1
|
Pollin G, Lomberk GA, Mathison AJ, Zimmermann MT, Urrutia R. Mutant KRAS inhibitors enter the scene of precision therapeutics for pancreatic cancer. J Gastrointest Oncol 2024; 15:1996-2001. [PMID: 39279937 PMCID: PMC11399826 DOI: 10.21037/jgo-24-326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/27/2024] [Indexed: 09/18/2024] Open
Affiliation(s)
- Gareth Pollin
- The RASopathies Program, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Gwen A Lomberk
- The RASopathies Program, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Angela J Mathison
- The RASopathies Program, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael T Zimmermann
- The RASopathies Program, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Raul Urrutia
- The RASopathies Program, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
2
|
Ratnasinghe BD, Haque N, Wagenknecht JB, Jensen DR, Valdivia Esparza GK, Leverence EN, Milech De Assuncao T, Mathison AJ, Lomberk G, Smith BC, Volkman BF, Urrutia R, Zimmermann MT. Beyond structural bioinformatics for genomics with dynamics characterization of an expanded KRAS mutational landscape. Comput Struct Biotechnol J 2023; 21:4790-4803. [PMID: 37841325 PMCID: PMC10570560 DOI: 10.1016/j.csbj.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 10/17/2023] Open
Abstract
Current capabilities in genomic sequencing outpace functional interpretations. Our previous work showed that 3D protein structure calculations enhance mechanistic understanding of genetic variation in sequenced tumors and patients with rare diseases. The KRAS GTPase is among the critical genetic factors driving cancer and germline conditions. Because KRAS-altered tumors frequently harbor one of three classic hotspot mutations, nearly all studies have focused on these mutations, leaving significant functional ambiguity across the broader KRAS genomic landscape observed in cancer and non-cancer diseases. Herein, we extend structural bioinformatics with molecular simulations to study an expanded landscape of 86 KRAS mutations. We identify multiple coordinated changes strongly associated with experimentally established KRAS biophysical and biochemical properties. The patterns we observe span hotspot and non-hotspot alterations, which can all dysregulate Switch regions, producing mutation-restricted conformations with different effector binding propensities. We experimentally measured mutation thermostability and identified shared and distinct patterns with simulations. Our results indicate mutation-specific conformations, which show potential for future research into how these alterations reverberate into different molecular and cellular functions. The data we present is not predictable using current genomic tools, demonstrating the added functional information derived from molecular simulations for interpreting human genetic variation.
Collapse
Affiliation(s)
- Brian D. Ratnasinghe
- Bioinformatics Research and Development Laboratory, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Neshatul Haque
- Bioinformatics Research and Development Laboratory, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jessica B. Wagenknecht
- Bioinformatics Research and Development Laboratory, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Davin R. Jensen
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Guadalupe K. Valdivia Esparza
- Structural Genomics Unit, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Elise N. Leverence
- Structural Genomics Unit, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Thiago Milech De Assuncao
- Structural Genomics Unit, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Angela J. Mathison
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Structural Genomics Unit, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Gwen Lomberk
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Structural Genomics Unit, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Brian C. Smith
- Structural Genomics Unit, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Brian F. Volkman
- Structural Genomics Unit, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Raul Urrutia
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Structural Genomics Unit, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Michael T. Zimmermann
- Bioinformatics Research and Development Laboratory, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Clinical and Translational Sciences Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
3
|
Chi YI, Jorge SD, Jensen DR, Smith BC, Volkman BF, Mathison AJ, Lomberk G, Zimmermann MT, Urrutia R. A Multi-Layered Computational Structural Genomics Approach Enhances Domain-Specific Interpretation of Kleefstra Syndrome Variants in EHMT1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.06.556558. [PMID: 37786696 PMCID: PMC10541560 DOI: 10.1101/2023.09.06.556558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
This study investigates the functional significance of assorted variants of uncertain significance (VUS) in euchromatic histone lysine methyltransferase 1 (EHMT1), which is critical for early development and normal physiology. EHMT1 mutations cause Kleefstra syndrome and are linked to various human cancers. However, accurate functional interpretation of these variants are yet to be made, limiting diagnoses and future research. To overcome this, we integrate conventional tools for variant calling with computational biophysics and biochemistry to conduct multi-layered mechanistic analyses of the SET catalytic domain of EHMT1, which is critical for this protein function. We use molecular mechanics and molecular dynamics (MD)-based metrics to analyze the SET domain structure and functional motions resulting from 97 Kleefstra syndrome missense variants within this domain. Our approach allows us to classify the variants in a mechanistic manner into SV (Structural Variant), DV (Dynamic Variant), SDV (Structural and Dynamic Variant), and VUS (Variant of Uncertain Significance). Our findings reveal that the damaging variants are mostly mapped around the active site, substrate binding site, and pre-SET regions. Overall, we report an improvement for this method over conventional tools for variant interpretation and simultaneously provide a molecular mechanism of variant dysfunction.
