1
|
Li W, Chen J, Guo Z. Targeting metabolic pathway enhance CAR-T potency for solid tumor. Int Immunopharmacol 2024; 143:113412. [PMID: 39454410 DOI: 10.1016/j.intimp.2024.113412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/01/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024]
Abstract
Chimeric antigen receptor (CAR) T cells have great potential in cancer therapy, particularly in treating hematologic malignancies. However, their efficacy in solid tumors remains limited, with a significant proportion of patients failing to achieve long-term complete remission. One major challenge is the premature exhaustion of CAR-T cells, often due to insufficient metabolic energy. The survival, function and metabolic adaptation of CAR-T cells are key determinants of their therapeutic efficacy. We explore how targeting metabolic pathways in the tumor microenvironment can enhance CAR-T cell therapy by addressing metabolic competition and immunosuppression that impair CAR-T cell function. Tumors undergo metabolically reprogrammed to meet their rapid proliferation, thereby modulating metabolic pathways in immune cells to promote immunosuppression. The distinct metabolic requirements of tumors and T cells create a competitive environment, affecting the efficacy of CAR-T cell therapy. Recent research on glucose, lipid and amino acid metabolism, along with the interactions between tumor and immune cell metabolism, has revealed that targeting these metabolic processes can enhance antitumor immune responses. Combining metabolic interventions with existing antitumor therapies can fulfill the metabolic demands of immune cells, providing new ideas for tumor immunometabolic therapies. This review discusses the latest advances in the immunometabolic mechanisms underlying tumor immunosuppression, their implications for immunotherapy, and summarizes potential metabolic targets to improve the efficacy of CAR-T therapy.
Collapse
Affiliation(s)
- Wenying Li
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jiannan Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
2
|
Wang M, Wang J, Ji J, Ma C, Wang H, He J, Song Y, Zhang X, Cao Y, Dai Y, Hua M, Qin R, Li K, Cao L. Improving compound-protein interaction prediction by focusing on intra-modality and inter-modality dynamics with a multimodal tensor fusion strategy. Comput Struct Biotechnol J 2024; 23:3714-3729. [PMID: 39525082 PMCID: PMC11544084 DOI: 10.1016/j.csbj.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 11/16/2024] Open
Abstract
Identifying novel compound-protein interactions (CPIs) plays a pivotal role in target identification and drug discovery. Although the recent multimodal methods have achieved outstanding advances in CPI prediction, they fail to effectively learn both intra-modality and inter-modality dynamics, which limits their prediction performance. To address the limitation, we propose a novel multimodal tensor fusion CPI prediction framework, named MMTF-CPI, which contains three unimodal learning modules for structure, heterogeneous network and transcriptional profiling modalities, a tensor fusion module and a prediction module. MMTF-CPI is capable of focusing on both intra-modality and inter-modality dynamics with the tensor fusion module. We demonstrated that MMTF-CPI is superior to multiple state-of-the-art multimodal methods across seven datasets. The prediction performance of MMTF-CPI is significantly improved with the tensor fusion module compared to other fusion methods. Moreover, our case studies confirmed the practical value of MMTF-CPI in target identification. Via MMTF-CPI, we also discovered several candidate compounds for the therapy of breast cancer and non-small cell lung cancer.
