-Saclay, Gif-sur-Yvette, F-91190, France
| | - Thibault Géry Sana
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600, Pessac, France
- Structural Biology of Biofilms Group, European Institute of Chemistry and Biology (IECB), 2 Rue Robert Escarpit, Pessac, F-33600, France
| | - Petya Violinova Krasteva
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600, Pessac, France.
- Structural Biology of Biofilms Group, European Institute of Chemistry and Biology (IECB), 2 Rue Robert Escarpit, Pessac, F-33600, France.
| |
Collapse
|
5
|
Kato F, Bandou R, Yamaguchi Y, Inouye K, Inouye M. Characterization of a membrane toxin-antitoxin system, tsaAT, from Staphylococcus aureus. FEBS J 2024. [PMID: 39356479 DOI: 10.1111/febs.17289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/01/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024]
Abstract
Bacterial toxin-antitoxin (TA) systems consist of a toxin that inhibits essential cellular processes, such as DNA replication, transcription, translation, or ATP synthesis, and an antitoxin neutralizing their cognate toxin. These systems have roles in programmed cell death, defense against phage, and the formation of persister cells. Here, we characterized the previously identified Staphylococcus aureus TA system, tsaAT, which consists of two putative membrane proteins: TsaT and TsaA. Expression of the TsaT toxin caused cell death and disrupted membrane integrity, whereas TsaA did not show any toxicity and neutralized the toxicity of TsaT. Furthermore, subcellular fractionation analysis demonstrated that both TsaA and TsaT localized to the cytoplasmic membrane of S. aureus expressing either or both 3xFLAG-tagged TsaA and 3xFLAG-tagged TsaT. Taken together, these results demonstrate that the TsaAT TA system consists of two membrane proteins, TsaA and TsaT, where TsaT disrupts membrane integrity, ultimately leading to cell death. Although sequence analyses showed that the tsaA and tsaT genes were conserved among Staphylococcus species, amino acid substitutions between TsaT orthologs highlighted the critical role of the 6th residue for its toxicity. Further amino acid substitutions indicated that the glutamic acid residue at position 63 in the TsaA antitoxin and the cluster of five lysine residues in the TsaT toxin are involved in TsaA's neutralization reaction. This study is the first to describe a bacterial TA system wherein both toxin and antitoxin are membrane proteins. These findings contribute to our understanding of S. aureus TA systems and, more generally, give new insight into highly diverse bacterial TA systems.
Collapse
Affiliation(s)
- Fuminori Kato
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Risa Bandou
- Faculty of Dentistry, Hiroshima University, Japan
| | - Yoshihiro Yamaguchi
- Department of Biology, Graduate School of Sciences, Osaka Metropolitan University, Japan
| | - Keiko Inouye
- Department of Biochemistry and Molecular Biology, Center for Advanced Biotechnology and Medicine, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Masayori Inouye
- Department of Biochemistry and Molecular Biology, Center for Advanced Biotechnology and Medicine, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, USA
| |
Collapse
|
6
|
Clark CM, Kwan JC. Creating and leveraging bespoke large-scale knowledge graphs for comparative genomics and multi-omics drug discovery with SocialGene. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.16.608329. [PMID: 39229008 PMCID: PMC11370487 DOI: 10.1101/2024.08.16.608329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The rapid expansion of multi-omics data has transformed biological research, offering unprecedented opportunities to explore complex genomic relationships across diverse organisms. However, the vast volume and heterogeneity of these datasets presents significant challenges for analyses. Here we introduce SocialGene, a comprehensive software suite designed to collect, analyze, and organize multi-omics data into structured knowledge graphs, with the ability to handle small projects to repository-scale analyses. Originally developed to enhance genome mining for natural product drug discovery, SocialGene has been effective across various applications, including functional genomics, evolutionary studies, and systems biology. SocialGene's concerted Python and Nextflow libraries streamline data ingestion, manipulation, aggregation, and analysis, culminating in a custom Neo4j database. The software not only facilitates the exploration of genomic synteny but also provides a foundational knowledge graph supporting the integration of additional diverse datasets and the development of advanced search engines and analyses. This manuscript introduces some of SocialGene's capabilities through brief case studies including targeted genome mining for drug discovery, accelerated searches for similar and distantly related biosynthetic gene clusters in biobank-available organisms, integration of chemical and analytical data, and more. SocialGene is free, open-source, MIT-licensed, designed for adaptability and extension, and available from github.com/socialgene.
Collapse
Affiliation(s)
- Chase M. Clark
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| | - Jason C. Kwan
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| |
Collapse
|
7
|
van den Berg DF, Costa AR, Esser JQ, Stanciu I, Geissler JQ, Zoumaro-Djayoon AD, Haas PJ, Brouns SJJ. Bacterial homologs of innate eukaryotic antiviral defenses with anti-phage activity highlight shared evolutionary roots of viral defenses. Cell Host Microbe 2024; 32:1427-1443.e8. [PMID: 39094584 DOI: 10.1016/j.chom.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/21/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
Prokaryotes have evolved a multitude of defense systems to protect against phage predation. Some of these resemble eukaryotic genes involved in antiviral responses. Here, we set out to systematically project the current knowledge of eukaryotic-like antiviral defense systems onto prokaryotic genomes, using Pseudomonas aeruginosa as a model organism. Searching for phage defense systems related to innate antiviral genes from vertebrates and plants, we uncovered over 450 candidates. We validated six of these phage defense systems, including factors preventing viral attachment, R-loop-acting enzymes, the inflammasome, ubiquitin pathway, and pathogen recognition signaling. Collectively, these defense systems support the concept of deep evolutionary links and shared antiviral mechanisms between prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- Daan F van den Berg
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, the Netherlands; Kavli Institute of Nanoscience, Delft, the Netherlands
| | - Ana Rita Costa
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, the Netherlands; Kavli Institute of Nanoscience, Delft, the Netherlands
| | - Jelger Q Esser
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, the Netherlands; Kavli Institute of Nanoscience, Delft, the Netherlands
| | - Ilinka Stanciu
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, the Netherlands; Kavli Institute of Nanoscience, Delft, the Netherlands
| | - Jasper Q Geissler
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, the Netherlands; Kavli Institute of Nanoscience, Delft, the Netherlands
| | | | - Pieter-Jan Haas
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands
| | - Stan J J Brouns
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, the Netherlands; Kavli Institute of Nanoscience, Delft, the Netherlands.
| |
Collapse
|
8
|
Takada H, Paternoga H, Fujiwara K, Nakamoto J, Park E, Dimitrova-Paternoga L, Beckert B, Saarma M, Tenson T, Buskirk A, Atkinson G, Chiba S, Wilson D, Hauryliuk V. A role for the S4-domain containing protein YlmH in ribosome-associated quality control in Bacillus subtilis. Nucleic Acids Res 2024; 52:8483-8499. [PMID: 38811035 PMCID: PMC11317155 DOI: 10.1093/nar/gkae399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/26/2024] [Accepted: 05/06/2024] [Indexed: 05/31/2024] Open
Abstract
Ribosomes trapped on mRNAs during protein synthesis need to be rescued for the cell to survive. The most ubiquitous bacterial ribosome rescue pathway is trans-translation mediated by tmRNA and SmpB. Genetic inactivation of trans-translation can be lethal, unless ribosomes are rescued by ArfA or ArfB alternative rescue factors or the ribosome-associated quality control (RQC) system, which in Bacillus subtilis involves MutS2, RqcH, RqcP and Pth. Using transposon sequencing in a trans-translation-incompetent B. subtilis strain we identify a poorly characterized S4-domain-containing protein YlmH as a novel potential RQC factor. Cryo-EM structures reveal that YlmH binds peptidyl-tRNA-50S complexes in a position analogous to that of S4-domain-containing protein RqcP, and that, similarly to RqcP, YlmH can co-habit with RqcH. Consistently, we show that YlmH can assume the role of RqcP in RQC by facilitating the addition of poly-alanine tails to truncated nascent polypeptides. While in B. subtilis the function of YlmH is redundant with RqcP, our taxonomic analysis reveals that in multiple bacterial phyla RqcP is absent, while YlmH and RqcH are present, suggesting that in these species YlmH plays a central role in the RQC.
Collapse
Affiliation(s)
- Hiraku Takada
- Faculty of Life Sciences, Kyoto Sangyo University and Institute for Protein Dynamics, Kamigamo, Motoyama, Kita-ku, Kyoto 603-8555, Japan
- Department of Biotechnology, Toyama Prefectural University,5180 Kurokawa, Imizu, Toyama 939-0398, Japan
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
| | - Helge Paternoga
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Keigo Fujiwara
- Faculty of Life Sciences, Kyoto Sangyo University and Institute for Protein Dynamics, Kamigamo, Motoyama, Kita-ku, Kyoto 603-8555, Japan
| | - Jose A Nakamoto
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
| | - Esther N Park
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lyudmila Dimitrova-Paternoga
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Bertrand Beckert
- Dubochet Center for Imaging (DCI) at EPFL, EPFL SB IPHYS DCI, Lausanne, Switzerland
| | - Merilin Saarma
- University of Tartu, Institute of Technology, 50411 Tartu, Estonia
| | - Tanel Tenson
- University of Tartu, Institute of Technology, 50411 Tartu, Estonia
| | - Allen R Buskirk
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gemma C Atkinson
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
- Virus Centre, Lund University, Lund, Sweden
| | - Shinobu Chiba
- Faculty of Life Sciences, Kyoto Sangyo University and Institute for Protein Dynamics, Kamigamo, Motoyama, Kita-ku, Kyoto 603-8555, Japan
| | - Daniel N Wilson
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Vasili Hauryliuk
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
- Virus Centre, Lund University, Lund, Sweden
- Science for Life Laboratory, Lund, Sweden
| |
Collapse
|
9
|
Østergaard MZ, Nielsen FD, Meinfeldt MH, Kirkpatrick CL. The uncharacterized PA3040-3042 operon is part of the cell envelope stress response and a tobramycin resistance determinant in a clinical isolate of Pseudomonas aeruginosa. Microbiol Spectr 2024; 12:e0387523. [PMID: 38949386 PMCID: PMC11302039 DOI: 10.1128/spectrum.03875-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/22/2024] [Indexed: 07/02/2024] Open
Abstract
Bacteriophages (hereafter "phages") are ubiquitous predators of bacteria in the natural world, but interest is growing in their development into antibacterial therapy as complement or replacement for antibiotics. However, bacteria have evolved a huge variety of antiphage defense systems allowing them to resist phage lysis to a greater or lesser extent. In addition to dedicated phage defense systems, some aspects of the general stress response also impact phage susceptibility, but the details of this are not well known. In order to elucidate these factors in the opportunistic pathogen Pseudomonas aeruginosa, we used the laboratory-conditioned strain PAO1 as host for phage infection experiments as it is naturally poor in dedicated phage defense systems. Screening by transposon insertion sequencing indicated that the uncharacterized operon PA3040-PA3042 was potentially associated with resistance to lytic phages. However, we found that its primary role appeared to be in regulating biofilm formation, particularly in a clinical isolate of P. aeruginosa in which it also altered tobramycin resistance. Its expression was highly growth-phase dependent and responsive to phage infection and cell envelope stress. Our results suggest that this operon may be a cryptic but important locus for P. aeruginosa stress tolerance. IMPORTANCE An important category of bacterial stress response systems is bacteriophage defense, where systems are triggered by bacteriophage infection and activate a response which may either destroy the phage genome or destroy the infected cell so that the rest of the population survives. In some bacteria, the cell envelope stress response is activated by bacteriophage infection, but it is unknown whether this contributes to the survival of the infection. We have found that a conserved uncharacterized operon (PA3040-PA3042) of the cell envelope stress regulon in Pseudomonas aeruginosa, which has very few dedicated phage defense systems, responds to phage infection and stationary phase as well as envelope stress and is important for growth and biofilm formation in a clinical isolate of P. aeruginosa, even in the absence of phages. As homologs of these genes are found in other bacteria, they may be a novel component of the general stress response.
Collapse
Affiliation(s)
- Magnus Z. Østergaard
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Flemming D. Nielsen
- Department of Clinical Microbiology, Odense University Hospital, Odense, Denmark
| | - Mette H. Meinfeldt
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Clare L. Kirkpatrick
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
10
|
Álvarez-Escribano I, Suárez-Murillo B, Brenes-Álvarez M, Vioque A, Muro-Pastor AM. Antisense RNA regulates glutamine synthetase in a heterocyst-forming cyanobacterium. PLANT PHYSIOLOGY 2024; 195:2911-2920. [PMID: 38708585 PMCID: PMC11288750 DOI: 10.1093/plphys/kiae263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 05/07/2024]
Abstract
Glutamine synthetase (GS) is a key enzyme involved in nitrogen assimilation and the maintenance of C/N balance, and it is strictly regulated in all bacteria. In cyanobacteria, GS expression is controlled by nitrogen control A (NtcA) transcription factor, which operates global nitrogen regulation in these photosynthetic organisms. Furthermore, posttranslational regulation of GS is operated by protein-protein interaction with GS inactivating factors (IFs). In this study, we describe an additional regulatory mechanism involving an antisense RNA. In Nostoc sp. PCC 7120, the gifA gene (encoding GS inactivating factor IF7) is transcribed downstream of the GS (glnA) gene, from the opposite strand, and the gifA mRNA extends into the glnA coding sequence in antisense orientation. Therefore, the dual RNA transcript that encodes gifA constitutes two functional regions: a 5' protein-coding region, encoding IF7, and a 3' untranslated region that acts as an antisense to glnA. By increasing the levels of such antisense RNA either in cis or in trans, we demonstrate that the amount of GS activity can be modulated by the presence of the antisense RNA. The tail-to-tail disposition of the glnA and gifA genes observed in many cyanobacterial strains from the Nostocales clade suggests the prevalence of such antisense RNA-mediated regulation of GS in this group of cyanobacteria.