Collapse
|
4
|
Ratnasinghe BD, Haque N, Wagenknecht JB, Jensen DR, Esparza GV, Leverence EN, De Assuncao TM, Mathison AJ, Lomberk G, Smith BC, Volkman BF, Urrutia R, Zimmermann MT. Beyond Structural Bioinformatics for Genomics with Dynamics Characterization of an Expanded KRAS Mutational Landscape. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.28.536249. [PMID: 37207265 PMCID: PMC10189839 DOI: 10.1101/2023.04.28.536249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Current capabilities in genomic sequencing outpace functional interpretations. Our previous work showed that 3D protein structure calculations enhance mechanistic understanding of genetic variation in sequenced tumors and patients with rare diseases. The KRAS GTPase is among the critical genetic factors driving cancer and germline conditions. Because KRAS-altered tumors frequently harbor one of three classic hotspot mutations, nearly all studies have focused on these mutations, leaving significant functional ambiguity across the broader KRAS genomic landscape observed in cancer and non-cancer diseases. Herein, we extend structural bioinformatics with molecular simulations to study an expanded landscape of 86 KRAS mutations. We identify multiple coordinated changes strongly associated with experimentally established KRAS biophysical and biochemical properties. The patterns we observe span hotspot and non-hotspot alterations, which can all dysregulate Switch regions, producing mutation-restricted conformations with different effector binding propensities. We experimentally measured mutation thermostability and identified shared and distinct patterns with simulations. Our results indicate mutation-specific conformations which show potential for future research into how these alterations reverberate into different molecular and cellular functions. The data we present is not predictable using current genomic tools, demonstrating the added functional information derived from molecular simulations for interpreting human genetic variation.
Collapse
Affiliation(s)
- Brian D. Ratnasinghe
- Bioinformatics Research and Development Laboratory, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Neshatul Haque
- Bioinformatics Research and Development Laboratory, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jessica B. Wagenknecht
- Bioinformatics Research and Development Laboratory, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Davin R. Jensen
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Guadalupe V. Esparza
- Structural Genomics Unit, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Elise N. Leverence
- Structural Genomics Unit, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Thiago Milech De Assuncao
- Structural Genomics Unit, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Angela J. Mathison
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Structural Genomics Unit, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Gwen Lomberk
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Structural Genomics Unit, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Brian C. Smith
- Structural Genomics Unit, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Brian F. Volkman
- Structural Genomics Unit, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Raul Urrutia
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Structural Genomics Unit, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Michael T. Zimmermann
- Bioinformatics Research and Development Laboratory, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Clinical and Translational Sciences Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
5
|
Gain and loss of TASK3 channel function and its regulation by novel variation cause KCNK9 imprinting syndrome. Genome Med 2022; 14:62. [PMID: 35698242 PMCID: PMC9195326 DOI: 10.1186/s13073-022-01064-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 05/19/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genomics enables individualized diagnosis and treatment, but large challenges remain to functionally interpret rare variants. To date, only one causative variant has been described for KCNK9 imprinting syndrome (KIS). The genotypic and phenotypic spectrum of KIS has yet to be described and the precise mechanism of disease fully understood. METHODS This study discovers mechanisms underlying KCNK9 imprinting syndrome (KIS) by describing 15 novel KCNK9 alterations from 47 KIS-affected individuals. We use clinical genetics and computer-assisted facial phenotyping to describe the phenotypic spectrum of KIS. We then interrogate the functional effects of the variants in the encoded TASK3 channel using sequence-based analysis, 3D molecular mechanic and dynamic protein modeling, and in vitro electrophysiological and functional methodologies. RESULTS We describe the broader genetic and phenotypic variability for KIS in a cohort of individuals identifying an additional mutational hotspot at p.Arg131 and demonstrating the common features of this neurodevelopmental disorder to include motor and speech delay, intellectual disability, early feeding difficulties, muscular hypotonia, behavioral abnormalities, and dysmorphic features. The computational protein modeling and in vitro electrophysiological studies discover variability of the impact of KCNK9 variants on TASK3 channel function identifying variants causing gain and others causing loss of conductance. The most consistent functional impact of KCNK9 genetic variants, however, was altered channel regulation. CONCLUSIONS This study extends our understanding of KIS mechanisms demonstrating its complex etiology including gain and loss of channel function and consistent loss of channel regulation. These data are rapidly applicable to diagnostic strategies, as KIS is not identifiable from clinical features alone and thus should be molecularly diagnosed. Furthermore, our data suggests unique therapeutic strategies may be needed to address the specific functional consequences of KCNK9 variation on channel function and regulation.
