1
|
Wu Q, Chen M, Lin Y, Zhang J, Gao X, Wu Y, Wu C, Wen J, Li J, Li C, Bao W, Zhang D, Zheng M, Zhu A. Multiomics profiling uncovers curdione-induced reproductive toxicity in HTR-8/SVneo cells. Heliyon 2024; 10:e38650. [PMID: 39524727 PMCID: PMC11550733 DOI: 10.1016/j.heliyon.2024.e38650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/08/2024] [Accepted: 09/26/2024] [Indexed: 11/16/2024] Open
Abstract
The assessment of medication toxicity and safety is pivotal during pregnancy. Curdione, a sesquiterpene compound extracted from Curcumae Radix, displays beneficial properties in terms of anti-inflammatory, tumor growth suppression, and anti-coagulative effects. However, its reproductive toxicity and precise mechanism remain unclear. This study aims to explore the mechanism of curdione-induced toxicity damage in HTR-8/SVneo cells through the epigenetics, proteomics, and metabolomics, and experimental verification. The results showed that curdione elicited alterations in m6A modification, gene expression, protein levels, and cellular metabolism of HTR-8/SVneo cells. Additionally, curdione induces oxidative stress, mitochondrial and DNA damage, while also downregulating the expression of Wnt6, β-catenin, ZO-1, and CLDN1 proteins. Curdione has the potential to modulate oxidative stress, mitochondrial dysfunction, and disruption of tight junctions via the Wnt/β-catenin signaling pathway, which contributes to cellular damage in HTR-8/SVneo cells.
Collapse
Affiliation(s)
- Qibin Wu
- Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
| | - Mengting Chen
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, 350108, China
| | - Yifan Lin
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, 350108, China
| | - Jian Zhang
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, 350108, China
| | - Xinyue Gao
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, 350108, China
| | - Yajiao Wu
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, 350108, China
| | - Caijin Wu
- Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
| | - Jiaxin Wen
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, 350108, China
| | - Jiaqi Li
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, 350108, China
| | - Chutao Li
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, 350108, China
| | - Wenqiang Bao
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, 350108, China
| | - Dongcheng Zhang
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, 350108, China
| | - Meijin Zheng
- Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
| | - An Zhu
- Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, 350108, China
| |
Collapse
|
2
|
Lin X, Zhang J, Wu Z, Shi Y, Chen M, Li M, Hu H, Tian K, Lv X, Li C, Liu Y, Gao X, Yang Q, Chen K, Zhu A. Involvement of autophagy in mesaconitine-induced neurotoxicity in HT22 cells revealed through integrated transcriptomic, proteomic, and m6A epitranscriptomic profiling. Front Pharmacol 2024; 15:1393717. [PMID: 38939838 PMCID: PMC11208636 DOI: 10.3389/fphar.2024.1393717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/20/2024] [Indexed: 06/29/2024] Open
Abstract
Background: Mesaconitine (MA), a diester-diterpenoid alkaloid extracted from the medicinal herb Aconitum carmichaelii, is commonly used to treat various diseases. Previous studies have indicated the potent toxicity of aconitum despite its pharmacological activities, with limited understanding of its effects on the nervous system and the underlying mechanisms. Methods: HT22 cells and zebrafish were used to investigate the neurotoxic effects of MA both in vitro and in vivo, employing multi-omics techniques to explore the potential mechanisms of toxicity. Results: Our results demonstrated that treatment with MA induces neurotoxicity in zebrafish and HT22 cells. Subsequent analysis revealed that MA induced oxidative stress, as well as structural and functional damage to mitochondria in HT22 cells, accompanied by an upregulation of mRNA and protein expression related to autophagic and lysosomal pathways. Furthermore, methylated RNA immunoprecipitation sequencing (MeRIP-seq) showed a correlation between the expression of autophagy-related genes and N6-methyladenosine (m6A) modification following MA treatment. In addition, we identified METTL14 as a potential regulator of m6A methylation in HT22 cells after exposure to MA. Conclusion: Our study has contributed to a thorough mechanistic elucidation of the neurotoxic effects caused by MA, and has provided valuable insights for optimizing the rational utilization of traditional Chinese medicine formulations containing aconitum in clinical practice.