Collapse
Affiliation(s)
- Isidro Álvarez-Escribano
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, 41092 Sevilla, Spain
| | - Belén Suárez-Murillo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, 41092 Sevilla, Spain
| | - Manuel Brenes-Álvarez
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Agustín Vioque
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, 41092 Sevilla, Spain
| | - Alicia M Muro-Pastor
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, 41092 Sevilla, Spain
| |
Collapse
|
11
|
Ruickoldt J, Jeoung JH, Rudolph MA, Lennartz F, Kreibich J, Schomäcker R, Dobbek H. Coupling CO 2 Reduction and Acetyl-CoA Formation: The Role of a CO Capturing Tunnel in Enzymatic Catalysis. Angew Chem Int Ed Engl 2024; 63:e202405120. [PMID: 38743001 DOI: 10.1002/anie.202405120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
The bifunctional CO-dehydrogenase/acetyl-CoA synthase (CODH/ACS) complex couples the reduction of CO2 to the condensation of CO with a methyl moiety and CoA to acetyl-CoA. Catalysis occurs at two sites connected by a tunnel transporting the CO. In this study, we investigated how the bifunctional complex and its tunnel support catalysis using the CODH/ACS from Carboxydothermus hydrogenoformans as a model. Although CODH/ACS adapted to form a stable bifunctional complex with a secluded substrate tunnel, catalysis and CO transport is even more efficient when two monofunctional enzymes are coupled. Efficient CO channeling appears to be ensured by hydrophobic binding sites for CO, which act in a bucket-brigade fashion rather than as a simple tube. Tunnel remodeling showed that opening the tunnel increased activity but impaired directed transport of CO. Constricting the tunnel impaired activity and CO transport, suggesting that the tunnel evolved to sequester CO rather than to maximize turnover.
Collapse
Affiliation(s)
- Jakob Ruickoldt
- Humboldt-Universität zu Berlin, Institut für Biologie, Unter den Linden 6, 10099, Berlin, Germany
| | - Jae-Hun Jeoung
- Humboldt-Universität zu Berlin, Institut für Biologie, Unter den Linden 6, 10099, Berlin, Germany
| | - Maik Alexander Rudolph
- Technische Universität Berlin, Institut für Chemie - Technische Chemie, Straße des 17. Juni 124, 10623, Berlin, Germany
| | - Frank Lennartz
- Helmholtz-Zentrum Berlin, Macromolecular Crystallography, Albert-Einstein-Straße 15, 12489, Berlin, Germany
| | - Julian Kreibich
- Humboldt-Universität zu Berlin, Institut für Biologie, Unter den Linden 6, 10099, Berlin, Germany
| | - Reinhard Schomäcker
- Technische Universität Berlin, Institut für Chemie - Technische Chemie, Straße des 17. Juni 124, 10623, Berlin, Germany
| | - Holger Dobbek
- Humboldt-Universität zu Berlin, Institut für Biologie, Unter den Linden 6, 10099, Berlin, Germany
| |
Collapse
|
12
|
Mets T, Kurata T, Ernits K, Johansson MJO, Craig SZ, Evora GM, Buttress JA, Odai R, Wallant KC, Nakamoto JA, Shyrokova L, Egorov AA, Doering CR, Brodiazhenko T, Laub MT, Tenson T, Strahl H, Martens C, Harms A, Garcia-Pino A, Atkinson GC, Hauryliuk V. Mechanism of phage sensing and restriction by toxin-antitoxin-chaperone systems. Cell Host Microbe 2024; 32:1059-1073.e8. [PMID: 38821063 DOI: 10.1016/j.chom.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/10/2024] [Accepted: 05/07/2024] [Indexed: 06/02/2024]
Abstract
Toxin-antitoxins (TAs) are prokaryotic two-gene systems composed of a toxin neutralized by an antitoxin. Toxin-antitoxin-chaperone (TAC) systems additionally include a SecB-like chaperone that stabilizes the antitoxin by recognizing its chaperone addiction (ChAD) element. TACs mediate antiphage defense, but the mechanisms of viral sensing and restriction are unexplored. We identify two Escherichia coli antiphage TAC systems containing host inhibition of growth (HigBA) and CmdTA TA modules, HigBAC and CmdTAC. HigBAC is triggered through recognition of the gpV major tail protein of phage λ. Chaperone HigC recognizes gpV and ChAD via analogous aromatic molecular patterns, with gpV outcompeting ChAD to trigger toxicity. For CmdTAC, the CmdT ADP-ribosyltransferase toxin modifies mRNA to halt protein synthesis and limit phage propagation. Finally, we establish the modularity of TACs by creating a hybrid broad-spectrum antiphage system combining the CmdTA TA warhead with a HigC chaperone phage sensor. Collectively, these findings reveal the potential of TAC systems in broad-spectrum antiphage defense.
Collapse
Affiliation(s)
- Toomas Mets
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden; University of Tartu, Institute of Technology, 50411 Tartu, Estonia
| | - Tatsuaki Kurata
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
| | - Karin Ernits
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
| | - Marcus J O Johansson
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
| | - Sophie Z Craig
- Cellular and Molecular Microbiology (CM2), Faculté des Sciences, Université Libre de Bruxelles (ULB), Campus La Plaine, Building BC, Room 1C4203, Boulevard du Triomphe, 1050 Brussels, Belgium
| | - Gabriel Medina Evora
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden; Cellular and Molecular Microbiology (CM2), Faculté des Sciences, Université Libre de Bruxelles (ULB), Campus La Plaine, Building BC, Room 1C4203, Boulevard du Triomphe, 1050 Brussels, Belgium
| | - Jessica A Buttress
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4AX, UK
| | - Roni Odai
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
| | - Kyo Coppieters't Wallant
- Centre for Structural Biology and Bioinformatics, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, Building BC, 1050 Bruxelles, Belgium
| | - Jose A Nakamoto
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
| | - Lena Shyrokova
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
| | - Artyom A Egorov
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
| | | | | | - Michael T Laub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tanel Tenson
- University of Tartu, Institute of Technology, 50411 Tartu, Estonia
| | - Henrik Strahl
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4AX, UK
| | - Chloe Martens
- Centre for Structural Biology and Bioinformatics, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, Building BC, 1050 Bruxelles, Belgium
| | - Alexander Harms
- ETH Zurich, Institute of Food, Nutrition and Health, 8092 Zürich, Switzerland
| | - Abel Garcia-Pino
- Cellular and Molecular Microbiology (CM2), Faculté des Sciences, Université Libre de Bruxelles (ULB), Campus La Plaine, Building BC, Room 1C4203, Boulevard du Triomphe, 1050 Brussels, Belgium.
| | - Gemma C Atkinson
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden; Virus Centre, Lund University, Lund, Sweden.
| | - Vasili Hauryliuk
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden; University of Tartu, Institute of Technology, 50411 Tartu, Estonia; Virus Centre, Lund University, Lund, Sweden; Science for Life Laboratory, Lund, Sweden.
| |
Collapse
|
13
|
Agapov A, Panteleev V, Kropocheva E, Kanevskaya A, Esyunina D, Kulbachinskiy A. Prokaryotic Argonaute nuclease cooperates with co-encoded RNase to acquire guide RNAs and target invader DNA. Nucleic Acids Res 2024; 52:5895-5911. [PMID: 38716875 PMCID: PMC11162769 DOI: 10.1093/nar/gkae345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/08/2024] [Accepted: 04/18/2024] [Indexed: 06/11/2024] Open
Abstract
Argonautes are an evolutionary conserved family of programmable nucleases that identify target nucleic acids using small guide oligonucleotides. In contrast to eukaryotic Argonautes (eAgos) that act on RNA, most studied prokaryotic Argonautes (pAgos) recognize DNA targets. Similarly to eAgos, pAgos can protect prokaryotic cells from invaders, but the biogenesis of guide oligonucleotides that confer them specificity to their targets remains poorly understood. Here, we have identified a new group of RNA-guided pAgo nucleases and demonstrated that a representative pAgo from this group, AmAgo from the mesophilic bacterium Alteromonas macleodii, binds guide RNAs of varying lengths for specific DNA targeting. Unlike most pAgos and eAgos, AmAgo is strictly specific to hydroxylated RNA guides containing a 5'-adenosine. AmAgo and related pAgos are co-encoded with a conserved RNA endonuclease from the HEPN superfamily (Ago-associated protein, Agap-HEPN). In vitro, Agap cleaves RNA between guanine and adenine nucleotides producing hydroxylated 5'-A guide oligonucleotides bound by AmAgo. In vivo, Agap cooperates with AmAgo in acquiring guide RNAs and counteracting bacteriophage infection. The AmAgo-Agap pair represents the first example of a pAgo system that autonomously produces RNA guides for DNA targeting and antiviral defense, which holds promise for programmable DNA targeting in biotechnology.
Collapse
Affiliation(s)
- Aleksei Agapov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Vladimir Panteleev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia
| | | | - Anna Kanevskaya
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia
| | - Daria Esyunina
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | | |
Collapse
|
14
|
Garrett SR, Higginson AB, Palmer T. Multiple variants of the type VII secretion system in Gram-positive bacteria. MICROLIFE 2024; 5:uqae013. [PMID: 38957458 PMCID: PMC11217815 DOI: 10.1093/femsml/uqae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/08/2024] [Accepted: 06/04/2024] [Indexed: 07/04/2024]
Abstract
Type VII secretion systems (T7SS) are found in bacteria across the Bacillota and Actinomycetota phyla and have been well described in Staphylococcus aureus, Bacillus subtilis, and pathogenic mycobacteria. The T7SS from Actinomycetota and Bacillota share two common components, a membrane-bound EccC/EssC ATPase and EsxA, a small helical hairpin protein of the WXG100 family. However, they also have additional phylum-specific components, and as a result they are termed the T7SSa (Actinomycetota) and T7SSb (Bacillota), respectively. Here, we identify additional organizations of the T7SS across these two phyla and describe eight additional T7SS subtypes, which we have named T7SSc-T7SSj. T7SSd is found exclusively in Actinomycetota including the Olselnella and Bifodobacterium genus, whereas the other seven are found only in Bacillota. All of the novel subtypes contain the canonical ATPase (TsxC) and the WXG100-family protein (TsxA). Most of them also contain a small ubiquitin-related protein, TsxB, related to the T7SSb EsaB/YukD component. Protein kinases, phosphatases, and forkhead-associated (FHA) proteins are often encoded in the novel T7SS gene clusters. Candidate substrates of these novel T7SS subtypes include LXG-domain and RHS proteins. Predicted substrates are frequently encoded alongside genes for additional small WXG100-related proteins that we speculate serve as cosecretion partners. Collectively our findings reveal unexpected diversity in the T7SS in Gram-positive bacteria.
Collapse
Affiliation(s)
- Stephen R Garrett
- Newcastle University Biosciences Institute, Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Andrew B Higginson
- Newcastle University Biosciences Institute, Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Tracy Palmer
- Newcastle University Biosciences Institute, Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| |
Collapse
|
15
|
Dominguez-Molina L, Kurata T, Cepauskas A, Echemendia-Blanco D, Zedek S, Talavera-Perez A, Atkinson GC, Hauryliuk V, Garcia-Pino A. Mechanisms of neutralization of toxSAS from toxin-antitoxin modules. Nat Chem Biol 2024:10.1038/s41589-024-01630-4. [PMID: 38834893 DOI: 10.1038/s41589-024-01630-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 04/22/2024] [Indexed: 06/06/2024]
Abstract
Toxic small alarmone synthetase (toxSAS) enzymes constitute a family of bacterial effectors present in toxin-antitoxin and secretion systems. toxSASs act through either translation inhibition mediated by pyrophosphorylation of transfer RNA (tRNA) CCA ends or synthesis of the toxic alarmone adenosine pentaphosphate ((pp)pApp) and adenosine triphosphate (ATP) depletion, exemplified by FaRel2 and FaRel, respectively. However, structural bases of toxSAS neutralization are missing. Here we show that the pseudo-Zn2+ finger domain (pZFD) of the ATfaRel2 antitoxin precludes access of ATP to the pyrophosphate donor site of the FaRel2 toxin, without affecting recruitment of the tRNA pyrophosphate acceptor. By contrast, (pp)pApp-producing toxSASs are inhibited by Tis1 antitoxin domains though occlusion of the pyrophosphate acceptor-binding site. Consequently, the auxiliary pZFD of AT2faRel is dispensable for FaRel neutralization. Collectively, our study establishes the general principles of toxSAS inhibition by structured antitoxin domains, with the control strategy directly coupled to toxSAS substrate specificity.