Collapse
|
6
|
Tripathi S, Dsouza NR, Mathison AJ, Leverence E, Urrutia R, Zimmermann MT. Enhanced interpretation of 935 hotspot and non-hotspot RAS variants using evidence-based structural bioinformatics. Comput Struct Biotechnol J 2022; 20:117-127. [PMID: 34976316 PMCID: PMC8688876 DOI: 10.1016/j.csbj.2021.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 12/05/2021] [Accepted: 12/05/2021] [Indexed: 12/30/2022] Open
Abstract
In the current study, we report computational scores for advancing genomic interpretation of disease-associated genomic variation in members of the RAS family of genes. For this purpose, we applied 31 sequence- and 3D structure-based computational scores, chosen by their breadth of biophysical properties. We parametrized our data by assembling a numerically homogenized experimentally-derived dataset, which when use in our calculations reveal that computational scores using 3D structure highly correlate with experimental measures (e.g., GAP-mediated hydrolysis RSpearman = 0.80 and RAF affinity Rspearman = 0.82), while sequence-based scores are discordant with this data. Performing all-against-all comparisons, we applied this parametrized modeling approach to the study of 935 RAS variants from 7 RAS genes, which led us to identify 4 groups of mutations according to distinct biochemical scores within each group. Each group was comprised of hotspot and non-hotspot KRAS variants, indicating that poorly characterized variants could functionally behave like pathogenic mutations. Combining computational scores using dimensionality reduction indicated that changes to local unfolding propensity associate with changes in enzyme activity by genomic variants. Hence, our systematic approach, combining methodologies from both clinical genomics and 3D structural bioinformatics, represents an expansion for interpreting genomic data, provides information of mechanistic value, and that is transferable to other proteins.
Collapse
Affiliation(s)
- Swarnendu Tripathi
- Bioinformatics Research and Development Laboratory, Genomic Sciences and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Nikita R Dsouza
- Bioinformatics Research and Development Laboratory, Genomic Sciences and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Angela J Mathison
- Genomic Sciences and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Elise Leverence
- Genomic Sciences and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Raul Urrutia
- Genomic Sciences and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Michael T Zimmermann
- Bioinformatics Research and Development Laboratory, Genomic Sciences and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Clinical and Translational Sciences Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
7
|
DeVoe E, Oliver GR, Zenka R, Blackburn PR, Cousin MA, Boczek NJ, Kocher JPA, Urrutia R, Klee EW, Zimmermann MT. P 2T 2: Protein Panoramic annoTation Tool for the interpretation of protein coding genetic variants. JAMIA Open 2021; 4:ooab065. [PMID: 34377961 PMCID: PMC8346652 DOI: 10.1093/jamiaopen/ooab065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/06/2021] [Accepted: 07/17/2021] [Indexed: 11/29/2022] Open
Abstract
MOTIVATION Genomic data are prevalent, leading to frequent encounters with uninterpreted variants or mutations with unknown mechanisms of effect. Researchers must manually aggregate data from multiple sources and across related proteins, mentally translating effects between the genome and proteome, to attempt to understand mechanisms. MATERIALS AND METHODS P2T2 presents diverse data and annotation types in a unified protein-centric view, facilitating the interpretation of coding variants and hypothesis generation. Information from primary sequence, domain, motif, and structural levels are presented and also organized into the first Paralog Annotation Analysis across the human proteome. RESULTS Our tool assists research efforts to interpret genomic variation by aggregating diverse, relevant, and proteome-wide information into a unified interactive web-based interface. Additionally, we provide a REST API enabling automated data queries, or repurposing data for other studies. CONCLUSION The unified protein-centric interface presented in P2T2 will help researchers interpret novel variants identified through next-generation sequencing. Code and server link available at github.com/GenomicInterpretation/p2t2.
Collapse
Affiliation(s)
- Elias DeVoe
- Clinical and Translational Sciences Institute, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Gavin R Oliver
- Department of Health Science Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Roman Zenka
- Department of Health Science Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
| | - Patrick R Blackburn
- Clinical and Translational Sciences Institute, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Center for Individualized Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | - Margot A Cousin
- Department of Health Science Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Nicole J Boczek
- Department of Health Science Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jean-Pierre A Kocher
- Department of Health Science Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Raul Urrutia
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, 53226, USA
| | - Eric W Klee
- Department of Health Science Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Michael T Zimmermann
- Clinical and Translational Sciences Institute, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| |
Collapse
|