Collapse
Affiliation(s)
- Xiaohuang Lin
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Jian Zhang
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Zekai Wu
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yuan Shi
- State Key Laboratory of Mariculture Breeding, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mengting Chen
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Maodong Li
- Shenzhen Bay Laboratory, Institute of Systems and Physical Biology, Shenzhen, China
| | - Hong Hu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Kun Tian
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xiaoqi Lv
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing, China
| | - Chutao Li
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yang Liu
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xinyue Gao
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Qiaomei Yang
- Department of Gynecology, Fujian Maternity and Child Health Hospital (Fujian Obstetrics and Gynecology Hospital), Fuzhou, China
| | - Kunqi Chen
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - An Zhu
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|
3
|
Shen X, Chen M, Zhang J, Lin Y, Gao X, Tu J, Chen K, Zhu A, Xu S. Unveiling the Impact of ApoF Deficiency on Liver and Lipid Metabolism: Insights from Transcriptome-Wide m6A Methylome Analysis in Mice. Genes (Basel) 2024; 15:347. [PMID: 38540406 PMCID: PMC10970566 DOI: 10.3390/genes15030347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/23/2024] [Accepted: 03/07/2024] [Indexed: 04/02/2024] Open
Abstract
Lipid metabolism participates in various physiological processes and has been shown to be connected to the development and progression of multiple diseases, especially metabolic hepatopathy. Apolipoproteins (Apos) act as vectors that combine with lipids, such as cholesterol and triglycerides (TGs). Despite being involved in lipid transportation and metabolism, the critical role of Apos in the maintenance of lipid metabolism has still not been fully revealed. This study sought to clarify variations related to m6A methylome in ApoF gene knockout mice with disordered lipid metabolism based on the bioinformatics method of transcriptome-wide m6A methylome epitranscriptomics. High-throughput methylated RNA immunoprecipitation sequencing (MeRIP-seq) was conducted in both wild-type (WT) and ApoF knockout (KO) mice. As a result, the liver histopathology presented vacuolization and steatosis, and the serum biochemical assays reported abnormal lipid content in KO mice. The m6A-modified mRNAs were conformed consensus sequenced in eukaryotes, and the distribution was enriched within the coding sequences and 3' non-coding regions. In KO mice, the functional annotation terms of the differentially expressed genes (DEGs) included cholesterol, steroid and lipid metabolism, and lipid storage. In the differentially m6A-methylated mRNAs, the functional annotation terms included cholesterol, TG, and long-chain fatty acid metabolic processes; lipid transport; and liver development. The overlapping DEGs and differential m6A-modified mRNAs were also enriched in terms of lipid metabolism disorder. In conclusion, transcriptome-wide MeRIP sequencing in ApoF KO mice demonstrated the role of this crucial apolipoprotein in liver health and lipid metabolism.
Collapse
Affiliation(s)
- Xuebin Shen
- Department of Cardiology, Affiliated Nanping First Hospital, Fujian Medical University, Nanping 353000, China; (X.S.); (Y.L.); (X.G.)
| | - Mengting Chen
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China; (M.C.); (J.T.); (K.C.)
| | - Jian Zhang
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China; (M.C.); (J.T.); (K.C.)
| | - Yifan Lin
- Department of Cardiology, Affiliated Nanping First Hospital, Fujian Medical University, Nanping 353000, China; (X.S.); (Y.L.); (X.G.)
| | - Xinyue Gao
- Department of Cardiology, Affiliated Nanping First Hospital, Fujian Medical University, Nanping 353000, China; (X.S.); (Y.L.); (X.G.)
| | - Jionghong Tu
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China; (M.C.); (J.T.); (K.C.)
| | - Kunqi Chen
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China; (M.C.); (J.T.); (K.C.)
| | - An Zhu
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China; (M.C.); (J.T.); (K.C.)
| | - Shanghua Xu
- Department of Cardiology, Affiliated Nanping First Hospital, Fujian Medical University, Nanping 353000, China; (X.S.); (Y.L.); (X.G.)