Collapse
Affiliation(s)
- Lucia Dominguez-Molina
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Tatsuaki Kurata
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Albinas Cepauskas
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Dannele Echemendia-Blanco
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Safia Zedek
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Ariel Talavera-Perez
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Gemma C Atkinson
- Department of Experimental Medical Science, Lund University, Lund, Sweden.
| | - Vasili Hauryliuk
- Department of Experimental Medical Science, Lund University, Lund, Sweden.
- Faculty of Science and Technology, University of Tartu Institute of Technology, Tartu, Estonia.
- Science for Life Laboratory, Lund, Sweden.
| | - Abel Garcia-Pino
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles (ULB), Brussels, Belgium.
| |
Collapse
|
16
|
Branger M, Leclercq SO. GenoFig: a user-friendly application for the visualization and comparison of genomic regions. Bioinformatics 2024; 40:btae372. [PMID: 38870520 PMCID: PMC11199195 DOI: 10.1093/bioinformatics/btae372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 05/28/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024] Open
Abstract
MOTIVATION Understanding the molecular evolutionary history of organisms usually requires visual comparison of genomic regions from related species or strains. Although several applications already exist to achieve this task, they are either too old, too limited, or too complex for most user's needs. RESULTS GenoFig is a graphical application for the visualization of prokaryotic genomic regions, intended to be as easy to use as possible and flexible enough to adapt to a variety of needs. GenoFig allows the personalized representation of annotations extracted from GenBank files in a consistent way across sequences, using regular expressions. It also provides several unique options to optimize the display of homologous regions between sequences, as well as other more classical features such as sequence GC percent or GC-skew representations. In summary, GenoFig is a simple, free, and highly configurable tool to explore the evolution of specific genomic regions in prokaryotes and to produce publication-ready figures. AVAILABILITY AND IMPLEMENTATION Genofig is fully available at https://forgemia.inra.fr/public-pgba/genofig under a GPL 3.0 license.
Collapse
Affiliation(s)
- Maxime Branger
- INRAE, Université de Tours, ISP, Nouzilly F-37380, France
| | | |
Collapse
|
17
|
Price MN, Arkin AP. A fast comparative genome browser for diverse bacteria and archaea. PLoS One 2024; 19:e0301871. [PMID: 38593165 PMCID: PMC11003636 DOI: 10.1371/journal.pone.0301871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/22/2024] [Indexed: 04/11/2024] Open
Abstract
Genome sequencing has revealed an incredible diversity of bacteria and archaea, but there are no fast and convenient tools for browsing across these genomes. It is cumbersome to view the prevalence of homologs for a protein of interest, or the gene neighborhoods of those homologs, across the diversity of the prokaryotes. We developed a web-based tool, fast.genomics, that uses two strategies to support fast browsing across the diversity of prokaryotes. First, the database of genomes is split up. The main database contains one representative from each of the 6,377 genera that have a high-quality genome, and additional databases for each taxonomic order contain up to 10 representatives of each species. Second, homologs of proteins of interest are identified quickly by using accelerated searches, usually in a few seconds. Once homologs are identified, fast.genomics can quickly show their prevalence across taxa, view their neighboring genes, or compare the prevalence of two different proteins. Fast.genomics is available at https://fast.genomics.lbl.gov.
Collapse
Affiliation(s)
- Morgan N. Price
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Lab, Berkeley, California, United States of America
| | - Adam P. Arkin
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Lab, Berkeley, California, United States of America
| |
Collapse
|
18
|
Walklett AJ, Flack EKP, Chidwick HS, Hatton NE, Keenan T, Budhadev D, Walton J, Thomas GH, Fascione MA. The Retaining Pse5Ac7Ac Pseudaminyltransferase KpsS1 Defines a Previously Unreported glycosyltransferase family (GT118). Angew Chem Int Ed Engl 2024; 63:e202318523. [PMID: 38224120 DOI: 10.1002/anie.202318523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/16/2024]
Abstract
Cell surface sugar 5,7-diacetyl pseudaminic acid (Pse5Ac7Ac) is a bacterial analogue of the ubiquitous sialic acid, Neu5Ac, and contributes to the virulence of a number of multidrug resistant bacteria, including ESKAPE pathogens Pseudomonas aeruginosa, and Acinetobacter baumannii. Despite its discovery in the surface glycans of bacteria over thirty years ago, to date no glycosyltransferase enzymes (GTs) dedicated to the synthesis of a pseudaminic acid glycosidic linkage have been unequivocally characterised in vitro. Herein we demonstrate that A. baumannii KpsS1 is a dedicated pseudaminyltransferase enzyme (PseT) which constructs a Pse5Ac7Ac-α(2,6)-Glcp linkage, and proceeds with retention of anomeric configuration. We utilise this PseT activity in tandem with the biosynthetic enzymes required for CMP-Pse5Ac7Ac assembly, in a two-pot, seven enzyme synthesis of an α-linked Pse5Ac7Ac glycoside. Due to its unique activity and protein sequence, we also assign KpsS1 as the prototypical member of a previously unreported GT family (GT118).
Collapse
Affiliation(s)
| | - Emily K P Flack
- Department of Chemistry, University of York, York, YO10 5DD, UK
- Department of Biology, University of York, York, YO10 5DD, UK
| | | | | | - Tessa Keenan
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | | | - Julia Walton
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Gavin H Thomas
- Department of Biology, University of York, York, YO10 5DD, UK
| | | |
Collapse
|
19
|
Bertsova YV, Serebryakova MV, Bogachev VA, Baykov AA, Bogachev AV. Acrylate Reductase of an Anaerobic Electron Transport Chain of the Marine Bacterium Shewanella woodyi. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:701-710. [PMID: 38831506 DOI: 10.1134/s0006297924040096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 06/05/2024]
Abstract
Many microorganisms are capable of anaerobic respiration in the absence of oxygen, by using different organic compounds as terminal acceptors in electron transport chain. We identify here an anaerobic respiratory chain protein responsible for acrylate reduction in the marine bacterium Shewanella woodyi. When the periplasmic proteins of S. woodyi were separated by ion exchange chromatography, acrylate reductase activity copurified with an ArdA protein (Swoo_0275). Heterologous expression of S. woodyi ardA gene (swoo_0275) in Shewanella oneidensis MR-1 cells did not result in the appearance in them of periplasmic acrylate reductase activity, but such activity was detected when the ardA gene was co-expressed with an ardB gene (swoo_0276). Together, these genes encode flavocytochrome c ArdAB, which is thus responsible for acrylate reduction in S. woodyi cells. ArdAB was highly specific for acrylate as substrate and reduced only methacrylate (at a 22-fold lower rate) among a series of other tested 2-enoates. In line with these findings, acrylate and methacrylate induced ardA gene expression in S. woodyi under anaerobic conditions, which was accompanied by the appearance of periplasmic acrylate reductase activity. ArdAB-linked acrylate reduction supports dimethylsulfoniopropionate-dependent anaerobic respiration in S. woodyi and, possibly, other marine bacteria.
Collapse
Affiliation(s)
- Yulia V Bertsova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Marina V Serebryakova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Vladimir A Bogachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Alexander A Baykov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Alexander V Bogachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| |
Collapse
|
20
|
Wei X, Tan H, Lobb B, Zhen W, Wu Z, Parks DH, Neufeld JD, Moreno-Hagelsieb G, Doxey AC. AnnoView enables large-scale analysis, comparison, and visualization of microbial gene neighborhoods. Brief Bioinform 2024; 25:bbae229. [PMID: 38747283 PMCID: PMC11094555 DOI: 10.1093/bib/bbae229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/02/2024] [Accepted: 04/26/2024] [Indexed: 05/19/2024] Open
Abstract
The analysis and comparison of gene neighborhoods is a powerful approach for exploring microbial genome structure, function, and evolution. Although numerous tools exist for genome visualization and comparison, genome exploration across large genomic databases or user-generated datasets remains a challenge. Here, we introduce AnnoView, a web server designed for interactive exploration of gene neighborhoods across the bacterial and archaeal tree of life. Our server offers users the ability to identify, compare, and visualize gene neighborhoods of interest from 30 238 bacterial genomes and 1672 archaeal genomes, through integration with the comprehensive Genome Taxonomy Database and AnnoTree databases. Identified gene neighborhoods can be visualized using pre-computed functional annotations from different sources such as KEGG, Pfam and TIGRFAM, or clustered based on similarity. Alternatively, users can upload and explore their own custom genomic datasets in GBK, GFF or CSV format, or use AnnoView as a genome browser for relatively small genomes (e.g. viruses and plasmids). Ultimately, we anticipate that AnnoView will catalyze biological discovery by enabling user-friendly search, comparison, and visualization of genomic data. AnnoView is available at http://annoview.uwaterloo.ca.
Collapse
Affiliation(s)
- Xin Wei
- Department of Biology and Waterloo Centre for Microbial Research, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Huagang Tan
- Department of Biology and Waterloo Centre for Microbial Research, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Briallen Lobb
- Department of Biology and Waterloo Centre for Microbial Research, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - William Zhen
- Department of Biology and Waterloo Centre for Microbial Research, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Zijing Wu
- Department of Biology and Waterloo Centre for Microbial Research, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Donovan H Parks
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD 4072, Brisbane, Australia
| | - Josh D Neufeld
- Department of Biology and Waterloo Centre for Microbial Research, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Gabriel Moreno-Hagelsieb
- Department of Biology, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON, Canada
| | - Andrew C Doxey
- Department of Biology and Waterloo Centre for Microbial Research, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
21
|
Manakova E, Golovinas E, Pocevičiūtė R, Sasnauskas G, Silanskas A, Rutkauskas D, Jankunec M, Zagorskaitė E, Jurgelaitis E, Grybauskas A, Venclovas Č, Zaremba M. The missing part: the Archaeoglobus fulgidus Argonaute forms a functional heterodimer with an N-L1-L2 domain protein. Nucleic Acids Res 2024; 52:2530-2545. [PMID: 38197228 PMCID: PMC10954474 DOI: 10.1093/nar/gkad1241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/05/2023] [Accepted: 12/16/2023] [Indexed: 01/11/2024] Open
Abstract
Argonaute (Ago) proteins are present in all three domains of life (bacteria, archaea and eukaryotes). They use small (15-30 nucleotides) oligonucleotide guides to bind complementary nucleic acid targets and are responsible for gene expression regulation, mobile genome element silencing, and defence against viruses or plasmids. According to their domain organization, Agos are divided into long and short Agos. Long Agos found in prokaryotes (long-A and long-B pAgos) and eukaryotes (eAgos) comprise four major functional domains (N, PAZ, MID and PIWI) and two structural linker domains L1 and L2. The majority (∼60%) of pAgos are short pAgos, containing only the MID and inactive PIWI domains. Here we focus on the prokaryotic Argonaute AfAgo from Archaeoglobus fulgidus DSM4304. Although phylogenetically classified as a long-B pAgo, AfAgo contains only MID and catalytically inactive PIWI domains, akin to short pAgos. We show that AfAgo forms a heterodimeric complex with a protein encoded upstream in the same operon, which is a structural equivalent of the N-L1-L2 domains of long pAgos. This complex, structurally equivalent to a long PAZ-less pAgo, outperforms standalone AfAgo in guide RNA-mediated target DNA binding. Our findings provide a missing piece to one of the first and the most studied pAgos.
Collapse
Affiliation(s)
- Elena Manakova
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257, Vilnius, Lithuania
| | - Edvardas Golovinas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257, Vilnius, Lithuania
| | - Reda Pocevičiūtė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257, Vilnius, Lithuania
| | - Giedrius Sasnauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257, Vilnius, Lithuania
| | - Arunas Silanskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257, Vilnius, Lithuania
| | - Danielis Rutkauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257, Vilnius, Lithuania
- Institute of Physics, Center for Physical Sciences and Technology, Savanoriu 231, LT-02300, Vilnius, Lithuania
| | - Marija Jankunec
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257, Vilnius, Lithuania
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257, Vilnius, Lithuania
| | - Evelina Zagorskaitė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257, Vilnius, Lithuania
| | - Edvinas Jurgelaitis
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257, Vilnius, Lithuania
| | - Algirdas Grybauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257, Vilnius, Lithuania
| | - Česlovas Venclovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257, Vilnius, Lithuania
| | - Mindaugas Zaremba
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257, Vilnius, Lithuania
| |
Collapse
|
22
|
Janet-Maitre M, Job V, Bour M, Robert-Genthon M, Brugière S, Triponney P, Cobessi D, Couté Y, Jeannot K, Attrée I. Pseudomonas aeruginosa MipA-MipB envelope proteins act as new sensors of polymyxins. mBio 2024; 15:e0221123. [PMID: 38345374 PMCID: PMC10936184 DOI: 10.1128/mbio.02211-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/09/2024] [Indexed: 03/14/2024] Open
Abstract
Due to the rising incidence of antibiotic-resistant infections, the last-line antibiotics, polymyxins, have resurged in the clinics in parallel with new bacterial strategies of escape. The Gram-negative opportunistic pathogen Pseudomonas aeruginosa develops resistance to colistin/polymyxin B by distinct molecular mechanisms, mostly through modification of the lipid A component of the LPS by proteins encoded within the arnBCDATEF-ugd (arn) operon. In this work, we characterized a polymyxin-induced operon named mipBA, present in P. aeruginosa strains devoid of the arn operon. We showed that mipBA is activated by the ParR/ParS two-component regulatory system in response to polymyxins. Structural modeling revealed that MipA folds as an outer-membrane β-barrel, harboring an internal negatively charged channel, able to host a polymyxin molecule, while the lipoprotein MipB adopts a β-lactamase fold with two additional C-terminal domains. Experimental work confirmed that MipA and MipB localize to the bacterial envelope, and they co-purify in vitro. Nano differential scanning fluorimetry showed that polymyxins stabilized MipA in a specific and dose-dependent manner. Mass spectrometry-based quantitative proteomics on P. aeruginosa membranes demonstrated that ∆mipBA synthesized fourfold less MexXY-OprA proteins in response to polymyxin B compared to the wild-type strain. The decrease was a direct consequence of impaired transcriptional activation of the mex operon operated by ParR/ParS. We propose MipA/MipB to act as membrane (co)sensors working in concert to activate ParS histidine kinase and help the bacterium to cope with polymyxin-mediated envelope stress through synthesis of the efflux pump, MexXY-OprA.IMPORTANCEDue to the emergence of multidrug-resistant isolates, antibiotic options may be limited to polymyxins to eradicate Gram-negative infections. Pseudomonas aeruginosa, a leading opportunistic pathogen, has the ability to develop resistance to these cationic lipopeptides by modifying its lipopolysaccharide through proteins encoded within the arn operon. Herein, we describe a sub-group of P. aeruginosa strains lacking the arn operon yet exhibiting adaptability to polymyxins. Exposition to sub-lethal polymyxin concentrations induced the expression and production of two envelope-associated proteins. Among those, MipA, an outer-membrane barrel, is able to specifically bind polymyxins with an affinity in the 10-µM range. Using membrane proteomics and phenotypic assays, we showed that MipA and MipB participate in the adaptive response to polymyxins via ParR/ParS regulatory signaling. We propose a new model wherein the MipA-MipB module functions as a novel polymyxin sensing mechanism.