Collapse
Affiliation(s)
- Meng Wang
- Department of Biostatistics, Harbin Medical University, Harbin 150081, China
| | - Jianmin Wang
- Department of Integrative Biotechnology, Yonsei University, Incheon 21983, South Korea
| | - Jianxin Ji
- Department of Biostatistics, Harbin Medical University, Harbin 150081, China
| | - Chenjing Ma
- Department of Biostatistics, Harbin Medical University, Harbin 150081, China
| | - Hesong Wang
- Department of Biostatistics, Harbin Medical University, Harbin 150081, China
| | - Jia He
- Department of Biostatistics, Harbin Medical University, Harbin 150081, China
| | - Yongzhen Song
- Department of Biostatistics, Harbin Medical University, Harbin 150081, China
| | - Xuan Zhang
- Department of Biostatistics, Harbin Medical University, Harbin 150081, China
| | - Yong Cao
- Department of Biostatistics, Harbin Medical University, Harbin 150081, China
| | - Yanyan Dai
- Department of Biostatistics, Harbin Medical University, Harbin 150081, China
| | - Menglei Hua
- Department of Biostatistics, Harbin Medical University, Harbin 150081, China
| | - Ruihao Qin
- Department of Biostatistics, Harbin Medical University, Harbin 150081, China
| | - Kang Li
- Department of Biostatistics, Harbin Medical University, Harbin 150081, China
| | - Lei Cao
- Department of Biostatistics, Harbin Medical University, Harbin 150081, China
| |
Collapse
|
3
|
Abdollahi S, Schaub DP, Barroso M, Laubach NC, Hutwelker W, Panzer U, Gersting SØW, Bonn S. A comprehensive comparison of deep learning-based compound-target interaction prediction models to unveil guiding design principles. J Cheminform 2024; 16:118. [PMID: 39468635 PMCID: PMC11520803 DOI: 10.1186/s13321-024-00913-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024] Open
Abstract
The evaluation of compound-target interactions (CTIs) is at the heart of drug discovery efforts. Given the substantial time and monetary costs of classical experimental screening, significant efforts have been dedicated to develop deep learning-based models that can accurately predict CTIs. A comprehensive comparison of these models on a large, curated CTI dataset is, however, still lacking. Here, we perform an in-depth comparison of 12 state-of-the-art deep learning architectures that use different protein and compound representations. The models were selected for their reported performance and architectures. To reliably compare model performance, we curated over 300 thousand binding and non-binding CTIs and established several gold-standard datasets of varying size and information. Based on our findings, DeepConv-DTI consistently outperforms other models in CTI prediction performance across the majority of datasets. It achieves an MCC of 0.6 or higher for most of the datasets and is one of the fastest models in training and inference. These results indicate that utilizing convolutional-based windows as in DeepConv-DTI to traverse trainable embeddings is a highly effective approach for capturing informative protein features. We also observed that physicochemical embeddings of targets increased model performance. We therefore modified DeepConv-DTI to include normalized physicochemical properties, which resulted in the overall best performing model Phys-DeepConv-DTI. This work highlights how the systematic evaluation of input features of compounds and targets, as well as their corresponding neural network architectures, can serve as a roadmap for the future development of improved CTI models.Scientific contributionThis work features comprehensive CTI datasets to allow for the objective comparison and benchmarking of CTI prediction algorithms. Based on this dataset, we gained insights into which embeddings of compounds and targets and which deep learning-based algorithms perform best, providing a blueprint for the future development of CTI algorithms. Using the insights gained from this screen, we provide a novel CTI algorithm with state-of-the-art performance.
Collapse
Affiliation(s)
- Sina Abdollahi
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, 20251, Germany
| | - Darius P Schaub
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, 20251, Germany
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, 20251, Germany
| | - Madalena Barroso
- University Children's Research, UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Hamburg, 20251, Germany
| | - Nora C Laubach
- University Children's Research, UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Hamburg, 20251, Germany
| | - Wiebke Hutwelker
- University Children's Research, UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Hamburg, 20251, Germany
| | - Ulf Panzer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, 20251, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, 20251, Germany
| | - S Øren W Gersting
- University Children's Research, UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Hamburg, 20251, Germany.
| | - Stefan Bonn
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, 20251, Germany.
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, 20251, Germany.
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, 20251, Germany.
| |
Collapse
|
4
|
Tian Z, Yu Y, Ni F, Zou Q. Drug-target interaction prediction with collaborative contrastive learning and adaptive self-paced sampling strategy. BMC Biol 2024; 22:216. [PMID: 39334132 PMCID: PMC11437672 DOI: 10.1186/s12915-024-02012-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Drug-target interaction (DTI) prediction plays a pivotal role in drug discovery and drug repositioning, enabling the identification of potential drug candidates. However, most previous approaches often do not fully utilize the complementary relationships among multiple biological networks, which limits their ability to learn more consistent representations. Additionally, the selection strategy of negative samples significantly affects the performance of contrastive learning methods. RESULTS In this study, we propose CCL-ASPS, a novel deep learning model that incorporates Collaborative Contrastive Learning (CCL) and Adaptive Self-Paced Sampling strategy (ASPS) for drug-target interaction prediction. CCL-ASPS leverages multiple networks to learn the fused embeddings of drugs and targets, ensuring their consistent representations from individual networks. Furthermore, ASPS dynamically selects more informative negative sample pairs for contrastive learning. Experiment results on the established dataset demonstrate that CCL-ASPS achieves significant improvements compared to current state-of-the-art methods. Moreover, ablation experiments confirm the contributions of the proposed CCL and ASPS strategies. CONCLUSIONS By integrating Collaborative Contrastive Learning and Adaptive Self-Paced Sampling, the proposed CCL-ASPS effectively addresses the limitations of previous methods. This study demonstrates that CCL-ASPS achieves notable improvements in DTI predictive performance compared to current state-of-the-art approaches. The case study and cold start experiments further illustrate the capability of CCL-ASPS to effectively predict previously unknown DTI, potentially facilitating the identification of new drug-target interactions.
