1
|
Wen X, Wu X, Sun Y, Zhou J, Guan G, Chen S, Shan S, Ma H, Zhao X, Wang Y, Ou X, You H, Guo JT, Lu F, Jia J. Long-term antiviral therapy is associated with changes in the profile of transcriptionally active HBV integration in the livers of patients with CHB. J Med Virol 2024; 96:e29606. [PMID: 38818708 DOI: 10.1002/jmv.29606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/10/2024] [Accepted: 04/05/2024] [Indexed: 06/01/2024]
Abstract
Hepatitis B virus (HBV) integration exists throughout the clinical course of chronic hepatitis B (CHB). This study investigated the effects of long-term antiviral therapy on the level and profiles of transcriptionally active HBV integration. Serial liver biopsies and paired blood samples were obtained from 16, 16, and 22 patients with CHB at baseline, 78, and 260 weeks of entecavir monotherapy or combined with pegylated interferon alfa, respectively. Serum HBV biomarkers were longitudinally assessed. RNA-seq and HIVID2 program was used to identify HBV-host chimeric RNAs transcribed from integrated DNA. The counts of HBV integration reads were positively related to both serum HBV DNA levels (r = 0.695, p = 0.004) and HBeAg titers (r = 0.724, p = 0.021) at baseline, but the positive correlation exited only to the serum HBsAg levels after 260 weeks of antiviral therapy (r = 0.662, p = 0.001). After 78 weeks of antiviral therapy, the levels of HBV integration expression decreased by 12.25 folds from baseline. The viral junction points were enriched at the S and HBx genes after the long-term antiviral therapy. HBs-FN1 became one of the main transcripts, with the mean proportion of HBs-FN1 in all integrated expression increased from 2.79% at baseline to 10.54% at Week 260 of antiviral treatment. Antiviral therapy may reduce but not eliminate the HBV integration events and integration expression. Certain integration events, such as HBs-FN1 can persist in long-term antiviral treatment.
Collapse
Affiliation(s)
- Xiajie Wen
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing, P.R. China
| | - Xiaoning Wu
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing, P.R. China
| | - Yameng Sun
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing, P.R. China
| | - Jialing Zhou
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing, P.R. China
| | - Guiwen Guan
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Science, Peking University Health Science Center, Beijing, P.R. China
| | - Shuyan Chen
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing, P.R. China
| | - Shan Shan
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing, P.R. China
| | - Hong Ma
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing, P.R. China
| | - Xinyan Zhao
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing, P.R. China
| | - Yu Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing, P.R. China
| | - Xiaojuan Ou
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing, P.R. China
| | - Hong You
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing, P.R. China
| | - Ju-Tao Guo
- Baruch S. Blumberg Institute, Doylestown, PA, USA
| | - Fengmin Lu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Science, Peking University Health Science Center, Beijing, P.R. China
| | - Jidong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing, P.R. China
| |
Collapse
|
2
|
Zeng X, Wang Y, Liu B, Rao X, Cao C, Peng F, Zhi W, Wu P, Peng T, Wei Y, Chu T, Xu M, Xu Y, Ding W, Li G, Lin S, Wu P. Multi-omics data reveals novel impacts of human papillomavirus integration on the epigenomic and transcriptomic signatures of cervical tumorigenesis. J Med Virol 2023; 95:e28789. [PMID: 37212325 DOI: 10.1002/jmv.28789] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 05/23/2023]
Abstract
Integration of human papilloma virus (HPV) DNA into the human genome may progressively contribute to cervical carcinogenesis. To explore how HPV integration affects gene expression by altering DNA methylation during carcinogenesis, we analyzed a multiomics dataset for cervical cancer. We obtained multiomics data by HPV-capture sequencing, RNA sequencing, and Whole Genome Bisulfite Sequencing from 50 patients with cervical cancer. We detected 985 and 485 HPV-integration sites in matched tumor and adjacent paratumor tissues. Of these, LINC00486 (n = 19), LINC02425 (n = 11), LLPH (n = 11), PROS1 (n = 5), KLF5 (n = 4), LINC00392 (n = 3), MIR205HG (n = 3) and NRG1 (n = 3) were identified as high-frequency HPV-integrated genes, including five novel recurrent genes. Patients at clinical stage II had the highest number of HPV integrations. E6 and E7 genes of HPV16 but not HPV18 showed significantly fewer breakpoints than random distribution. HPV