Collapse
Affiliation(s)
- Manon Janet-Maitre
- Team Bacterial Pathogenesis and Cellular Responses, University Grenoble Alpes, IBS, UMR5075, Grenoble, France
| | - Viviana Job
- Team Bacterial Pathogenesis and Cellular Responses, University Grenoble Alpes, IBS, UMR5075, Grenoble, France
| | - Maxime Bour
- UMR6249 Chrono-Environnement, UFR Santé, University of Franche-Comté, Besançon, France
- French National Reference Center for Antibiotic Resistance, Besançon, France
| | - Mylène Robert-Genthon
- Team Bacterial Pathogenesis and Cellular Responses, University Grenoble Alpes, IBS, UMR5075, Grenoble, France
| | - Sabine Brugière
- University Grenoble Alpes, CEA, INSERM, UA13 BGE, CNRS, CEA, FranceGrenoble
| | - Pauline Triponney
- French National Reference Center for Antibiotic Resistance, Besançon, France
| | - David Cobessi
- University Grenoble Alpes, IBS, UMR5075, Team Synchrotron, Grenoble, France
| | - Yohann Couté
- University Grenoble Alpes, CEA, INSERM, UA13 BGE, CNRS, CEA, FranceGrenoble
| | - Katy Jeannot
- UMR6249 Chrono-Environnement, UFR Santé, University of Franche-Comté, Besançon, France
- French National Reference Center for Antibiotic Resistance, Besançon, France
- Department of Bacteriology, Teaching Hospital of Besançon, Besançon, France
| | - Ina Attrée
- Team Bacterial Pathogenesis and Cellular Responses, University Grenoble Alpes, IBS, UMR5075, Grenoble, France
| |
Collapse
|
23
|
Svetlov MS, Dunand CF, Nakamoto JA, Atkinson GC, Safdari HA, Wilson DN, Vázquez-Laslop N, Mankin AS. Peptidyl-tRNA hydrolase is the nascent chain release factor in bacterial ribosome-associated quality control. Mol Cell 2024; 84:715-726.e5. [PMID: 38183984 DOI: 10.1016/j.molcel.2023.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/08/2023] [Accepted: 12/01/2023] [Indexed: 01/08/2024]
Abstract
Rescuing stalled ribosomes often involves their splitting into subunits. In many bacteria, the resultant large subunits bearing peptidyl-tRNAs are processed by the ribosome-associated quality control (RQC) apparatus that extends the C termini of the incomplete nascent polypeptides with polyalanine tails to facilitate their degradation. Although the tailing mechanism is well established, it is unclear how the nascent polypeptides are cleaved off the tRNAs. We show that peptidyl-tRNA hydrolase (Pth), the known role of which has been to hydrolyze ribosome-free peptidyl-tRNA, acts in concert with RQC factors to release nascent polypeptides from large ribosomal subunits. Dislodging from the ribosomal catalytic center is required for peptidyl-tRNA hydrolysis by Pth. Nascent protein folding may prevent peptidyl-tRNA retraction and interfere with the peptide release. However, oligoalanine tailing makes the peptidyl-tRNA ester bond accessible for Pth-catalyzed hydrolysis. Therefore, the oligoalanine tail serves not only as a degron but also as a facilitator of Pth-catalyzed peptidyl-tRNA hydrolysis.
Collapse
Affiliation(s)
- Maxim S Svetlov
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA; Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | - Clémence F Dunand
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA; Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Jose A Nakamoto
- Department of Experimental Medicine, University of Lund, 221 00 Lund, Sweden
| | - Gemma C Atkinson
- Department of Experimental Medicine, University of Lund, 221 00 Lund, Sweden
| | - Haaris A Safdari
- Institute for Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany
| | - Daniel N Wilson
- Institute for Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany
| | - Nora Vázquez-Laslop
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA; Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Alexander S Mankin
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA; Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
24
|
Gerdes K. Diverse genetic contexts of HicA toxin domains propose a role in anti-phage defense. mBio 2024; 15:e0329323. [PMID: 38236063 PMCID: PMC10865869 DOI: 10.1128/mbio.03293-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024] Open
Abstract
Toxin-antitoxin (TA) modules are prevalent in prokaryotic genomes, often in substantial numbers. For instance, the Mycobacterium tuberculosis genome alone harbors close to 100 TA modules, half of which belong to a singular type. Traditionally ascribed multiple biological roles, recent insights challenge these notions and instead indicate a predominant function in phage defense. TAs are often located within Defense Islands, genomic regions that encode various defense systems. The analysis of genes within Defense Islands has unveiled a wide array of systems, including TAs that serve in anti-phage defense. Prokaryotic cells are equipped with anti-phage Viperins that, analogous to their mammalian counterparts, inhibit viral RNA transcription. Additionally, bacterial Structural Maintenance of Chromosome (SMC) proteins combat plasmid intrusion by recognizing foreign DNA signatures. This study undertakes a comprehensive bioinformatics analysis of genetic elements encoding the HicA double-stranded RNA-binding domain, complemented by protein structure modeling. The HicA toxin domains are found in at least 14 distinct contexts and thus exhibit a remarkable genetic diversity. Traditional bicistronic TA operons represent eight of these contexts, while four are characterized by monocistronic operons encoding fused HicA domains. Two contexts involve hicA adjacent to genes that encode bacterial Viperins. Notably, genes encoding RelE toxins are also adjacent to Viperin genes in some instances. This configuration hints at a synergistic enhancement of Viperin-mediated anti-phage action by HicA and RelE toxins. The discovery of a HicA domain merged with an SMC domain is compelling, prompting further investigation into its potential roles.IMPORTANCEProkaryotic organisms harbor a multitude of toxin-antitoxin (TA) systems, which have long puzzled scientists as "genes in search for a function." Recent scientific advancements have shed light on the primary role of TAs as anti-phage defense mechanisms. To gain an overview of TAs it is important to analyze their genetic contexts that can give hints on function and guide future experimental inquiries. This article describes a thorough bioinformatics examination of genes encoding the HicA toxin domain, revealing its presence in no fewer than 14 unique genetic arrangements. Some configurations notably align with anti-phage activities, underscoring potential roles in microbial immunity. These insights robustly reinforce the hypothesis that HicA toxins are integral components of the prokaryotic anti-phage defense repertoire. The elucidation of these genetic contexts not only advances our understanding of TAs but also contributes to a paradigm shift in how we perceive their functionality within the microbial world.
Collapse
Affiliation(s)
- Kenn Gerdes
- Kenn Gerdes is an independent researcher with the residence, Voldmestergade, Copenhagen, Denmark
| |
Collapse
|
25
|
Gallego-Parrilla JJ, Severi E, Chandra G, Palmer T. Identification of novel tail-anchored membrane proteins integrated by the bacterial twin-arginine translocase. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001431. [PMID: 38363712 PMCID: PMC10924467 DOI: 10.1099/mic.0.001431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/22/2024] [Indexed: 02/18/2024]
Abstract
The twin-arginine protein transport (Tat) system exports folded proteins across the cytoplasmic membranes of prokaryotes and the energy transducing-membranes of plant thylakoids and mitochondria. Proteins are targeted to the Tat machinery by N-terminal signal peptides with a conserved twin-arginine motif, and some substrates are exported as heterodimers where the signal peptide is present on one of the partner proteins. A subset of Tat substrates is found in the membrane. Tat-dependent membrane proteins usually have large globular domains and a single transmembrane helix present at the N- or C-terminus. Five Tat substrates that have C-terminal transmembrane helices have previously been characterized in the model bacterium Escherichia coli. Each of these is an iron-sulfur cluster-containing protein involved in electron transfer from hydrogen or formate. Here we have undertaken a bioinformatic search to identify further tail-anchored Tat substrates encoded in bacterial genomes. Our analysis has revealed additional tail-anchored iron-sulfur proteins associated in modules with either a b-type cytochrome or a quinol oxidase. We also identified further candidate tail-anchored Tat substrates, particularly among members of the actinobacterial phylum, that are not predicted to contain cofactors. Using reporter assays, we show experimentally that six of these have both N-terminal Tat signal peptides and C-terminal transmembrane helices. The newly identified proteins include a carboxypeptidase and a predicted protease, and four sortase substrates for which membrane integration is a prerequisite for covalent attachment to the cell wall.
Collapse
Affiliation(s)
- José Jesús Gallego-Parrilla
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Emmanuele Severi
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Govind Chandra
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Tracy Palmer
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
26
|
Reed CJ, Denise R, Hourihan J, Babor J, Jaroch M, Martinelli M, Hutinet G, de Crécy-Lagard V. Beyond blast: enabling microbiologists to better extract literature, taxonomic distributions and gene neighbourhood information for protein families. Microb Genom 2024; 10:001183. [PMID: 38323604 PMCID: PMC10926702 DOI: 10.1099/mgen.0.001183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/08/2024] [Indexed: 02/08/2024] Open
Abstract
Capturing the published corpus of information on all members of a given protein family should be an essential step in any study focusing on specific members of that family. Using a previously gathered dataset of more than 280 references mentioning a member of the DUF34 (NIF3/Ngg1-interacting Factor 3) family, we evaluated the efficiency of different databases and search tools, and devised a workflow that experimentalists can use to capture the most information published on members of a protein family in the least amount of time. To complement this workflow, web-based platforms allowing for the exploration of protein family members across sequenced genomes or for the analysis of gene neighbourhood information were reviewed for their versatility and ease of use. Recommendations that can be used for experimentalist users, as well as educators, are provided and integrated within a customized, publicly accessible Wiki.
Collapse
Affiliation(s)
- Colbie J. Reed
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Rémi Denise
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Jacob Hourihan
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Jill Babor
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Marshall Jaroch
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Maria Martinelli
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | | | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
- Department of Biology, Haverford College, Haverford, PA, USA
- UF Genetics Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
27
|
Sana TG, Notopoulou A, Puygrenier L, Decossas M, Moreau S, Carlier A, Krasteva PV. Structures and roles of BcsD and partner scaffold proteins in proteobacterial cellulose secretion. Curr Biol 2024; 34:106-116.e6. [PMID: 38141614 DOI: 10.1016/j.cub.2023.11.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/25/2023]
Abstract
Cellulose is the world's most abundant biopolymer, and similar to its role as a cell wall component in plants, it is a prevalent constituent of the extracellular matrix in bacterial biofilms. Although bacterial cellulose (BC) was first described in the 19th century, it was only recently revealed that it is produced by several distinct types of Bcs secretion systems that feature multiple accessory subunits in addition to a catalytic BcsAB synthase tandem. We recently showed that crystalline cellulose secretion in the Gluconacetobacter genus (α-Proteobacteria) is driven by a supramolecular BcsH-BcsD scaffold-the "cortical belt"-which stabilizes the synthase nanoarrays through an unexpected inside-out mechanism for secretion system assembly. Interestingly, while bcsH is specific for Gluconacetobacter, bcsD homologs are widespread in Proteobacteria. Here, we examine BcsD homologs and their gene neighborhoods from several plant-colonizing β- and γ-Proteobacteria proposed to secrete a variety of non-crystalline and/or chemically modified cellulosic polymers. We provide structural and mechanistic evidence that through different quaternary structure assemblies BcsD acts with proline-rich BcsH, BcsP, or BcsO partners across the proteobacterial clade to form synthase-interacting intracellular scaffolds that, in turn, determine the biofilm strength and architecture in species with strikingly different physiology and secreted biopolymers.