Collapse
Affiliation(s)
- Zhen Tian
- School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| | - Yue Yu
- School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| | - Fengming Ni
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Quan Zou
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| |
Collapse
|
5
|
Li M, Wang Z, Liu L, Liu X, Zhang W. Subgraph-Aware Graph Kernel Neural Network for Link Prediction in Biological Networks. IEEE J Biomed Health Inform 2024; 28:4373-4381. [PMID: 38630566 DOI: 10.1109/jbhi.2024.3390092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Identifying links within biological networks is important in various biomedical applications. Recent studies have revealed that each node in a network may play a unique role in different links, but most link prediction methods overlook distinctive node roles, hindering the acquisition of effective link representations. Subgraph-based methods have been introduced as solutions but often ignore shared information among subgraphs. To address these limitations, we propose a Subgraph-aware Graph Kernel Neural Network (SubKNet) for link prediction in biological networks. Specifically, SubKNet extracts a subgraph for each node pair and feeds it into a graph kernel neural network, which decomposes each subgraph into a combination of trainable graph filters with diversity regularization for subgraph-aware representation learning. Additionally, node embeddings of the network are extracted as auxiliary information, aiding in distinguishing node pairs that share the same subgraph. Extensive experiments on five biological networks demonstrate that SubKNet outperforms baselines, including methods especially designed for biological networks and methods adapted to various networks. Further investigations confirm that employing graph filters to subgraphs helps to distinguish node roles in different subgraphs, and the inclusion of diversity regularization further enhances its capacity from diverse perspectives, generating effective link representations that contribute to more accurate link prediction.
Collapse
|
6
|
Zhou Z, Liao Q, Wei J, Zhuo L, Wu X, Fu X, Zou Q. Revisiting drug-protein interaction prediction: a novel global-local perspective. Bioinformatics 2024; 40:btae271. [PMID: 38648052 PMCID: PMC11087820 DOI: 10.1093/bioinformatics/btae271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/09/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
MOTIVATION Accurate inference of potential drug-protein interactions (DPIs) aids in understanding drug mechanisms and developing novel treatments. Existing deep learning models, however, struggle with accurate node representation in DPI prediction, limiting their performance. RESULTS We propose a new computational framework that integrates global and local features of nodes in the drug-protein bipartite graph for efficient DPI inference. Initially, we employ pre-trained models to acquire fundamental knowledge of drugs and proteins and to determine their initial features. Subsequently, the MinHash and HyperLogLog algorithms are utilized to estimate the similarity and set cardinality between drug and protein subgraphs, serving as their local features. Then, an energy-constrained diffusion mechanism is integrated into the transformer architecture, capturing interdependencies between nodes in the drug-protein bipartite graph and extracting their global features. Finally, we fuse the local and global features of nodes and employ multilayer perceptrons to predict the likelihood of potential DPIs. A comprehensive and precise node representation guarantees efficient prediction of unknown DPIs by the model. Various experiments validate the accuracy and reliability of our model, with molecular docking results revealing its capability to identify potential DPIs not present in existing databases. This approach is expected to offer valuable insights for furthering drug repurposing and personalized medicine research. AVAILABILITY AND IMPLEMENTATION Our code and data are accessible at: https://github.com/ZZCrazy00/DPI.
Collapse
Affiliation(s)
- Zhecheng Zhou
- School of Data Science and Artificial Intelligence, Wenzhou University of Technology, Wenzhou 325027, China
| | - Qingquan Liao
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410012, China
| | - Jinhang Wei
- School of Data Science and Artificial Intelligence, Wenzhou University of Technology, Wenzhou 325027, China
| | - Linlin Zhuo
- School of Data Science and Artificial Intelligence, Wenzhou University of Technology, Wenzhou 325027, China
| | - Xiaonan Wu
- School of Data Science and Artificial Intelligence, Wenzhou University of Technology, Wenzhou 325027, China
| | - Xiangzheng Fu
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410012, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611730, China
| |
Collapse
|
7
|
Chen S, Li M, Semenov I. MFA-DTI: Drug-target interaction prediction based on multi-feature fusion adopted framework. Methods 2024; 224:79-92. [PMID: 38430967 DOI: 10.1016/j.ymeth.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/16/2024] [Accepted: 02/23/2024] [Indexed: 03/05/2024] Open
Abstract
The identification of drug-target interactions (DTI) is a valuable step in the drug discovery and repositioning process. However, traditional laboratory experiments are time-consuming and expensive. Computational methods have streamlined research to determine DTIs. The application of deep learning methods has significantly improved the prediction performance for DTIs. Modern deep learning methods can leverage multiple sources of information, including sequence data that contains biological structural information, and interaction data. While useful, these methods cannot be effectively applied to each type of information individually (e.g., chemical structure and interaction network) and do not take into account the specificity of DTI data such as low- or zero-interaction biological entities. To overcome these limitations, we propose a method called MFA-DTI (Multi-feature Fusion Adopted framework for DTI). MFA-DTI consists of three modules: an interaction graph learning module that processes the interaction network to generate interaction vectors, a chemical structure learning module that extracts features from the chemical structure, and a fusion module that combines these features for the final prediction. To validate the performance of MFA-DTI, we conducted experiments on six public datasets under different settings. The results indicate that the proposed method is highly effective in various settings and outperforms state-of-the-art methods.