| |
Collapse
|
4
|
Xu Z, Wang X, Meng J, Zhang L, Song B. m5U-GEPred: prediction of RNA 5-methyluridine sites based on sequence-derived and graph embedding features. Front Microbiol 2023; 14:1277099. [PMID: 37937221 PMCID: PMC10627201 DOI: 10.3389/fmicb.2023.1277099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/02/2023] [Indexed: 11/09/2023] Open
Abstract
5-Methyluridine (m5U) is one of the most common post-transcriptional RNA modifications, which is involved in a variety of important biological processes and disease development. The precise identification of the m5U sites allows for a better understanding of the biological processes of RNA and contributes to the discovery of new RNA functional and therapeutic targets. Here, we present m5U-GEPred, a prediction framework, to combine sequence characteristics and graph embedding-based information for m5U identification. The graph embedding approach was introduced to extract the global information of training data that complemented the local information represented by conventional sequence features, thereby enhancing the prediction performance of m5U identification. m5U-GEPred outperformed the state-of-the-art m5U predictors built on two independent species, with an average AUROC of 0.984 and 0.985 tested on human and yeast transcriptomes, respectively. To further validate the performance of our newly proposed framework, the experimentally validated m5U sites identified from Oxford Nanopore Technology (ONT) were collected as independent testing data, and in this project, m5U-GEPred achieved reasonable prediction performance with ACC of 91.84%. We hope that m5U-GEPred should make a useful computational alternative for m5U identification.
Collapse
Affiliation(s)
- Zhongxing Xu
- Department of Public Health, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- School of AI and Advanced Computing, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Xuan Wang
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Jia Meng
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- AI University Research Centre, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Lin Zhang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
| | - Bowen Song
- Department of Public Health, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
5
|
Li Y, Ren J, Zhang Z, Weng Y, Zhang J, Zou X, Wu S, Hu H. Modification and Expression of mRNA m6A in the Lateral Habenular of Rats after Long-Term Exposure to Blue Light during the Sleep Period. Genes (Basel) 2023; 14:143. [PMID: 36672884 PMCID: PMC9859551 DOI: 10.3390/genes14010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/26/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Artificial lighting, especially blue light, is becoming a public-health risk. Excessive exposure to blue light at night has been reported to be associated with brain diseases. However, the mechanisms underlying neuropathy induced by blue light remain unclear. An early anatomical tracing study described the projection of the retina to the lateral habenula (LHb), whereas more mechanistic reports are available on multiple brain functions and neuropsychiatric disorders in the LHb, which are rarely seen in epigenetic studies, particularly N6-methyladenosine (m6A). The purpose of our study was to first expose Sprague-Dawley rats to blue light (6.11 ± 0.05 mW/cm2, the same irradiance as 200 lx of white light in the control group) for 4 h, and simultaneously provide white light to the control group for the same time to enter a sleep period. The experiment was conducted over 12 weeks. RNA m6A modifications and different mRNA transcriptome profiles were observed in the LHb. We refer to this experimental group as BLS. High-throughput MeRIP-seq and mRNA-seq were performed, and we used bioinformatics to analyze the data. There were 188 genes in the LHb that overlapped between differentially m6A-modified mRNA and differentially expressed mRNA. The Kyoto Encyclopedia of Genes and Genomes and gene ontology analysis were used to enrich neuroactive ligand-receptor interaction, long-term depression, the cyclic guanosine monophosphate-dependent protein kinase G (cGMP-PKG) signaling pathway, and circadian entrainment. The m6A methylation level of the target genes in the BLS group was disordered. In conclusion, this study suggests that the mRNA expression and their m6A of the LHb were abnormal after blue light exposure during the sleep period, and the methylation levels of target genes related to synaptic plasticity were disturbed. This study offers a theoretical basis for the scientific use of light.