Collapse
Affiliation(s)
- Thibault G Sana
- Université de Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Pessac 33600, France; "Structural Biology of Biofilms" Group, European Institute of Chemistry and Biology (IECB), 2 Rue Robert Escarpit, Pessac 33600, France
| | - Areti Notopoulou
- Université de Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Pessac 33600, France; "Structural Biology of Biofilms" Group, European Institute of Chemistry and Biology (IECB), 2 Rue Robert Escarpit, Pessac 33600, France
| | - Lucie Puygrenier
- Université de Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Pessac 33600, France; "Structural Biology of Biofilms" Group, European Institute of Chemistry and Biology (IECB), 2 Rue Robert Escarpit, Pessac 33600, France
| | - Marion Decossas
- Université de Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Pessac 33600, France; "Structural Biology of Biofilms" Group, European Institute of Chemistry and Biology (IECB), 2 Rue Robert Escarpit, Pessac 33600, France
| | - Sandra Moreau
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan 31326, France
| | - Aurélien Carlier
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan 31326, France; Laboratory of Microbiology, Ghent University, Ghent 9000, Belgium
| | - Petya V Krasteva
- Université de Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Pessac 33600, France; "Structural Biology of Biofilms" Group, European Institute of Chemistry and Biology (IECB), 2 Rue Robert Escarpit, Pessac 33600, France.
| |
Collapse
|
28
|
Reed CJ, Denise R, Hourihan J, Babor J, Jaroch M, Martinelli M, Hutinet G, de Crécy-Lagard V. Beyond Blast: Enabling Microbiologists to Better Extract Literature, Taxonomic Distributions and Gene Neighborhood Information for Protein Families. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.03.539116. [PMID: 37205517 PMCID: PMC10187207 DOI: 10.1101/2023.05.03.539116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Capturing the published corpus of information on all members of a given protein family should be an essential step in any study focusing on specific members of that said family. Using a previously gathered dataset of more than 280 references mentioning a member of the DUF34 (NIF3/Ngg1-interacting Factor 3), we evaluated the efficiency of different databases and search tools, and devised a workflow that experimentalists can use to capture the most published information on members of a protein family in the least amount of time. To complement this workflow, web-based platforms allowing for the exploration of protein family members across sequenced genomes or for the analysis of gene neighborhood information were reviewed for their versatility and ease of use. Recommendations that can be used for experimentalist users, as well as educators, are provided and integrated within a customized, publicly accessible Wiki.
Collapse
Affiliation(s)
- Colbie J. Reed
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Rémi Denise
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Jacob Hourihan
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Jill Babor
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Marshall Jaroch
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Maria Martinelli
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Geoffrey Hutinet
- Department of Biology, Haverford College, 370 Lancaster Avenue, Haverford, PA 19041, USA
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
- Department of Biology, Haverford College, 370 Lancaster Avenue, Haverford, PA 19041, USA
- University of Florida Genetics Institute, Gainesville, FL 32610, USA
| |
Collapse
|
29
|
Garrett SR, Mietrach N, Deme J, Bitzer A, Yang Y, Ulhuq FR, Kretschmer D, Heilbronner S, Smith TK, Lea SM, Palmer T. A type VII-secreted lipase toxin with reverse domain arrangement. Nat Commun 2023; 14:8438. [PMID: 38114483 PMCID: PMC10730906 DOI: 10.1038/s41467-023-44221-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023] Open
Abstract
The type VII protein secretion system (T7SS) is found in many Gram-positive bacteria and in pathogenic mycobacteria. All T7SS substrate proteins described to date share a common helical domain architecture at the N-terminus that typically interacts with other helical partner proteins, forming a composite signal sequence for targeting to the T7SS. The C-terminal domains are functionally diverse and in Gram-positive bacteria such as Staphylococcus aureus often specify toxic anti-bacterial activity. Here we describe the first example of a class of T7 substrate, TslA, that has a reverse domain organisation. TslA is widely found across Bacillota including Staphylococcus, Enterococcus and Listeria. We show that the S. aureus TslA N-terminal domain is a phospholipase A with anti-staphylococcal activity that is neutralised by the immunity lipoprotein TilA. Two small helical partner proteins, TlaA1 and TlaA2 are essential for T7-dependent secretion of TslA and at least one of these interacts with the TslA C-terminal domain to form a helical stack. Cryo-EM analysis of purified TslA complexes indicate that they share structural similarity with canonical T7 substrates. Our findings suggest that the T7SS has the capacity to recognise a secretion signal present at either end of a substrate.
Collapse
Affiliation(s)
- Stephen R Garrett
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Nicole Mietrach
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Justin Deme
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD, 21702, USA
| | - Alina Bitzer
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076, Tübingen, Germany
| | - Yaping Yang
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Fatima R Ulhuq
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Dorothee Kretschmer
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076, Tübingen, Germany
| | - Simon Heilbronner
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | - Terry K Smith
- School of Biology, Biomedical Sciences Research Complex, University of St. Andrews, North Haugh, St. Andrews, United Kingdom
| | - Susan M Lea
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD, 21702, USA
| | - Tracy Palmer
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
30
|
Brady A, Cabello-Yeves E, Gallego Del Sol F, Chmielowska C, Mancheño-Bonillo J, Zamora-Caballero S, Omer SB, Torres-Puente M, Eldar A, Quiles-Puchalt N, Marina A, Penadés JR. Characterization of a unique repression system present in arbitrium phages of the SPbeta family. Cell Host Microbe 2023; 31:2023-2037.e8. [PMID: 38035880 DOI: 10.1016/j.chom.2023.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/25/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023]
Abstract
Arbitrium-coding phages use peptides to communicate and coordinate the decision between lysis and lysogeny. However, the mechanism by which these phages establish lysogeny remains unknown. Here, focusing on the SPbeta phage family's model phages phi3T and SPβ, we report that a six-gene operon called the "SPbeta phages repressor operon" (sro) expresses not one but two master repressors, SroE and SroF, the latter of which folds like a classical phage integrase. To promote lysogeny, these repressors bind to multiple sites in the phage genome. SroD serves as an auxiliary repressor that, with SroEF, forms the repression module necessary for lysogeny establishment and maintenance. Additionally, the proteins SroABC within the operon are proposed to constitute the transducer module, connecting the arbitrium communication system to the activity of the repression module. Overall, this research sheds light on the intricate and specialized repression system employed by arbitrium SPβ-like phages in making lysis-lysogeny decisions.
Collapse
Affiliation(s)
- Aisling Brady
- Centre for Bacterial Resistance Biology, Imperial College London, London SW7 2AZ, UK; Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| | - Elena Cabello-Yeves
- Instituto de Biomedicina de Valencia (IBV-CSIC), 46010 Valencia, Spain; CIBER de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | - Francisca Gallego Del Sol
- Instituto de Biomedicina de Valencia (IBV-CSIC), 46010 Valencia, Spain; CIBER de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | - Cora Chmielowska
- Centre for Bacterial Resistance Biology, Imperial College London, London SW7 2AZ, UK
| | - Javier Mancheño-Bonillo
- Instituto de Biomedicina de Valencia (IBV-CSIC), 46010 Valencia, Spain; CIBER de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | - Sara Zamora-Caballero
- Instituto de Biomedicina de Valencia (IBV-CSIC), 46010 Valencia, Spain; CIBER de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | - Shira Bendori Omer
- Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | | | - Avigdor Eldar
- Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Nuria Quiles-Puchalt
- Centre for Bacterial Resistance Biology, Imperial College London, London SW7 2AZ, UK; Department of Biomedical Sciences, Faculty of Health Sciences, Universidad CEU Cardenal Herrera, CEU Universities, Alfara del Patriarca 46115, Spain
| | - Alberto Marina
- Instituto de Biomedicina de Valencia (IBV-CSIC), 46010 Valencia, Spain; CIBER de Enfermedades Raras (CIBERER), 46010 Valencia, Spain.
| | - José R Penadés
- Centre for Bacterial Resistance Biology, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
31
|
McLaughlin M, Fiebig A, Crosson S. XRE transcription factors conserved in Caulobacter and φCbK modulate adhesin development and phage production. PLoS Genet 2023; 19:e1011048. [PMID: 37972151 PMCID: PMC10688885 DOI: 10.1371/journal.pgen.1011048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/30/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023] Open
Abstract
The xenobiotic response element (XRE) family of transcription factors (TFs), which are commonly encoded by bacteria and bacteriophage, regulate diverse features of bacterial cell physiology and impact phage infection dynamics. Through a pangenome analysis of Caulobacter species isolated from soil and aquatic ecosystems, we uncovered an apparent radiation of a paralogous XRE TF gene cluster, several of which have established functions in the regulation of holdfast adhesin development and biofilm formation in C. crescentus. We further discovered related XRE TFs throughout the class Alphaproteobacteria and its phages, including the φCbK Caulophage, suggesting that members of this cluster impact host-phage interactions. Here we show that a closely related group of XRE transcription factors encoded by both C. crescentus and φCbK can physically interact and function to control the transcription of a common gene set, influencing processes including holdfast development and the production of φCbK virions. The φCbK-encoded XRE paralog, tgrL, is highly expressed at the earliest stages of infection and can directly inhibit transcription of host genes including hfiA, a potent holdfast inhibitor, and gafYZ, an activator of prophage-like gene transfer agents (GTAs). XRE proteins encoded from the C. crescentus chromosome also directly repress gafYZ transcription, revealing a functionally redundant set of host regulators that may protect against spurious production of GTA particles and inadvertent cell lysis. Deleting the C. crescentus XRE transcription factors reduced φCbK burst size, while overexpressing these host genes or φCbK tgrL rescued this burst defect. We conclude that this XRE TF gene cluster, shared by C. crescentus and φCbK, plays an important role in adhesion regulation under phage-free conditions, and influences host-phage dynamics during infection.
Collapse
Affiliation(s)
- Maeve McLaughlin
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Aretha Fiebig
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Sean Crosson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
32
|
Yang Y, Boardman E, Deme J, Alcock F, Lea S, Palmer T. Three small partner proteins facilitate the type VII-dependent secretion of an antibacterial nuclease. mBio 2023; 14:e0210023. [PMID: 37815362 PMCID: PMC10653861 DOI: 10.1128/mbio.02100-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 08/23/2023] [Indexed: 10/11/2023] Open
Abstract
IMPORTANCE Staphylococcus aureus is an opportunistic human pathogen associated with severe infections and antimicrobial resistance. S. aureus strains utilize a type VII secretion system to secrete toxins targeting competitor bacteria, likely facilitating colonization. EsaD is a nuclease toxin secreted by the type VII secretion system in many strains of S. aureus as well as other related bacterial species. Here, we identify three small proteins of previously unknown function as export factors, required for efficient secretion of EsaD. We show that these proteins bind to the transport domain of EsaD, forming a complex with a striking cane-like conformation.
Collapse
Affiliation(s)
- Yaping Yang
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Eleanor Boardman
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Justin Deme
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, NIH, Frederick, Maryland, USA
| | - Felicity Alcock
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Susan Lea
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, NIH, Frederick, Maryland, USA
| | - Tracy Palmer
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
33
|
Lin JD, Stogios PJ, Abe KT, Wang A, MacPherson J, Skarina T, Gingras AC, Savchenko A, Ensminger AW. Functional diversification despite structural congruence in the HipBST toxin-antitoxin system of Legionella pneumophila. mBio 2023; 14:e0151023. [PMID: 37819088 PMCID: PMC10653801 DOI: 10.1128/mbio.01510-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/29/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE Toxin-antitoxin (TA) systems are parasitic genetic elements found in almost all bacterial genomes. They are exchanged horizontally between cells and are typically poorly conserved across closely related strains and species. Here, we report the characterization of a tripartite TA system in the bacterial pathogen Legionella pneumophila that is highly conserved across Legionella species genomes. This system (denoted HipBSTLp) is a distant homolog of the recently discovered split-HipA system in Escherichia coli (HipBSTEc). We present bioinformatic, molecular, and structural analyses of the divergence between these two systems and the functionality of this newly described TA system family. Furthermore, we provide evidence to refute previous claims that the toxin in this system (HipTLp) possesses bifunctionality as an L. pneumophila virulence protein. Overall, this work expands our understanding of the split-HipA system architecture and illustrates the potential for undiscovered biology in these abundant genetic elements.
Collapse
Affiliation(s)
- Jordan D. Lin
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Peter J. Stogios
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Kento T. Abe
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
| | - Avril Wang
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - John MacPherson
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Tatiana Skarina
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
| | - Alexei Savchenko
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- Center for Structural Genomics of Infectious Diseases (CSGID), University of Calgary, Calgary, Alberta, Canada
| | - Alexander W. Ensminger
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
34
|
Samantray D, Tanwar AS, Murali TS, Brand A, Satyamoorthy K, Paul B. A Comprehensive Bioinformatics Resource Guide for Genome-Based Antimicrobial Resistance Studies. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2023; 27:445-460. [PMID: 37861712 DOI: 10.1089/omi.2023.0140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
The use of high-throughput sequencing technologies and bioinformatic tools has greatly transformed microbial genome research. With the help of sophisticated computational tools, it has become easier to perform whole genome assembly, identify and compare different species based on their genomes, and predict the presence of genes responsible for proteins, antimicrobial resistance, and toxins. These bioinformatics resources are likely to continuously improve in quality, become more user-friendly to analyze the multiple genomic data, efficient in generating information and translating it into meaningful knowledge, and enhance our understanding of the genetic mechanism of AMR. In this manuscript, we provide an essential guide for selecting the popular resources for microbial research, such as genome assembly and annotation, antibiotic resistance gene profiling, identification of virulence factors, and drug interaction studies. In addition, we discuss the best practices in computer-oriented microbial genome research, emerging trends in microbial genomic data analysis, integration of multi-omics data, the appropriate use of machine-learning algorithms, and open-source bioinformatics resources for genome data analytics.