Collapse
Affiliation(s)
- Siqi Chen
- School of Information Science and Engineering, Chongqing Jiaotong University, Chongqing, 400074, China.
| | - Minghui Li
- Beidahuang Industry Group General Hospital, Harbin, 150006, China
| | - Ivan Semenov
- College of Intelligence and Computing, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
8
|
Liu Y, Xing L, Zhang L, Cai H, Guo M. GEFormerDTA: drug target affinity prediction based on transformer graph for early fusion. Sci Rep 2024; 14:7416. [PMID: 38548825 PMCID: PMC10979032 DOI: 10.1038/s41598-024-57879-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/22/2024] [Indexed: 04/01/2024] Open
Abstract
Predicting the interaction affinity between drugs and target proteins is crucial for rapid and accurate drug discovery and repositioning. Therefore, more accurate prediction of DTA has become a key area of research in the field of drug discovery and drug repositioning. However, traditional experimental methods have disadvantages such as long operation cycles, high manpower requirements, and high economic costs, making it difficult to predict specific interactions between drugs and target proteins quickly and accurately. Some methods mainly use the SMILES sequence of drugs and the primary structure of proteins as inputs, ignoring the graph information such as bond encoding, degree centrality encoding, spatial encoding of drug molecule graphs, and the structural information of proteins such as secondary structure and accessible surface area. Moreover, previous methods were based on protein sequences to learn feature representations, neglecting the completeness of information. To address the completeness of drug and protein structure information, we propose a Transformer graph-based early fusion research approach for drug-target affinity prediction (GEFormerDTA). Our method reduces prediction errors caused by insufficient feature learning. Experimental results on Davis and KIBA datasets showed a better prediction of drugtarget affinity than existing affinity prediction methods.
Collapse
Affiliation(s)
- Youzhi Liu
- Department of Computer Science and Technology, Shandong University of Technology, Zibo, 255000, China
| | - Linlin Xing
- Department of Computer Science and Technology, Shandong University of Technology, Zibo, 255000, China.
| | - Longbo Zhang
- Department of Computer Science and Technology, Shandong University of Technology, Zibo, 255000, China
| | - Hongzhen Cai
- Department of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China
| | - Maozu Guo
- Department of Electrical and Information Engineering, Beijing University of Architecture, Beijing, 102616, China
| |
Collapse
|
9
|
Zhang C, Zang T, Zhao T. KGE-UNIT: toward the unification of molecular interactions prediction based on knowledge graph and multi-task learning on drug discovery. Brief Bioinform 2024; 25:bbae043. [PMID: 38348746 PMCID: PMC10939374 DOI: 10.1093/bib/bbae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/29/2023] [Accepted: 01/23/2024] [Indexed: 02/15/2024] Open
Abstract
The prediction of molecular interactions is vital for drug discovery. Existing methods often focus on individual prediction tasks and overlook the relationships between them. Additionally, certain tasks encounter limitations due to insufficient data availability, resulting in limited performance. To overcome these limitations, we propose KGE-UNIT, a unified framework that combines knowledge graph embedding (KGE) and multi-task learning, for simultaneous prediction of drug-target interactions (DTIs) and drug-drug interactions (DDIs) and enhancing the performance of each task, even when data availability is limited. Via KGE, we extract heterogeneous features from the drug knowledge graph to enhance the structural features of drug and protein nodes, thereby improving the quality of features. Additionally, employing multi-task learning, we introduce an innovative predictor that comprises the task-aware Convolutional Neural Network-based (CNN-based) encoder and the task-aware attention decoder which can fuse better multimodal features, capture the contextual interactions of molecular tasks and enhance task awareness, leading to improved performance. Experiments on two imbalanced datasets for DTIs and DDIs demonstrate the superiority of KGE-UNIT, achieving high area under the receiver operating characteristics curves (AUROCs) (0.942, 0.987) and area under the precision-recall curve ( AUPRs) (0.930, 0.980) for DTIs and high AUROCs (0.975, 0.989) and AUPRs (0.966, 0.988) for DDIs. Notably, on the LUO dataset where the data were more limited, KGE-UNIT exhibited a more pronounced improvement, with increases of 4.32$\%$ in AUROC and 3.56$\%$ in AUPR for DTIs and 6.56$\%$ in AUROC and 8.17$\%$ in AUPR for DDIs. The scalability of KGE-UNIT is demonstrated through its extension to protein-protein interactions prediction, ablation studies and case studies further validate its effectiveness.