Collapse
Affiliation(s)
- Yinhan Li
- Fujian Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350108, China
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350108, China
- Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350108, China
| | - Jinjin Ren
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
| | - Zhaoting Zhang
- School of Public Health, Fujian Medical University, Fuzhou 350108, China
| | - Yali Weng
- School of Public Health, Fujian Medical University, Fuzhou 350108, China
| | - Jian Zhang
- School of Public Health, Fujian Medical University, Fuzhou 350108, China
| | - Xinhui Zou
- School of Public Health, Fujian Medical University, Fuzhou 350108, China
| | - Siying Wu
- Fujian Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350108, China
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350108, China
- Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350108, China
| | - Hong Hu
- Fujian Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350108, China
- Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350108, China
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350108, China
| |
Collapse
|
6
|
Integrated Profiles of Transcriptome and mRNA m6A Modification Reveal the Intestinal Cytotoxicity of Aflatoxin B1 on HCT116 Cells. Genes (Basel) 2022; 14:genes14010079. [PMID: 36672820 PMCID: PMC9858580 DOI: 10.3390/genes14010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/11/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Aflatoxin B1 (AFB1) is widely prevalent in foods and animal feeds and is one of the most toxic and carcinogenic aflatoxin subtypes. Existing studies have proved that the intestine is targeted by AFB1, and adverse organic effects have been observed. This study aimed to investigate the relationship between AFB1-induced intestinal toxicity and N6-methyladenosine (m6A) RNA methylation, which involves the post-transcriptional regulation of mRNA expression. The transcriptome-wide m6A methylome and transcriptome profiles in human intestinal cells treated with AFB1 are presented. Methylated RNA immunoprecipitation sequencing and mRNA sequencing were carried out to determine the distinctions in m6A methylation and different genes expressed in AFB1-induced intestinal toxicity. The results showed that there were 2289 overlapping genes of the differentially expressed mRNAs and differentially m6A-methylation-modified mRNAs. After enrichment of the signaling pathways and biological processes, these genes participated in the terms of the cell cycle, endoplasmic reticulum, tight junction, and mitophagy. In conclusion, the study demonstrated that AFB1-induced HCT116 injury was related to the disruptions to the levels of m6A methylation modifications of target genes and the abnormal expression of m6A regulators.
Collapse
|
7
|
Huang D, Chen K, Song B, Wei Z, Su J, Coenen F, de Magalhães JP, Rigden DJ, Meng J. Geographic encoding of transcripts enabled high-accuracy and isoform-aware deep learning of RNA methylation. Nucleic Acids Res 2022; 50:10290-10310. [PMID: 36155798 PMCID: PMC9561283 DOI: 10.1093/nar/gkac830] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/26/2022] [Accepted: 09/15/2022] [Indexed: 12/25/2022] Open
Abstract
As the most pervasive epigenetic mark present on mRNA and lncRNA, N6-methyladenosine (m6A) RNA methylation regulates all stages of RNA life in various biological processes and disease mechanisms. Computational methods for deciphering RNA modification have achieved great success in recent years; nevertheless, their potential remains underexploited. One reason for this is that existing models usually consider only the sequence of transcripts, ignoring the various regions (or geography) of transcripts such as 3′UTR and intron, where the epigenetic mark forms and functions. Here, we developed three simple yet powerful encoding schemes for transcripts to capture the submolecular geographic information of RNA, which is largely independent from sequences. We show that m6A prediction models based on geographic information alone can achieve comparable performances to classic sequence-based methods. Importantly, geographic information substantially enhances the accuracy of sequence-based models, enables isoform- and tissue-specific prediction of m6A sites, and improves m6A signal detection from direct RNA sequencing data. The geographic encoding schemes we developed have exhibited strong interpretability, and are applicable to not only m6A but also N1-methyladenosine (m1A), and can serve as a general and effective complement to the widely used sequence encoding schemes in deep learning applications concerning RNA transcripts.