Collapse
Affiliation(s)
- Debyani Samantray
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Ankit Singh Tanwar
- United Nations University-Maastricht Economic and Social Research Institute on Innovation and Technology (UNU-MERIT), Maastricht, The Netherlands
- Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, Maastricht, The Netherlands
| | - Thokur Sreepathy Murali
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Angela Brand
- United Nations University-Maastricht Economic and Social Research Institute on Innovation and Technology (UNU-MERIT), Maastricht, The Netherlands
- Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, Maastricht, The Netherlands
- Department of Health Information, Prasanna School of Public Health (PSPH), Manipal Academy of Higher Education, Manipal, India
| | - Kapaettu Satyamoorthy
- SDM College of Medical Sciences and Hospital, Shri Dharmasthala Manjunatheshwara (SDM) University, Dharwad, India
| | - Bobby Paul
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
35
|
Chaudhary S, Yadav M, Mathpal S, Chandra S, Rathore JS. Genomic assortment and interactive insights of the chromosomal encoded control of cell death ( ccd) toxin-antitoxin (TA) module in Xenorhabdus nematophila. J Biomol Struct Dyn 2023; 41:7032-7044. [PMID: 36002267 DOI: 10.1080/07391102.2022.2114940] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/14/2022] [Indexed: 10/15/2022]
Abstract
In the present circumstances, toxin-antitoxin (TA) modules have a great consideration due to their elusive role in bacterial physiology. TA modules consist of a toxic part and a counteracting antitoxin part and these are abundant genetic loci harbored on bacterial plasmids and chromosomes. The control of cell death (ccd) TA locus was the first identified TA module and its unitary function (such as plasmid maintenance) has been described, however, the function of its chromosomal counterparts is still ambiguous. Here, we are exploring the genomic assortment, structural and functional association of chromosomally encoded ccdAB TA homolog (ccdABXn1) in the genome of an entomopathogenic bacterium Xenorhabdus nematophila. This bacterium is a symbiotic model with the nematode Steinernema carpocapsae that infects and kills the host insect. By genomic assortment analysis, our observations suggested that CcdA antitoxin homologs are not more closely related than CcdB toxin homologs. Further results suggest that the ccdABXn1 TA homolog has sulphonamide (such as 4C6, for CcdA homolog) and peptide (such as gyrase, for CcdB homolog) ligand partners with a typical TA interaction network that may affect essential cellular metabolism of the X. nematophila. Collectively, our results improve the knowledge and conception of the metabolic interactive role of ccdAB TA homologs in X. nematophila physiology.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shobhi Chaudhary
- Gautam Buddha University, School of Biotechnology, Greater Noida, Uttar Pradesh, India
| | - Mohit Yadav
- Gautam Buddha University, School of Biotechnology, Greater Noida, Uttar Pradesh, India
| | - Shalini Mathpal
- Department of Biotechnology, Kumaun University Uttarakhand, Bhimtal, India
| | - Subhash Chandra
- Department of Botany, Computational Biology & Biotechnology Laboratory, Soban Singh Jeena University, Almora, Uttarakhand, India
| | | |
Collapse
|
36
|
McLaughlin M, Fiebig A, Crosson S. XRE Transcription Factors Conserved in Caulobacter and φCbK Modulate Adhesin Development and Phage Production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.20.554034. [PMID: 37645952 PMCID: PMC10462132 DOI: 10.1101/2023.08.20.554034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Upon infection, transcriptional shifts in both a host bacterium and its invading phage determine host and viral fitness. The xenobiotic response element (XRE) family of transcription factors (TFs), which are commonly encoded by bacteria and phages, regulate diverse features of bacterial cell physiology and impact phage infection dynamics. Through a pangenome analysis of Caulobacter species isolated from soil and aquatic ecosystems, we uncovered an apparent radiation of a paralogous XRE TF gene cluster, several of which have established functions in the regulation of holdfast adhesin development and biofilm formation in C. crescentus. We further discovered related XRE TFs across the class Alphaproteobacteria and its phages, including the φCbK Caulophage, suggesting that members of this gene cluster impact host-phage interactions. Here we show that that a closely related group of XRE proteins, encoded by both C. crescentus and φCbK, can form heteromeric associations and control the transcription of a common gene set, influencing processes including holdfast development and the production of φCbK virions. The φCbK XRE paralog, tgrL, is highly expressed at the earliest stages of infection and can directly repress transcription of hfiA, a potent holdfast inhibitor, and gafYZ, a transcriptional activator of prophage-like gene transfer agents (GTAs) encoded on the C. crescentus chromosome. XRE proteins encoded from the C. crescentus chromosome also directly repress gafYZ transcription, revealing a functionally redundant set of host regulators that may protect against spurious production of GTA particles and inadvertent cell lysis. Deleting host XRE transcription factors reduced φCbK burst size, while overexpressing these genes or φCbK tgrL rescued this burst defect. We conclude that an XRE TF gene cluster, shared by C. crescentus and φCbK, plays an important role in adhesion regulation under phage-free conditions, and influences host-phage dynamics during infection.
Collapse
Affiliation(s)
- Maeve McLaughlin
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Aretha Fiebig
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Sean Crosson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
37
|
Xu X, Usher B, Gutierrez C, Barriot R, Arrowsmith TJ, Han X, Redder P, Neyrolles O, Blower TR, Genevaux P. MenT nucleotidyltransferase toxins extend tRNA acceptor stems and can be inhibited by asymmetrical antitoxin binding. Nat Commun 2023; 14:4644. [PMID: 37591829 PMCID: PMC10435456 DOI: 10.1038/s41467-023-40264-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/20/2023] [Indexed: 08/19/2023] Open
Abstract
Mycobacterium tuberculosis, the bacterium responsible for human tuberculosis, has a genome encoding a remarkably high number of toxin-antitoxin systems of largely unknown function. We have recently shown that the M. tuberculosis genome encodes four of a widespread, MenAT family of nucleotidyltransferase toxin-antitoxin systems. In this study we characterize MenAT1, using tRNA sequencing to demonstrate MenT1 tRNA modification activity. MenT1 activity is blocked by MenA1, a short protein antitoxin unrelated to the MenA3 kinase. X-ray crystallographic analysis shows blockage of the conserved MenT fold by asymmetric binding of MenA1 across two MenT1 protomers, forming a heterotrimeric toxin-antitoxin complex. Finally, we also demonstrate tRNA modification by toxin MenT4, indicating conserved activity across the MenT family. Our study highlights variation in tRNA target preferences by MenT toxins, selective use of nucleotide substrates, and diverse modes of MenA antitoxin activity.
Collapse
Affiliation(s)
- Xibing Xu
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Ben Usher
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Claude Gutierrez
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Roland Barriot
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Tom J Arrowsmith
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Xue Han
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Peter Redder
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Olivier Neyrolles
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Tim R Blower
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK.
| | - Pierre Genevaux
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France.
| |
Collapse
|
38
|
Ernits K, Saha CK, Brodiazhenko T, Chouhan B, Shenoy A, Buttress JA, Duque-Pedraza JJ, Bojar V, Nakamoto JA, Kurata T, Egorov AA, Shyrokova L, Johansson MJO, Mets T, Rustamova A, Džigurski J, Tenson T, Garcia-Pino A, Strahl H, Elofsson A, Hauryliuk V, Atkinson GC. The structural basis of hyperpromiscuity in a core combinatorial network of type II toxin-antitoxin and related phage defense systems. Proc Natl Acad Sci U S A 2023; 120:e2305393120. [PMID: 37556498 PMCID: PMC10440598 DOI: 10.1073/pnas.2305393120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/11/2023] [Indexed: 08/11/2023] Open
Abstract
Toxin-antitoxin (TA) systems are a large group of small genetic modules found in prokaryotes and their mobile genetic elements. Type II TAs are encoded as bicistronic (two-gene) operons that encode two proteins: a toxin and a neutralizing antitoxin. Using our tool NetFlax (standing for Network-FlaGs for toxins and antitoxins), we have performed a large-scale bioinformatic analysis of proteinaceous TAs, revealing interconnected clusters constituting a core network of TA-like gene pairs. To understand the structural basis of toxin neutralization by antitoxins, we have predicted the structures of 3,419 complexes with AlphaFold2. Together with mutagenesis and functional assays, our structural predictions provide insights into the neutralizing mechanism of the hyperpromiscuous Panacea antitoxin domain. In antitoxins composed of standalone Panacea, the domain mediates direct toxin neutralization, while in multidomain antitoxins the neutralization is mediated by other domains, such as PAD1, Phd-C, and ZFD. We hypothesize that Panacea acts as a sensor that regulates TA activation. We have experimentally validated 16 NetFlax TA systems and used domain annotations and metabolic labeling assays to predict their potential mechanisms of toxicity (such as membrane disruption, and inhibition of cell division or protein synthesis) as well as biological functions (such as antiphage defense). We have validated the antiphage activity of a RosmerTA system encoded by Gordonia phage Kita, and used fluorescence microscopy to confirm its predicted membrane-depolarizing activity. The interactive version of the NetFlax TA network that includes structural predictions can be accessed at http://netflax.webflags.se/.
Collapse
Affiliation(s)
- Karin Ernits
- Department of Experimental Medicine, Lund University, Lund221 84, Sweden
| | - Chayan Kumar Saha
- Department of Experimental Medicine, Lund University, Lund221 84, Sweden
| | | | - Bhanu Chouhan
- Department of Experimental Medicine, Lund University, Lund221 84, Sweden
- Department of Molecular Biology, Umeå University, Umeå901 87, Sweden
| | - Aditi Shenoy
- Department of Biochemistry and Biophysics and Science for Life Laboratory, Stockholm University, Solna171 21, Sweden
| | - Jessica A. Buttress
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon TyneNE2 4AX, United Kingdom
| | | | - Veda Bojar
- Department of Experimental Medicine, Lund University, Lund221 84, Sweden
| | - Jose A. Nakamoto
- Department of Experimental Medicine, Lund University, Lund221 84, Sweden
| | - Tatsuaki Kurata
- Department of Experimental Medicine, Lund University, Lund221 84, Sweden
| | - Artyom A. Egorov
- Department of Experimental Medicine, Lund University, Lund221 84, Sweden
| | - Lena Shyrokova
- Department of Experimental Medicine, Lund University, Lund221 84, Sweden
| | | | - Toomas Mets
- Department of Experimental Medicine, Lund University, Lund221 84, Sweden
- Institute of Technology, University of Tartu, Tartu50411, Estonia
| | - Aytan Rustamova
- Institute of Technology, University of Tartu, Tartu50411, Estonia
| | | | - Tanel Tenson
- Institute of Technology, University of Tartu, Tartu50411, Estonia
| | - Abel Garcia-Pino
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles, Brussels1050, Belgium
| | - Henrik Strahl
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon TyneNE2 4AX, United Kingdom
| | - Arne Elofsson
- Department of Biochemistry and Biophysics and Science for Life Laboratory, Stockholm University, Solna171 21, Sweden
| | - Vasili Hauryliuk
- Department of Experimental Medicine, Lund University, Lund221 84, Sweden
- Institute of Technology, University of Tartu, Tartu50411, Estonia
- Science for Life Laboratory, Lund221 84, Sweden
- Lund University Virus Centre, Lund221 84, Sweden
| | - Gemma C. Atkinson
- Department of Experimental Medicine, Lund University, Lund221 84, Sweden
- Lund University Virus Centre, Lund221 84, Sweden
| |
Collapse
|
39
|
Baranowski B, Pawłowski K. Protein family neighborhood analyzer-ProFaNA. PeerJ 2023; 11:e15715. [PMID: 37492397 PMCID: PMC10364804 DOI: 10.7717/peerj.15715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/16/2023] [Indexed: 07/27/2023] Open
Abstract
Background Functionally related genes are well known to be often grouped in close vicinity in the genomes, particularly in prokaryotes. Notwithstanding the diverse evolutionary mechanisms leading to this phenomenon, it can be used to predict functions of uncharacterized genes. Methods Here, we provide a simple but robust statistical approach that leverages the vast amounts of genomic data available today. Considering a protein domain as a functional unit, one can explore other functional units (domains) that significantly often occur within the genomic neighborhoods of the queried domain. This analysis can be performed across different taxonomic levels. Provisions can also be made to correct for the uneven sampling of the taxonomic space by genomic sequencing projects that often focus on large numbers of very closely related strains, e.g., pathogenic ones. To this end, an optional procedure for averaging occurrences within subtaxa is available. Results Several examples show this approach can provide useful functional predictions for uncharacterized gene families, and how to combine this information with other approaches. The method is made available as a web server at http://bioinfo.sggw.edu.pl/neighborhood_analysis.