Collapse
Affiliation(s)
- Chengcheng Zhang
- Department of Computer Science, Harbin Institute of Technology, Harbin, 150001, China
| | - Tianyi Zang
- Department of Computer Science, Harbin Institute of Technology, Harbin, 150001, China
| | - Tianyi Zhao
- School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
10
|
Yin Z, Chen Y, Hao Y, Pandiyan S, Shao J, Wang L. FOTF-CPI: A compound-protein interaction prediction transformer based on the fusion of optimal transport fragments. iScience 2024; 27:108756. [PMID: 38230261 PMCID: PMC10790010 DOI: 10.1016/j.isci.2023.108756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/05/2023] [Accepted: 12/13/2023] [Indexed: 01/18/2024] Open
Abstract
Compound-protein interaction (CPI) affinity prediction plays an important role in reducing the cost and time of drug discovery. However, the interpretability of how fragments function in CPI is impacted by the fact that current methods ignore the affinity relationships between fragments of compounds and fragments of proteins in CPI modeling. This article introduces an improved Transformer called FOTF-CPI (a Fusion of Optimal Transport Fragments compound-protein interaction prediction model). We use an optimal transport-based fragmentation approach to improve the model's understanding of compound and protein sequences. Additionally, a fused attention mechanism is employed, which combines the features of fragments to capture full affinity information. This fused attention redistributes higher attention scores to fragments with higher affinity. Experimental results show FOTF-CPI achieves an average 2% higher performance than other models on all three datasets. Furthermore, the visualization confirms the potential of FOTF-CPI for drug discovery applications.
Collapse
Affiliation(s)
- Zeyu Yin
- School of Information Science and Technology, Nantong University, Nantong 226001, China
| | - Yu Chen
- School of Information Science and Technology, Nantong University, Nantong 226001, China
| | - Yajie Hao
- School of Information Science and Technology, Nantong University, Nantong 226001, China
| | - Sanjeevi Pandiyan
- Research Center for Intelligent Information Technology, Nantong University, Nantong 226001, China
| | - Jinsong Shao
- School of Information Science and Technology, Nantong University, Nantong 226001, China
| | - Li Wang
- School of Information Science and Technology, Nantong University, Nantong 226001, China
- Research Center for Intelligent Information Technology, Nantong University, Nantong 226001, China
| |
Collapse
|
11
|
Dehghan A, Razzaghi P, Abbasi K, Gharaghani S. TripletMultiDTI: Multimodal representation learning in drug-target interaction prediction with triplet loss function. EXPERT SYSTEMS WITH APPLICATIONS 2023; 232:120754. [DOI: 10.1016/j.eswa.2023.120754] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Huang Y, Huang HY, Chen Y, Lin YCD, Yao L, Lin T, Leng J, Chang Y, Zhang Y, Zhu Z, Ma K, Cheng YN, Lee TY, Huang HD. A Robust Drug-Target Interaction Prediction Framework with Capsule Network and Transfer Learning. Int J Mol Sci 2023; 24:14061. [PMID: 37762364 PMCID: PMC10531393 DOI: 10.3390/ijms241814061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Drug-target interactions (DTIs) are considered a crucial component of drug design and drug discovery. To date, many computational methods were developed for drug-target interactions, but they are insufficiently informative for accurately predicting DTIs due to the lack of experimentally verified negative datasets, inaccurate molecular feature representation, and ineffective DTI classifiers. Therefore, we address the limitations of randomly selecting negative DTI data from unknown drug-target pairs by establishing two experimentally validated datasets and propose a capsule network-based framework called CapBM-DTI to capture hierarchical relationships of drugs and targets, which adopts pre-trained bidirectional encoder representations from transformers (BERT) for contextual sequence feature extraction from target proteins through transfer learning and the message-passing neural network (MPNN) for the 2-D graph feature extraction of compounds to accurately and robustly identify drug-target interactions. We compared the performance of CapBM-DTI with state-of-the-art methods using four experimentally validated DTI datasets of different sizes, including human (Homo sapiens) and worm (Caenorhabditis elegans) species datasets, as well as three subsets (new compounds, new proteins, and new pairs). Our results demonstrate that the proposed model achieved robust performance and powerful generalization ability in all experiments. The case study on treating COVID-19 demonstrates the applicability of the model in virtual screening.