Collapse
Affiliation(s)
- Daiyun Huang
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, PR China.,Department of Computer Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| | - Kunqi Chen
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350004, PR China
| | - Bowen Song
- Department of Mathematical Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, PR China.,Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Zhen Wei
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, PR China.,Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| | - Jionglong Su
- Department of Mathematical Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, PR China.,School of AI and Advanced Computing, Xi'an Jiaotong-Liverpool University, Suzhou 215123, PR China
| | - Frans Coenen
- Department of Computer Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| | - João Pedro de Magalhães
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| | - Daniel J Rigden
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Jia Meng
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, PR China.,Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.,AI University Research Centre, Xi'an Jiaotong-Liverpool University, Suzhou 215123, PR China
| |
Collapse
|
8
|
Duan Q, Hu T, Zhu Q, Jin X, Chi F, Chen X. How far are the new wave of mRNA drugs from us? mRNA product current perspective and future development. Front Immunol 2022; 13:974433. [PMID: 36172353 PMCID: PMC9510989 DOI: 10.3389/fimmu.2022.974433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
mRNA products are therapies that are regulated from the post-transcriptional, pre-translational stage of a gene and act upstream of protein synthesis. Compared with traditional small molecule drugs and antibody drugs, mRNA drugs had the advantages of simple design, short development cycle, strong target specificity, wide therapeutic field, and long-lasting effect. mRNA drugs were now widely used in the treatment of genetic diseases, tumors, and viral infections, and are expected to become the third major class of drugs after small molecule drugs and antibody drugs. The delivery system technology was the key to ensuring the efficacy and safety of mRNA drugs, which plays an important role in protecting RNA structure, enhancing targeting ability, reducing the dose of drug delivery, and reducing toxic side effects. Lipid nanoparticles (LNP) were the most common delivery system for mRNA drugs. In recent years, mRNA drugs have seen rapid development, with the number of drugs on the market increasing each year. The success of commercializing mRNA vaccines has driven a wave of nucleic acid drug development. mRNA drugs were clinically used in genetic diseases, oncology, and infectious diseases worldwide, while domestic mRNA clinical development was focused on COVID-19 vaccines, with more scope for future indication expansion.
Collapse
|
9
|
Zhang T, Zhang SW, Feng J, Zhang B. m 6 Aexpress-BHM: predicting m6A regulation of gene expression in multiple-groups context by a Bayesian hierarchical mixture model. Brief Bioinform 2022; 23:6644383. [PMID: 35848879 DOI: 10.1093/bib/bbac295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/16/2022] [Accepted: 06/29/2022] [Indexed: 11/12/2022] Open
Abstract
As the most abundant RNA modification, N6-methyladenosine (m6A) plays an important role in various RNA activities including gene expression and translation. With the rapid application of MeRIP-seq technology, samples of multiple groups, such as the involved multiple viral/ bacterial infection or distinct cell differentiation stages, are extracted from same experimental unit. However, our current knowledge about how the dynamic m6A regulating gene expression and the role in certain biological processes (e.g. immune response in this complex context) is largely elusive due to lack of effective tools. To address this issue, we proposed a Bayesian hierarchical mixture model (called m6Aexpress-BHM) to predict m6A regulation of gene expression (m6A-reg-exp) in multiple groups of MeRIP-seq experiment with limited samples. Comprehensive evaluations of m6Aexpress-BHM on the simulated data demonstrate its high predicting precision and robustness. Applying m6Aexpress-BHM on three real-world datasets (i.e. Flaviviridae infection, infected time-points of bacteria and differentiation stages of dendritic cells), we predicted more m6A-reg-exp genes with positive regulatory mode that significantly participate in innate immune or adaptive immune pathways, revealing the underlying mechanism of the regulatory function of m6A during immune response. In addition, we also found that m6A may influence the expression of PD-1/PD-L1 via regulating its interacted genes. These results demonstrate the power of m6Aexpress-BHM, helping us understand the m6A regulatory function in immune system.