Collapse
Affiliation(s)
- Bartosz Baranowski
- Department of Biochemistry and Microbiology, Warsaw University of Life Sciences, Warszawa, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
| | - Krzysztof Pawłowski
- Department of Biochemistry and Microbiology, Warsaw University of Life Sciences, Warszawa, Poland
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
- Department of Translational Sciences, Lund University, Lund, Sweden
| |
Collapse
|
40
|
Elsener TA, Jolley KA, Sanders E, Maiden MCJ, Cehovin A, Tang CM. There are three major Neisseria gonorrhoeae β-lactamase plasmid variants which are associated with specific lineages and carry distinct TEM alleles. Microb Genom 2023; 9:mgen001057. [PMID: 37436798 PMCID: PMC10438826 DOI: 10.1099/mgen.0.001057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/31/2023] [Indexed: 07/13/2023] Open
Abstract
Neisseria gonorrhoeae is a significant threat to global health with an estimated incidence of over 80 million cases each year and high levels of antimicrobial resistance. The gonococcal β-lactamase plasmid, pbla, carries the TEM β-lactamase, which requires only one or two amino acid changes to become an extended-spectrum β-lactamase (ESBL); this would render last resort treatments for gonorrhoea ineffective. Although pbla is not mobile, it can be transferred by the conjugative plasmid, pConj, found in N. gonorrhoeae. Seven variants of pbla have been described previously, but little is known about their frequency or distribution in the gonococcal population. We characterised sequences of pbla variants and devised a typing scheme, Ng_pblaST that allows their identification from whole genome short-read sequences. We implemented Ng_pblaST to assess the distribution of pbla variants in 15 532 gonococcal isolates. This demonstrated that only three pbla variants commonly circulate in gonococci, which together account for >99 % of sequences. The pbla variants carry different TEM alleles and are prevalent in distinct gonococcal lineages. Analysis of 2758 pbla-containing isolates revealed the co-occurrence of pbla with certain pConj types, indicating co-operativity between pbla and pConj variants in the spread of plasmid-mediated AMR in N. gonorrhoeae. Understanding the variation and distribution of pbla is essential for monitoring and predicting the spread of plasmid-mediated β-lactam resistance in N. gonorrhoeae.
Collapse
Affiliation(s)
- Tabea A. Elsener
- Sir William Dunn School of Pathology University of Oxford, Oxford, UK
| | | | - Eduard Sanders
- Arum Institute, Johannesburg, South Africa, and KEMRI-Wellcome Trust Research Programme, Kilfi, Kenya
| | | | - Ana Cehovin
- Sir William Dunn School of Pathology University of Oxford, Oxford, UK
| | - Christoph M. Tang
- Sir William Dunn School of Pathology University of Oxford, Oxford, UK
| |
Collapse
|
41
|
Yang Y, Boardman E, Deme J, Alcock F, Lea S, Palmer T. Three small partner proteins facilitate the type VII-dependent secretion export of an antibacterial nuclease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.01.535202. [PMID: 37461441 PMCID: PMC10350083 DOI: 10.1101/2023.04.01.535202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
The type VIIb protein secretion system (T7SSb) plays a role in interbacterial competition in Gram-positive Firmicute bacteria and secretes various toxic effector proteins. The mechanism of secretion and the roles of numerous conserved genes within T7SSb gene clusters remain unknown. EsaD is a nuclease toxin secreted by the Staphylococcus aureus T7SSb, which forms a complex with its cognate immunity protein, EsaG, and chaperone EsaE. Encoded upstream of EsaD are three small secreted proteins, EsxB, EsxC and EsxD. Here we show that EsxBCD bind to the transport domain of EsaD and function as EsaD export factors. We report the first structural information for a complete T7SSb substrate pre-secretion complex. Cryo-EM of the EsaDEG trimer and the EsaDEG-EsxBCD hexamer shows that incorporation of EsxBCD confers a conformation comprising a flexible globular cargo domain attached to a long narrow shaft that is likely to be crucial for efficient toxin export.
Collapse
Affiliation(s)
- Yaping Yang
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Eleanor Boardman
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Justin Deme
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD 21702
| | - Felicity Alcock
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Susan Lea
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD 21702
| | - Tracy Palmer
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
42
|
Pulianmackal LT, Limcaoco JMI, Ravi K, Yang S, Zhang J, Tran MK, Ghalmi M, O'Meara MJ, Vecchiarelli AG. Multiple ParA/MinD ATPases coordinate the positioning of disparate cargos in a bacterial cell. Nat Commun 2023; 14:3255. [PMID: 37277398 DOI: 10.1038/s41467-023-39019-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/22/2023] [Indexed: 06/07/2023] Open
Abstract
In eukaryotes, linear motor proteins govern intracellular transport and organization. In bacteria, where linear motors involved in spatial regulation are absent, the ParA/MinD family of ATPases organize an array of genetic- and protein-based cellular cargos. The positioning of these cargos has been independently investigated to varying degrees in several bacterial species. However, it remains unclear how multiple ParA/MinD ATPases can coordinate the positioning of diverse cargos in the same cell. Here, we find that over a third of sequenced bacterial genomes encode multiple ParA/MinD ATPases. We identify an organism (Halothiobacillus neapolitanus) with seven ParA/MinD ATPases, demonstrate that five of these are each dedicated to the spatial regulation of a single cellular cargo, and define potential specificity determinants for each system. Furthermore, we show how these positioning reactions can influence each other, stressing the importance of understanding how organelle trafficking, chromosome segregation, and cell division are coordinated in bacterial cells. Together, our data show how multiple ParA/MinD ATPases coexist and function to position a diverse set of fundamental cargos in the same bacterial cell.
Collapse
Affiliation(s)
- Lisa T Pulianmackal
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jose Miguel I Limcaoco
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Keerthikka Ravi
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sinyu Yang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jeffrey Zhang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Mimi K Tran
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Maria Ghalmi
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Matthew J O'Meara
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Anthony G Vecchiarelli
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
43
|
Macdonald E, Wright R, Connolly JPR, Strahl H, Brockhurst M, van Houte S, Blower TR, Palmer T, Mariano G. The novel anti-phage system Shield co-opts an RmuC domain to mediate phage defense across Pseudomonas species. PLoS Genet 2023; 19:e1010784. [PMID: 37276233 DOI: 10.1371/journal.pgen.1010784] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/12/2023] [Indexed: 06/07/2023] Open
Abstract
Competitive bacteria-bacteriophage interactions have resulted in the evolution of a plethora of bacterial defense systems preventing phage propagation. In recent years, computational and bioinformatic approaches have underpinned the discovery of numerous novel bacterial defense systems. Anti-phage systems are frequently encoded together in genomic loci termed defense islands. Here we report the identification and characterisation of a novel anti-phage system, that we have termed Shield, which forms part of the Pseudomonas defensive arsenal. The Shield system comprises the core component ShdA, a membrane-bound protein harboring an RmuC domain. Heterologous production of ShdA alone is sufficient to mediate bacterial immunity against several phages. We demonstrate that Shield and ShdA confer population-level immunity and that they can also decrease transformation efficiency. We further show that ShdA homologues can degrade DNA in vitro and, when expressed in a heterologous host, can alter the organisation of the host chromosomal DNA. Use of comparative genomic approaches identified how Shield can be divided into four subtypes, three of which contain additional components that in some cases can negatively affect the activity of ShdA and/or provide additional lines of phage defense. Collectively, our results identify a new player within the Pseudomonas bacterial immunity arsenal that displays a novel mechanism of protection, and reveals a role for RmuC domains in phage defense.
Collapse
Affiliation(s)
- Elliot Macdonald
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Rosanna Wright
- Division of Evolution, Infection and Genomics, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - James P R Connolly
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Henrik Strahl
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Michael Brockhurst
- Division of Evolution, Infection and Genomics, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Stineke van Houte
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, Cornwall, United Kingdom
| | - Tim R Blower
- Department of Biosciences, Durham University, Stockton Road, Durham, United Kingdom
| | - Tracy Palmer
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Giuseppina Mariano
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
44
|
Stenum TS, Kumar AD, Sandbaumhüter FA, Kjellin J, Jerlström-Hultqvist J, Andrén PE, Koskiniemi S, Jansson E, Holmqvist E. RNA interactome capture in Escherichia coli globally identifies RNA-binding proteins. Nucleic Acids Res 2023; 51:4572-4587. [PMID: 36987847 PMCID: PMC10201417 DOI: 10.1093/nar/gkad216] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 03/03/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
RNA-binding proteins (RPBs) are deeply involved in fundamental cellular processes in bacteria and are vital for their survival. Despite this, few studies have so far been dedicated to direct and global identification of bacterial RBPs. We have adapted the RNA interactome capture (RIC) technique, originally developed for eukaryotic systems, to globally identify RBPs in bacteria. RIC takes advantage of the base pairing potential of poly(A) tails to pull-down RNA-protein complexes. Overexpressing poly(A) polymerase I in Escherichia coli drastically increased transcriptome-wide RNA polyadenylation, enabling pull-down of crosslinked RNA-protein complexes using immobilized oligo(dT) as bait. With this approach, we identified 169 putative RBPs, roughly half of which are already annotated as RNA-binding. We experimentally verified the RNA-binding ability of a number of uncharacterized RBPs, including YhgF, which is exceptionally well conserved not only in bacteria, but also in archaea and eukaryotes. We identified YhgF RNA targets in vivo using CLIP-seq, verified specific binding in vitro, and reveal a putative role for YhgF in regulation of gene expression. Our findings present a simple and robust strategy for RBP identification in bacteria, provide a resource of new bacterial RBPs, and lay the foundation for further studies of the highly conserved RBP YhgF.
Collapse
Affiliation(s)
- Thomas Søndergaard Stenum
- Microbiology and Immunology, Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Box 596, 75124 Uppsala, Sweden
| | - Ankith D Kumar
- Microbiology and Immunology, Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Box 596, 75124 Uppsala, Sweden
| | - Friederike A Sandbaumhüter
- Medical Mass Spectrometry, Department of Pharmaceutical Biosciences, Biomedical Centre, Uppsala University, Box 591, 75124 Uppsala, Sweden
| | - Jonas Kjellin
- Microbiology and Immunology, Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Box 596, 75124 Uppsala, Sweden
| | - Jon Jerlström-Hultqvist
- Microbiology and Immunology, Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Box 596, 75124 Uppsala, Sweden
| | - Per E Andrén
- Medical Mass Spectrometry, Department of Pharmaceutical Biosciences, Biomedical Centre, Uppsala University, Box 591, 75124 Uppsala, Sweden
- Science for Life Laboratory, Spatial Mass Spectrometry, Biomedical Centre, Uppsala University, Box 591, 75124 Uppsala, Sweden
| | - Sanna Koskiniemi
- Microbiology and Immunology, Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Box 596, 75124 Uppsala, Sweden
| | - Erik T Jansson
- Medical Mass Spectrometry, Department of Pharmaceutical Biosciences, Biomedical Centre, Uppsala University, Box 591, 75124 Uppsala, Sweden
| | - Erik Holmqvist
- Microbiology and Immunology, Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Box 596, 75124 Uppsala, Sweden
| |
Collapse
|
45
|
Ho P, Chen Y, Biswas S, Canfield E, Abdolvahabi A, Feldman DE. Bacteriophage antidefense genes that neutralize TIR and STING immune responses. Cell Rep 2023; 42:112305. [PMID: 36952342 DOI: 10.1016/j.celrep.2023.112305] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/09/2022] [Accepted: 03/08/2023] [Indexed: 03/24/2023] Open
Abstract
Programmed cell suicide of infected bacteria, known as abortive infection (Abi), serves as an immune defense strategy to prevent the propagation of bacteriophage viruses. Many Abi systems utilize bespoke cyclic nucleotide immune messengers generated upon infection to mobilize cognate death effectors. Here, we identify a family of bacteriophage nucleotidyltransferases (NTases) that synthesize competitor cyclic dinucleotide (CDN) ligands and inhibit TIR NADase effectors activated via a linked STING CDN sensor domain (TIR-STING). Through a functional screen of NTase-adjacent phage genes, we uncover candidate inhibitors of cell suicide induced by heterologous expression of tonically active TIR-STING. Among these, we demonstrate that a virus MazG-like nucleotide pyrophosphohydrolase, Atd1, depletes the starvation alarmone (p)ppGpp, revealing a potential role for the alarmone-activated host toxin MazF as an executioner of TIR-driven Abi. Phage NTases and counterdefenses like Atd1 preserve host viability to ensure virus propagation and represent tools to modulate TIR and STING immune responses.