Collapse
Affiliation(s)
- Yixian Huang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen 518172, China; (Y.H.); (Y.C.); (J.L.)
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen 518172, China; (L.Y.); (Y.C.)
| | - Hsi-Yuan Huang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen 518172, China; (Y.H.); (Y.C.); (J.L.)
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen 518172, China; (L.Y.); (Y.C.)
| | - Yigang Chen
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen 518172, China; (Y.H.); (Y.C.); (J.L.)
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen 518172, China; (L.Y.); (Y.C.)
| | - Yang-Chi-Dung Lin
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen 518172, China; (Y.H.); (Y.C.); (J.L.)
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen 518172, China; (L.Y.); (Y.C.)
| | - Lantian Yao
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen 518172, China; (L.Y.); (Y.C.)
| | - Tianxiu Lin
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen 518172, China; (Y.H.); (Y.C.); (J.L.)
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen 518172, China; (L.Y.); (Y.C.)
| | - Junlin Leng
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen 518172, China; (Y.H.); (Y.C.); (J.L.)
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen 518172, China; (L.Y.); (Y.C.)
| | - Yuan Chang
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen 518172, China; (L.Y.); (Y.C.)
| | - Yuntian Zhang
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen 518172, China; (L.Y.); (Y.C.)
| | - Zihao Zhu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen 518172, China; (Y.H.); (Y.C.); (J.L.)
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen 518172, China; (L.Y.); (Y.C.)
| | - Kun Ma
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen 518172, China; (Y.H.); (Y.C.); (J.L.)
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen 518172, China; (L.Y.); (Y.C.)
| | - Yeong-Nan Cheng
- Institute of Bioinformatics and Systems Biology, Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan; (Y.-N.C.)
| | - Tzong-Yi Lee
- Institute of Bioinformatics and Systems Biology, Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan; (Y.-N.C.)
| | - Hsien-Da Huang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen 518172, China; (Y.H.); (Y.C.); (J.L.)
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen 518172, China; (L.Y.); (Y.C.)
| |
Collapse
|
13
|
Liu L, Zhang Q, Wei Y, Zhao Q, Liao B. A Biological Feature and Heterogeneous Network Representation Learning-Based Framework for Drug-Target Interaction Prediction. Molecules 2023; 28:6546. [PMID: 37764321 PMCID: PMC10535805 DOI: 10.3390/molecules28186546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The prediction of drug-target interaction (DTI) is crucial to drug discovery. Although the interactions between the drug and target can be accurately verified by traditional biochemical experiments, the determination of DTI through biochemical experiments is a time-consuming, laborious, and expensive process. Therefore, we propose a learning-based framework named BG-DTI for drug-target interaction prediction. Our model combines two main approaches based on biological features and heterogeneous networks to identify interactions between drugs and targets. First, we extract original features from the sequence to encode each drug and target. Later, we further consider the relationships among various biological entities by constructing drug-drug similarity networks and target-target similarity networks. Furthermore, a graph convolutional network and a graph attention network in the graph representation learning module help us learn the features representation of drugs and targets. After obtaining the features from graph representation learning modules, these features are combined into fusion descriptors for drug-target pairs. Finally, we send the fusion descriptors and labels to a random forest classifier for predicting DTI. The evaluation results show that BG-DTI achieves an average AUC of 0.938 and an average AUPR of 0.930, which is better than those of five existing state-of-the-art methods. We believe that BG-DTI can facilitate the development of drug discovery or drug repurposing.
Collapse
Affiliation(s)
- Liwei Liu
- College of Science, Dalian Jiaotong University, Dalian 116028, China; (L.L.); (Q.Z.)