integrations occurring in exons were associated with altered gene expression in tumor tissues but not in paratumor tissues. A list of HPV-integrated genes regulated at transcriptomic or epigenetic level was reported. We also carefully checked the candidate genes with regulation pattern correlated in both levels. HPV fragments integrated at MIR205HG mainly came from the L1 gene of HPV16. RNA expression of PROS1 was downregulated when HPV integrated in its upstream region. RNA expression of MIR205HG was elevated when HPV integrated into its enhancer. The promoter methylation levels of PROS1 and MIR205HG were all negatively correlated with their gene expressions. Further experimental validations proved that upregulation of MIR205HG could promote the proliferative and migrative abilities of cervical cancer cells. Our data provides a new atlas for epigenetic and transcriptomic regulations regarding HPV integrations in cervical cancer genome. We demonstrate that HPV integration may affect gene expression by altering methylation levels of MIR205HG and PROS1. Our study provides novel biological and clinical insights into HPV-induced cervical cancer.
Collapse
Affiliation(s)
- Xi Zeng
- Key Laboratory of Smart Farming for Agricultural Animals and Hubei Key Laboratory of Agricultural Bioinformatics, 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yuyouye Wang
- Key Laboratory of Smart Farming for Agricultural Animals and Hubei Key Laboratory of Agricultural Bioinformatics, 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Binghan Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xinjie Rao
- Key Laboratory of Smart Farming for Agricultural Animals and Hubei Key Laboratory of Agricultural Bioinformatics, 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Canhui Cao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fang Peng
- Key Laboratory of Smart Farming for Agricultural Animals and Hubei Key Laboratory of Agricultural Bioinformatics, 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Wenhua Zhi
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ping Wu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ting Peng
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ye Wei
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tian Chu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Miaochun Xu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yashi Xu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wencheng Ding
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guoliang Li
- Key Laboratory of Smart Farming for Agricultural Animals and Hubei Key Laboratory of Agricultural Bioinformatics, 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shitong Lin
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Peng Wu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
3
|
Li W, Wei W, Hou F, Xu H, Cui X. The integration model of hepatitis B virus genome in hepatocellular carcinoma cells based on high-throughput long-read sequencing. Genomics 2021; 114:23-30. [PMID: 34843903 DOI: 10.1016/j.ygeno.2021.11.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 11/16/2021] [Accepted: 11/22/2021] [Indexed: 11/26/2022]
Abstract
HBV integration and function has gradually been expanding. However, the exact mode of HBV integration remains unclear. In our research, the high-throughput long-read sequencing was combined with bioinformatics to study the complete mode of HBV integration in hepatocellular carcinoma (HCC) cells. The results demonstrated that: 1) The HBV insertion sequences of HBV integration events accounted for 49.5% of the total HBV sequences. 2) Short insertion segments with the length of 0-1 kbp accounted for 50% and the long insertion segments (>3 kbp) accounted for 25% of HBV insertion events. 3)There were different HBV insertion length in the breakpoints formed within different regions. 4) The occurrence of HBV integration events was accompanied by more frequent structural variations. 5)Furthermore, multiple HBV integration patterns were confirmed based on complete HBV insertion sequences. Our research not only clarified a variety of perfect HBV integration models but also determined multiple specific features of HBV integration.
Collapse
Affiliation(s)
- Weiyang Li
- Jining Medical University, Jining, Shandong 272067, China; Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, Shandong 272067, China.
| | - Wei Wei
- Jining Medical University, Jining, Shandong 272067, China
| | - Fei Hou
- Jining Medical University, Jining, Shandong 272067, China
| | - Hanshi Xu
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510275, China
| | - Xiaofang Cui
- Jining Medical University, Jining, Shandong 272067, China.
| |
Collapse
|