1
|
Hamano M, Nakamura T, Ito R, Shimada Y, Iwata M, Takeshita JI, Eguchi R, Yamanishi Y. DIRECTEUR: transcriptome-based prediction of small molecules that replace transcription factors for direct cell conversion. Bioinformatics 2024; 40:btae048. [PMID: 38273708 PMCID: PMC10868337 DOI: 10.1093/bioinformatics/btae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/03/2024] [Accepted: 01/23/2024] [Indexed: 01/27/2024] Open
Abstract
MOTIVATION Direct reprogramming (DR) is a process that directly converts somatic cells to target cells. Although DR via small molecules is safer than using transcription factors (TFs) in terms of avoidance of tumorigenic risk, the determination of DR-inducing small molecules is challenging. RESULTS Here we present a novel in silico method, DIRECTEUR, to predict small molecules that replace TFs for DR. We extracted DR-characteristic genes using transcriptome profiles of cells in which DR was induced by TFs, and performed a variant of simulated annealing to explore small molecule combinations with similar gene expression patterns with DR-inducing TFs. We applied DIRECTEUR to predicting combinations of small molecules that convert fibroblasts into neurons or cardiomyocytes, and were able to reproduce experimentally verified and functionally related molecules inducing the corresponding conversions. The proposed method is expected to be useful for practical applications in regenerative medicine. AVAILABILITY AND IMPLEMENTATION The code and data are available at the following link: https://github.com/HamanoLaboratory/DIRECTEUR.git.
Collapse
Affiliation(s)
- Momoko Hamano
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| | - Toru Nakamura
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| | - Ryoku Ito
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| | - Yuki Shimada
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| | - Michio Iwata
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| | - Jun-ichi Takeshita
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8569, Japan
| | - Ryohei Eguchi
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| | - Yoshihiro Yamanishi
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
- Department of Complex Systems Science, Graduate School of Informatics, Nagoya University, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
2
|
Kurahashi T, Nishime C, Nishinaka E, Komaki Y, Seki F, Urano K, Harada Y, Yoshikawa T, Dai P. Transplantation of Chemical Compound-Induced Cells from Human Fibroblasts Improves Locomotor Recovery in a Spinal Cord Injury Rat Model. Int J Mol Sci 2023; 24:13853. [PMID: 37762156 PMCID: PMC10530737 DOI: 10.3390/ijms241813853] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The development of regenerative medicine using cell therapy is eagerly awaited for diseases such as spinal cord injury (SCI), for which there has been no radical cure. We previously reported the direct conversion of human fibroblasts into neuronal-like cells using only chemical compounds; however, it is unclear whether chemical compound-induced neuronal-like (CiN) cells are clinically functional. In this study, we partially modified the method of inducing CiN cells (termed immature CiN cells) and examined their therapeutic efficacy, in a rat model of SCI, to investigate whether immature CiN cells are promising for clinical applications. Motor function recovery, after SCI, was assessed using the Basso, Beattie, and Bresnahan (BBB) test, as well as the CatWalk analysis. We found that locomotor recovery, after SCI in the immature CiN cell-transplanted group, was partially improved compared to that in the control group. Consistent with these results, magnetic resonance imaging (MRI) and histopathological analyses revealed that nerve recovery or preservation improved in the immature CiN cell-transplanted group. Furthermore, transcriptome analysis revealed that immature CiN cells highly express hepatocyte growth factor (HGF), which has recently been shown to be a promising therapeutic agent against SCI. Our findings suggest that immature CiN cells may provide an alternative strategy for the regenerative therapy of SCI.
Collapse
Affiliation(s)
- Toshihiro Kurahashi
- Department of Cellular Regenerative Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; (T.K.); (T.Y.)
| | - Chiyoko Nishime
- Central Institute for Experimental Animals (CIEA), 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan; (C.N.); (E.N.); (Y.K.); (F.S.); (K.U.)
| | - Eiko Nishinaka
- Central Institute for Experimental Animals (CIEA), 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan; (C.N.); (E.N.); (Y.K.); (F.S.); (K.U.)
| | - Yuji Komaki
- Central Institute for Experimental Animals (CIEA), 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan; (C.N.); (E.N.); (Y.K.); (F.S.); (K.U.)
| | - Fumiko Seki
- Central Institute for Experimental Animals (CIEA), 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan; (C.N.); (E.N.); (Y.K.); (F.S.); (K.U.)
| | - Koji Urano
- Central Institute for Experimental Animals (CIEA), 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan; (C.N.); (E.N.); (Y.K.); (F.S.); (K.U.)
| | - Yoshinori Harada
- Department of Pathology and Cell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan;
| | - Toshikazu Yoshikawa
- Department of Cellular Regenerative Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; (T.K.); (T.Y.)
- Louis Pasteur Center for Medical Research, 103-5 Tanaka-Monzen-cho, Sakyo-ku, Kyoto 606-8225, Japan
| | - Ping Dai
- Department of Cellular Regenerative Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; (T.K.); (T.Y.)
| |
Collapse
|