- Key Laboratory of Computational Science and Application of Hainan Province, Hainan Normal University, Haikou 571158, China
| | - Qi Zhang
- College of Science, Dalian Jiaotong University, Dalian 116028, China; (L.L.); (Q.Z.)
| | - Yuxiao Wei
- College of Software, Dalian Jiaotong University, Dalian 116028, China;
| | - Qi Zhao
- School of Computer Science and Software Engineering, University of Science and Technology Liaoning, Anshan 114051, China
| | - Bo Liao
- Key Laboratory of Computational Science and Application of Hainan Province, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
14
|
Li X, Yang Q, Luo G, Xu L, Dong W, Wang W, Dong S, Wang K, Xuan P, Gao X. SAGDTI: self-attention and graph neural network with multiple information representations for the prediction of drug-target interactions. BIOINFORMATICS ADVANCES 2023; 3:vbad116. [PMID: 38282612 PMCID: PMC10818136 DOI: 10.1093/bioadv/vbad116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/31/2023] [Accepted: 08/24/2023] [Indexed: 01/30/2024]
Abstract
Motivation Accurate identification of target proteins that interact with drugs is a vital step in silico, which can significantly foster the development of drug repurposing and drug discovery. In recent years, numerous deep learning-based methods have been introduced to treat drug-target interaction (DTI) prediction as a classification task. The output of this task is binary identification suggesting the absence or presence of interactions. However, existing studies often (i) neglect the unique molecular attributes when embedding drugs and proteins, and (ii) determine the interaction of drug-target pairs without considering biological interaction information. Results In this study, we propose an end-to-end attention-derived method based on the self-attention mechanism and graph neural network, termed SAGDTI. The aim of this method is to overcome the aforementioned drawbacks in the identification of DTI. SAGDTI is the first method to sufficiently consider the unique molecular attribute representations for both drugs and targets in the input form of the SMILES sequences and three-dimensional structure graphs. In addition, our method aggregates the feature attributes of biological information between drugs and targets through multi-scale topologies and diverse connections. Experimental results illustrate that SAGDTI outperforms existing prediction models, which benefit from the unique molecular attributes embedded by atom-level attention and biological interaction information representation aggregated by node-level attention. Moreover, a case study on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) shows that our model is a powerful tool for identifying DTIs in real life. Availability and implementation The data and codes underlying this article are available in Github at https://github.com/lixiaokun2020/SAGDTI.
Collapse
Affiliation(s)
- Xiaokun Li
- School of Computer Science and Technology, Heilongjiang University, Harbin 150080, China
- Postdoctoral Program of Heilongjiang Hengxun Technology Co., Ltd., Harbin 150090, China
| | - Qiang Yang
- School of Computer Science and Technology, Heilongjiang University, Harbin 150080, China
- Postdoctoral Program of Heilongjiang Hengxun Technology Co., Ltd., Harbin 150090, China
| | - Gongning Luo
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Long Xu
- School of Computer Science and Technology, Heilongjiang University, Harbin 150080, China
- Postdoctoral Program of Heilongjiang Hengxun Technology Co., Ltd., Harbin 150090, China
| | - Weihe Dong
- Postdoctoral Program of Heilongjiang Hengxun Technology Co., Ltd., Harbin 150090, China
- College of Computer and Control Engineering, Northeast Forestry University, Harbin 150040, China
| | - Wei Wang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Suyu Dong
- College of Computer and Control Engineering, Northeast Forestry University, Harbin 150040, China
| | - Kuanquan Wang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Ping Xuan
- School of Computer Science and Technology, Heilongjiang University, Harbin 150080, China
- Department of Computer Science, School of Engineering, Shantou University, Shantou 515063, China
| | - Xin Gao
- Computer, Electrical and Mathematical Sciences & Engineering Division, King Abdullah University of Science and Technology, 4700 KAUST, Thuwal 23955, Saudi Arabia
| |
Collapse
|
15
|
Dong W, Yang Q, Wang J, Xu L, Li X, Luo G, Gao X. Multi-modality attribute learning-based method for drug-protein interaction prediction based on deep neural network. Brief Bioinform 2023; 24:7145903. [PMID: 37114624 DOI: 10.1093/bib/bbad161] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/19/2023] [Accepted: 04/02/2023] [Indexed: 04/29/2023] Open
Abstract
Identification of active candidate compounds for target proteins, also called drug-protein interaction (DPI) prediction, is an essential but time-consuming and expensive step, which leads to fostering the development of drug discovery. In recent years, deep network-based learning methods were frequently proposed in DPIs due to their powerful capability of feature representation. However, the performance of existing DPI methods is still limited by insufficiently labeled pharmacological data and neglected intermolecular information. Therefore, overcoming these difficulties to perfect the performance of DPIs is an urgent challenge for researchers. In this article, we designed an innovative 'multi-modality attributes' learning-based framework for DPIs with molecular transformer and graph convolutional networks, termed, multi-modality attributes (MMA)-DPI. Specifically, intermolecular sub-structural information and chemical semantic representations were extracted through an augmented transformer module from biomedical data. A tri-layer graph convolutional neural network module was applied to associate the neighbor topology information and learn the condensed dimensional features by aggregating a heterogeneous network that contains multiple biological representations of drugs, proteins, diseases and side effects. Then, the learned representations were taken as the input of a fully connected neural network module to further integrate them in molecular and topological space. Finally, the attribute representations were fused with adaptive learning weights to calculate the interaction score for the DPIs tasks. MMA-DPI was evaluated in different experimental conditions and the results demonstrate that the proposed method achieved higher performance than existing state-of-the-art frameworks.