Collapse
Affiliation(s)
- Teng Zhang
- School of Automation from the Northwestern Polytechnical University, China
| | - Shao-Wu Zhang
- Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University, China
| | - Jian Feng
- department of microbiology and molecular genetics, University of Pittsburgh
| | - Bei Zhang
- Henan University of Science and Technology Affiliated First Hospital
| |
Collapse
|
10
|
Wu Y, Chen X, Bao W, Hong X, Li C, Lu J, Zhang D, Zhu A. Effect of Humantenine on mRNA m6A Modification and Expression in Human Colon Cancer Cell Line HCT116. Genes (Basel) 2022; 13:genes13050781. [PMID: 35627166 PMCID: PMC9140730 DOI: 10.3390/genes13050781] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 01/23/2023] Open
Abstract
Humantenine, an alkaloid isolated from the medicinal herb Gelsemium elegans (Gardner & Chapm.) Benth., has been reported to induce intestinal irritation, but the underlying toxicological mechanisms remain unclear. The object of the present study was to investigate the RNA N6-methyladenosine (m6A) modification and distinct mRNA transcriptome profiles in humantenine-treated HCT116 human colon cancer cells. High-throughput MeRIP-seq and mRNA-seq were performed, and bioinformatic analysis was performed to reveal the role of abnormal RNA m6A modification and mRNA expression in humantenine-induced intestinal cell toxicity. After humantenine treatment of HCT116 cells, 1401 genes were in the overlap of differentially m6A-modified mRNA and differentially expressed mRNA. The Kyoto Encyclopedia of Genes and Genomes and Gene Ontology annotation terms for actin cytoskeleton, tight junctions, and adherens junctions were enriched. A total of 11 kinds of RNA m6A methylation regulators were differentially expressed. The m6A methylation levels of target genes were disordered in the humantenine group. In conclusion, this study suggested that the HCT116 cell injury induced by humantenine was associated with the abnormal mRNA expression of m6A regulators, as well as disordered m6A methylation levels of target genes.
Collapse
Affiliation(s)
- Yajiao Wu
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China;
- Department of Pathogen Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
| | - Xiaoying Chen
- Experimental Teaching Center of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China;
| | - Wenqiang Bao
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China; (W.B.); (X.H.); (C.L.); (J.L.); (D.Z.)
| | - Xinyu Hong
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China; (W.B.); (X.H.); (C.L.); (J.L.); (D.Z.)
| | - Chutao Li
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China; (W.B.); (X.H.); (C.L.); (J.L.); (D.Z.)
| | - Jiatong Lu
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China; (W.B.); (X.H.); (C.L.); (J.L.); (D.Z.)
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750000, China
| | - Dongcheng Zhang
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China; (W.B.); (X.H.); (C.L.); (J.L.); (D.Z.)
| | - An Zhu
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China;
- Department of Pathogen Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
- Correspondence:
| |
Collapse
|
11
|
mAexpress-Reader: prediction of m6A regulated expression genes by integrating m6A sites and reader binding information in specific- context. Methods 2022; 203:167-178. [DOI: 10.1016/j.ymeth.2022.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/07/2022] [Accepted: 03/16/2022] [Indexed: 12/13/2022] Open
|
12
|
Zhang SY, Zhang SW, Zhang T, Fan XN, Meng J. Recent advances in functional annotation and prediction of the epitranscriptome. Comput Struct Biotechnol J 2021; 19:3015-3026. [PMID: 34136099 PMCID: PMC8175281 DOI: 10.1016/j.csbj.2021.05.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 12/17/2022] Open
Abstract
RNA modifications, in particular N6-methyladenosine (m6A), participate in every stages of RNA metabolism and play diverse roles in essential biological processes and disease pathogenesis. Thanks to the advances in sequencing technology, tens of thousands of RNA modification sites can be identified in a typical high-throughput experiment; however, it remains a major challenge to decipher the functional relevance of these sites, such as, affecting alternative splicing, regulation circuit in essential biological processes or association to diseases. As the focus of RNA epigenetics gradually shifts from site discovery to functional studies, we review here recent progress in functional annotation and prediction of RNA modification sites from a bioinformatics perspective. The review covers naïve annotation with associated biological events, e.g., single nucleotide polymorphism (SNP), RNA binding protein (RBP) and alternative splicing, prediction of key sites and their regulatory functions, inference of disease association, and mining the diagnosis and prognosis value of RNA modification regulators. We further discussed the limitations of existing approaches and some future perspectives.
Collapse
Affiliation(s)
- Song-Yao Zhang
- Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Shao-Wu Zhang
- Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Teng Zhang
- Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xiao-Nan Fan
- Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jia Meng
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China
| |
Collapse
|