Collapse
Affiliation(s)
- Peiyin Ho
- Department of Pathology, University of Southern California, Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Yibu Chen
- Bioinformatics Service, Department of Health Sciences Libraries, University of Southern California, Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Subarna Biswas
- Department of Surgery, University of Southern California, Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Ethan Canfield
- University of Southern California, School of Pharmacy, Los Angeles, CA 90033, USA
| | - Alireza Abdolvahabi
- University of Southern California, School of Pharmacy, Los Angeles, CA 90033, USA
| | - Douglas E Feldman
- Department of Pathology, University of Southern California, Keck School of Medicine, Los Angeles, CA 90033, USA.
| |
Collapse
|
46
|
Ahmad S, Gordon IJ, Tsang KK, Alexei AG, Sychantha D, Colautti J, Trilesky SL, Kim Y, Wang B, Whitney JC. Identification of a broadly conserved family of enzymes that hydrolyze (p)ppApp. Proc Natl Acad Sci U S A 2023; 120:e2213771120. [PMID: 36989297 PMCID: PMC10083569 DOI: 10.1073/pnas.2213771120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 02/25/2023] [Indexed: 03/30/2023] Open
Abstract
Bacteria produce a variety of nucleotide second messengers to adapt to their surroundings. Although chemically similar, the nucleotides guanosine penta- and tetraphosphate [(p)ppGpp] and adenosine penta- and tetraphosphate [(p)ppApp] have distinct functions in bacteria. (p)ppGpp mediates survival under nutrient-limiting conditions and its intracellular levels are regulated by synthetases and hydrolases belonging to the RelA-SpoT homolog (RSH) family of enzymes. By contrast, (p)ppApp is not known to be involved in nutrient stress responses and is synthesized by RSH-resembling toxins that inhibit the growth of bacterial cells. However, it remains unclear whether there exists a family of hydrolases that specifically act on (p)ppApp to reverse its toxic effects. Here, we present the structure and biochemical characterization of adenosine 3'-pyrophosphohydrolase 1 (Aph1), the founding member of a monofunctional (p)ppApp hydrolase family of enzymes. Our work reveals that Aph1 adopts a histidine-aspartate (HD)-domain fold characteristic of phosphohydrolase metalloenzymes and its activity mitigates the growth inhibitory effects of (p)ppApp-synthesizing toxins. Using an informatic approach, we identify over 2,000 putative (p)ppApp hydrolases that are widely distributed across bacterial phyla and found in diverse genomic contexts, and we demonstrate that 12 representative members hydrolyze ppApp. In addition, our in silico analyses reveal a unique molecular signature that is specific to (p)ppApp hydrolases, and we show that mutation of two residues within this signature broadens the specificity of Aph1 to promiscuously hydrolyze (p)ppGpp in vitro. Overall, our findings indicate that like (p)ppGpp hydrolases, (p)ppApp hydrolases are widespread in bacteria and may play important and underappreciated role(s) in bacterial physiology.
Collapse
Affiliation(s)
- Shehryar Ahmad
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ONL8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ONL8S 4K1, Canada
| | - Isis J. Gordon
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX75235
| | - Kara K. Tsang
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, LondonWC1E 7HT, United Kingdom
| | - Andrea G. Alexei
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ONL8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ONL8S 4K1, Canada
| | - David Sychantha
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ONL8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ONL8S 4K1, Canada
| | - Jake Colautti
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ONL8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ONL8S 4K1, Canada
| | - Sarah L. Trilesky
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ONL8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ONL8S 4K1, Canada
| | - Youngchang Kim
- Structural Biology Center, X-ray Science, Argonne National Laboratory, Argonne, IL60439
| | - Boyuan Wang
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, LondonWC1E 7HT, United Kingdom
| | - John C. Whitney
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ONL8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ONL8S 4K1, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, ONL8S 4K1, Canada
| |
Collapse
|
47
|
Rice PA. Mobile genetic element-encoded putative DNA primases composed of A-family polymerase-SSB pairs. Front Mol Biosci 2023; 10:1113960. [PMID: 37006622 PMCID: PMC10061031 DOI: 10.3389/fmolb.2023.1113960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
Mobile genetic elements can encode a wide variety of genes that support their own stability and mobility as well as genes that provide accessory functions to their hosts. Such genes can be adopted from host chromosomes and can be exchanged with other mobile elements. Due to their accessory nature, the evolutionary trajectories of these genes can differ from those of essential host genes. The mobilome therefore provides a rich source of genetic innovation. We previously described a new type of primase encoded by S. aureus SCCmec elements that is composed of an A-family polymerase catalytic domain in complex with a small second protein that confers single-stranded DNA binding. Here we use new structure prediction methods in conjunction with sequence database searches to show that related primases are widespread among putative mobile genetic elements in the Bacillota. Structure predictions show that the second protein adopts an OB fold (common among single-stranded DNA binding (SSB) proteins) and these predictions were far more powerful than simple sequence comparisons in identifying its homologs. The protein-protein interaction surface varies among these polymerase-SSB complexes appear to have arisen repeatedly by exploiting partial truncations of the polymerase's N-terminal accessory domains.
Collapse
Affiliation(s)
- Phoebe A. Rice
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
48
|
Wicke D, Meißner J, Warneke R, Elfmann C, Stülke J. Understudied proteins and understudied functions in the model bacterium Bacillus subtilis-A major challenge in current research. Mol Microbiol 2023. [PMID: 36882621 DOI: 10.1111/mmi.15053] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023]
Abstract
Model organisms such as the Gram-positive bacterium Bacillus subtilis have been studied intensively for decades. However, even for model organisms, no function has been identified for about one fourth of all proteins. It has recently been realized that such understudied proteins as well as poorly studied functions set a limitation to our understanding of the requirements for cellular life, and the Understudied Proteins Initiative has been launched. Of poorly studied proteins, those that are strongly expressed are likely to be important to the cell and should therefore be considered high priority in further studies. Since the functional analysis of unknown proteins can be extremely laborious, a minimal knowledge is required prior to targeted functional studies. In this review, we discuss strategies to obtain such a minimal annotation, for example, from global interaction, expression, or localization studies. We present a set of 41 highly expressed and poorly studied proteins of B. subtilis. Several of these proteins are thought or known to bind RNA and/or the ribosome, some may control the metabolism of B. subtilis, and another subset of particularly small proteins may act as regulatory elements to control the expression of downstream genes. Moreover, we discuss the challenges of poorly studied functions with a focus on RNA-binding proteins, amino acid transport, and the control of metabolic homeostasis. The identification of the functions of the selected proteins not only will strongly advance our knowledge on B. subtilis, but also on other organisms since many of the proteins are conserved in many groups of bacteria.
Collapse
Affiliation(s)
- Dennis Wicke
- Department of General Microbiology, Georg-August-University Göttingen, GZMB, Göttingen, Germany
| | - Janek Meißner
- Department of General Microbiology, Georg-August-University Göttingen, GZMB, Göttingen, Germany
| | - Robert Warneke
- Department of General Microbiology, Georg-August-University Göttingen, GZMB, Göttingen, Germany
| | - Christoph Elfmann
- Department of General Microbiology, Georg-August-University Göttingen, GZMB, Göttingen, Germany
| | - Jörg Stülke
- Department of General Microbiology, Georg-August-University Göttingen, GZMB, Göttingen, Germany
| |
Collapse
|
49
|
Zhao M, Shin GY, Stice S, Bown JL, Coutinho T, Metcalf WW, Gitaitis R, Kvitko B, Dutta B. A Novel Biosynthetic Gene Cluster Across the Pantoea Species Complex Is Important for Pathogenicity in Onion. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:176-188. [PMID: 36534063 PMCID: PMC10433531 DOI: 10.1094/mpmi-08-22-0165-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Onion center rot is caused by at least four species of genus Pantoea (P. ananatis, P. agglomerans, P. allii, and P. stewartii subsp. indologenes). Critical onion pathogenicity determinants for P. ananatis were recently described, but whether those determinants are common among other onion-pathogenic Pantoea species remains unknown. In this work, we report onion pathogenicity determinants in P. stewartii subsp. indologenes and P. allii. We identified two distinct secondary metabolite biosynthetic gene clusters present separately in different strains of onion-pathogenic P. stewartii subsp. indologenes. One cluster is similar to the previously described HiVir phosphonate biosynthetic cluster identified in P. ananatis and another is a novel putative phosphonate biosynthetic gene cluster, which we named Halophos. The Halophos gene cluster was also identified in P. allii strains. Both clusters are predicted to be phosphonate biosynthetic clusters based on the presence of a characteristic phosphoenolpyruvate phosphomutase (pepM) gene. The deletion of the pepM gene from either HiVir or Halophos clusters in P. stewartii subsp. indologenes caused loss of necrosis on onion leaves and red onion scales and resulted in significantly lower bacterial populations compared with the corresponding wild-type and complemented strains. Seven (halB to halH) of 11 genes (halA to halK) in the Halophos gene cluster are required for onion necrosis phenotypes. The onion nonpathogenic strain PNA15-2 (P. stewartii subsp. indologenes) gained the capacity to cause foliar necrosis on onion via exogenous expression of a minimal seven-gene Halophos cluster (genes halB to halH). Furthermore, cell-free culture filtrates of PNA14-12 expressing the intact Halophos gene cluster caused necrosis on onion leaves consistent with the presence of a secreted toxin. Based on the similarity of proteins to those with experimentally determined functions, we are able to predict most of the steps in Halophos biosynthesis. Together, these observations indicate that production of the toxin phosphonate seems sufficient to account for virulence of a variety of different Pantoea strains, although strains differ in possessing a single but distinct phosphonate biosynthetic cluster. Overall, this is the first report of onion pathogenicity determinants in P. stewartii subsp. indologenes and P. allii. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Mei Zhao
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, P. R. China
- Department of Plant Pathology, University of Georgia, Tifton GA USA
| | - Gi Yoon Shin
- Department of Plant Pathology, University of Georgia, Athens GA USA
| | - Shaun Stice
- Department of Plant Pathology, University of Georgia, Athens GA USA
| | - Jonathon Luke Bown
- Department of Microbiology, University of Illinois, Urbana-Champaign, IL
| | - Teresa Coutinho
- The Genomics Research Institute, University of Pretoria, Hatfield, South Africa
| | - William W. Metcalf
- Department of Microbiology, University of Illinois, Urbana-Champaign, IL
| | - Ron Gitaitis
- Department of Plant Pathology, University of Georgia, Tifton GA USA
| | - Brian Kvitko
- Department of Plant Pathology, University of Georgia, Athens GA USA
| | - Bhabesh Dutta
- Department of Plant Pathology, University of Georgia, Tifton GA USA
| |
Collapse
|
50
|
Rouillon C, Schneberger N, Chi H, Blumenstock K, Da Vela S, Ackermann K, Moecking J, Peter MF, Boenigk W, Seifert R, Bode BE, Schmid-Burgk JL, Svergun D, Geyer M, White MF, Hagelueken G. Antiviral signalling by a cyclic nucleotide activated CRISPR protease. Nature 2023; 614:168-174. [PMID: 36423657 DOI: 10.1038/s41586-022-05571-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 11/17/2022] [Indexed: 11/27/2022]
Abstract
CRISPR defence systems such as the well-known DNA-targeting Cas9 and the RNA-targeting type III systems are widespread in prokaryotes1,2. The latter orchestrates a complex antiviral response that is initiated through the synthesis of cyclic oligoadenylates after recognition of foreign RNA3-5. Among the large set of proteins that are linked to type III systems and predicted to bind cyclic oligoadenylates6,7, a CRISPR-associated Lon protease (CalpL) stood out to us. CalpL contains a sensor domain of the SAVED family7 fused to a Lon protease effector domain. However, the mode of action of this effector is unknown. Here we report the structure and function of CalpL and show that this soluble protein forms a stable tripartite complex with two other proteins, CalpT and CalpS, that are encoded on the same operon. After activation by cyclic tetra-adenylate (cA4), CalpL oligomerizes and specifically cleaves the MazF homologue CalpT, which releases the extracytoplasmic function σ factor CalpS from the complex. Our data provide a direct connection between CRISPR-based detection of foreign nucleic acids and transcriptional regulation. Furthermore, the presence of a SAVED domain that binds cyclic tetra-adenylate in a CRISPR effector reveals a link to the cyclic-oligonucleotide-based antiphage signalling system.
Collapse
Affiliation(s)
- Christophe Rouillon
- Institute of Structural Biology, University of Bonn, Bonn, Germany.
- Max Planck Institute for Neurobiology of Behavior-caesar, Bonn, Germany.
| | | | - Haotian Chi
- School of Biology, University of St Andrews, St Andrews, UK
| | - Katja Blumenstock
- Institute of Clinical Chemistry and Clinical Pharmacology, University of Bonn and University Hospital Bonn, Bonn, Germany
| | - Stefano Da Vela
- European Molecular Biology Laboratory (EMBL), Hamburg Site, Hamburg, Germany
| | - Katrin Ackermann
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex, and Centre of Magnetic Resonance, University of St Andrews, North Haugh, St Andrews, UK
| | - Jonas Moecking
- Institute of Structural Biology, University of Bonn, Bonn, Germany
| | - Martin F Peter
- Institute of Structural Biology, University of Bonn, Bonn, Germany
| | - Wolfgang Boenigk
- Max Planck Institute for Neurobiology of Behavior-caesar, Bonn, Germany
| | - Reinhard Seifert
- Max Planck Institute for Neurobiology of Behavior-caesar, Bonn, Germany
| | - Bela E Bode
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex, and Centre of Magnetic Resonance, University of St Andrews, North Haugh, St Andrews, UK
| | - Jonathan L Schmid-Burgk
- Institute of Clinical Chemistry and Clinical Pharmacology, University of Bonn and University Hospital Bonn, Bonn, Germany
| | - Dmitri Svergun
- European Molecular Biology Laboratory (EMBL), Hamburg Site, Hamburg, Germany
| | - Matthias Geyer
- Institute of Structural Biology, University of Bonn, Bonn, Germany
| | | | | |
Collapse
|