Collapse
Affiliation(s)
- Weihe Dong
- College of information and Computer Engineering, Northeast Forestry University, Hexing Road, 150040, Harbin, China
| | - Qiang Yang
- School of Computer Science and Technology, Heilongjiang University, Xuefu Road, 150080, Harbin, China
- Postdoctoral Program of Heilongjiang Hengxun Technology Co., Ltd., Xuefu Road, 150080, Harbin, China
| | - Jian Wang
- College of information and Computer Engineering, Northeast Forestry University, Hexing Road, 150040, Harbin, China
| | - Long Xu
- School of Computer Science and Technology, Heilongjiang University, Xuefu Road, 150080, Harbin, China
- Postdoctoral Program of Heilongjiang Hengxun Technology Co., Ltd., Xuefu Road, 150080, Harbin, China
| | - Xiaokun Li
- School of Computer Science and Technology, Heilongjiang University, Xuefu Road, 150080, Harbin, China
- Postdoctoral Program of Heilongjiang Hengxun Technology Co., Ltd., Xuefu Road, 150080, Harbin, China
| | - Gongning Luo
- Computer, Electrical and Mathematical Sciences & Engineering Division, King Abdullah University of Science and Technology, 4700 KAUST, Thuwal 23955, Saudi Arabia
- School of Computer Science and Technology, Harbin Institute of Technology, West Dazhi Street, 150001, Harbin, China
| | - Xin Gao
- Computer, Electrical and Mathematical Sciences & Engineering Division, King Abdullah University of Science and Technology, 4700 KAUST, Thuwal 23955, Saudi Arabia
| |
Collapse
|
16
|
Nguyen MT, Nguyen T, Tran T. Learning to discover medicines. INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS 2022; 16:1-16. [PMID: 36440369 PMCID: PMC9676887 DOI: 10.1007/s41060-022-00371-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/05/2022] [Indexed: 11/19/2022]
Abstract
Discovering new medicines is the hallmark of the human endeavor to live a better and longer life. Yet the pace of discovery has slowed down as we need to venture into more wildly unexplored biomedical space to find one that matches today's high standard. Modern AI-enabled by powerful computing, large biomedical databases, and breakthroughs in deep learning offers a new hope to break this loop as AI is rapidly maturing, ready to make a huge impact in the area. In this paper, we review recent advances in AI methodologies that aim to crack this challenge. We organize the vast and rapidly growing literature on AI for drug discovery into three relatively stable sub-areas: (a) representation learning over molecular sequences and geometric graphs; (b) data-driven reasoning where we predict molecular properties and their binding, optimize existing compounds, generate de novo molecules, and plan the synthesis of target molecules; and (c) knowledge-based reasoning where we discuss the construction and reasoning over biomedical knowledge graphs. We will also identify open challenges and chart possible research directions for the years to come.
Collapse
Affiliation(s)
- Minh-Tri Nguyen
- Applied Artificial Intelligence Institute, Deakin University, Burwood, VIC Australia
| | - Thin Nguyen
- Applied Artificial Intelligence Institute, Deakin University, Burwood, VIC Australia
| | - Truyen Tran
- Applied Artificial Intelligence Institute, Deakin University, Burwood, VIC Australia
| |
Collapse
|
17
|
Modeling DTA by Combining Multiple-Instance Learning with a Private-Public Mechanism. Int J Mol Sci 2022; 23:ijms231911136. [PMID: 36232434 PMCID: PMC9569912 DOI: 10.3390/ijms231911136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 11/20/2022] Open
Abstract
The prediction of the strengths of drug–target interactions, also called drug–target binding affinities (DTA), plays a fundamental role in facilitating drug discovery, where the goal is to find prospective drug candidates. With the increase in the number of drug–protein interactions, machine learning techniques, especially deep learning methods, have become applicable for drug–target interaction discovery because they significantly reduce the required experimental workload. In this paper, we present a spontaneous formulation of the DTA prediction problem as an instance of multi-instance learning. We address the problem in three stages, first organizing given drug and target sequences into instances via a private-public mechanism, then identifying the predicted scores of all instances in the same bag, and finally combining all the predicted scores as the output prediction. A comprehensive evaluation demonstrates that the proposed method outperforms other state-of-the-art methods on three benchmark datasets.
Collapse
|