1
|
Xu Y, Liu D, Gong H. Improving the prediction of protein stability changes upon mutations by geometric learning and a pre-training strategy. NATURE COMPUTATIONAL SCIENCE 2024:10.1038/s43588-024-00716-2. [PMID: 39455825 DOI: 10.1038/s43588-024-00716-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/03/2024] [Indexed: 10/28/2024]
Abstract
Accurate prediction of protein mutation effects is of great importance in protein engineering and design. Here we propose GeoStab-suite, a suite of three geometric learning-based models-GeoFitness, GeoDDG and GeoDTm-for the prediction of fitness score, ΔΔG and ΔTm of a protein upon mutations, respectively. GeoFitness engages a specialized loss function to allow supervised training of a unified model using the large amount of multi-labeled fitness data in the deep mutational scanning database. To further improve the downstream tasks of ΔΔG and ΔTm prediction, the encoder of GeoFitness is reutilized as a pre-trained module in GeoDDG and GeoDTm to overcome the challenge of lacking sufficient labeled data. This pre-training strategy, in combination with data expansion, markedly improves model performance and generalizability. In the benchmark test, GeoDDG and GeoDTm outperform the other state-of-the-art methods by at least 30% and 70%, respectively, in terms of the Spearman correlation coefficient.
Collapse
Affiliation(s)
- Yunxin Xu
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
| | - Di Liu
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
| | - Haipeng Gong
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China.
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China.
| |
Collapse
|
2
|
Li D, Zhu Y, Zhang W, Liu J, Yang X, Liu Z, Wei D. AI Prediction of Structural Stability of Nanoproteins Based on Structures and Residue Properties by Mean Pooled Dual Graph Convolutional Network. Interdiscip Sci 2024:10.1007/s12539-024-00662-7. [PMID: 39367992 DOI: 10.1007/s12539-024-00662-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 09/18/2024] [Accepted: 09/22/2024] [Indexed: 10/07/2024]
Abstract
The structural stability of proteins is an important topic in various fields such as biotechnology, pharmaceuticals, and enzymology. Specifically, understanding the structural stability of protein is crucial for protein design. Artificial design, while pursuing high thermodynamic stability and rigidity of proteins, inevitably sacrifices biological functions closely related to protein flexibility. The thermodynamic stability of proteins is not always optimal when they are highest to perfectly perform their biological functions. Extensive theoretical and experimental screening is often required to obtain stable protein structures. Thus, it becomes critically important to develop a stability prediction model based on the balance between protein stability and bioactivity. To design protein drugs with better functionality in a broader structural space, a novel protein structural stability predictor called PSSP has been developed in this study. PSSP is a mean pooled dual graph convolutional network (GCN) model based on sequence characteristics and secondary structure, distance matrix, graph, and residue properties of a nanoprotein to provide rapid prediction and judgment. This model exhibits excellent robustness in predicting the structural stability of nanoproteins. Comparing with previous artificial intelligence algorithms, the results indicate this model can provide a rapid and accurate assessment of the structural stability of artificially designed proteins, which shows the great promises for promoting the robust development of protein design.
Collapse
Affiliation(s)
- Daixi Li
- Institute of Biothermal Engineering, University of Shanghai for Science and Technology, Shanghai, 20093, China.
- Pengcheng Laboratory, Shenzhen, 518055, China.
| | - Yuqi Zhu
- Institute of Biothermal Engineering, University of Shanghai for Science and Technology, Shanghai, 20093, China
| | - Wujie Zhang
- Chemical and Biomolecular Engineering Program, Physics and Chemistry Department, Milwaukee School of Engineering, Milwaukee, 53202, USA
| | - Jing Liu
- Institute of Biothermal Engineering, University of Shanghai for Science and Technology, Shanghai, 20093, China
| | - Xiaochen Yang
- Institute of Biothermal Engineering, University of Shanghai for Science and Technology, Shanghai, 20093, China
| | - Zhihong Liu
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518118, China
| | - Dongqing Wei
- Pengcheng Laboratory, Shenzhen, 518055, China
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation, Center On Antibacterial Resistances, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
3
|
Li SS, Liu ZM, Li J, Ma YB, Dong ZY, Hou JW, Shen FJ, Wang WB, Li QM, Su JG. Prediction of mutation-induced protein stability changes based on the geometric representations learned by a self-supervised method. BMC Bioinformatics 2024; 25:282. [PMID: 39198740 PMCID: PMC11360314 DOI: 10.1186/s12859-024-05876-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/19/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Thermostability is a fundamental property of proteins to maintain their biological functions. Predicting protein stability changes upon mutation is important for our understanding protein structure-function relationship, and is also of great interest in protein engineering and pharmaceutical design. RESULTS Here we present mutDDG-SSM, a deep learning-based framework that uses the geometric representations encoded in protein structure to predict the mutation-induced protein stability changes. mutDDG-SSM consists of two parts: a graph attention network-based protein structural feature extractor that is trained with a self-supervised learning scheme using large-scale high-resolution protein structures, and an eXtreme Gradient Boosting model-based stability change predictor with an advantage of alleviating overfitting problem. The performance of mutDDG-SSM was tested on several widely-used independent datasets. Then, myoglobin and p53 were used as case studies to illustrate the effectiveness of the model in predicting protein stability changes upon mutations. Our results show that mutDDG-SSM achieved high performance in estimating the effects of mutations on protein stability. In addition, mutDDG-SSM exhibited good unbiasedness, where the prediction accuracy on the inverse mutations is as well as that on the direct mutations. CONCLUSION Meaningful features can be extracted from our pre-trained model to build downstream tasks and our model may serve as a valuable tool for protein engineering and drug design.
Collapse
Affiliation(s)
- Shan Shan Li
- High Performance Computing Center, National Vaccine and Serum Institute (NVSI), Beijing, China
- National Engineering Center for New Vaccine Research, Beijing, China
| | - Zhao Ming Liu
- National Engineering Center for New Vaccine Research, Beijing, China
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI), Beijing, China
| | - Jiao Li
- High Performance Computing Center, National Vaccine and Serum Institute (NVSI), Beijing, China
- National Engineering Center for New Vaccine Research, Beijing, China
| | - Yi Bo Ma
- High Performance Computing Center, National Vaccine and Serum Institute (NVSI), Beijing, China
- National Engineering Center for New Vaccine Research, Beijing, China
| | - Ze Yuan Dong
- High Performance Computing Center, National Vaccine and Serum Institute (NVSI), Beijing, China
- National Engineering Center for New Vaccine Research, Beijing, China
| | - Jun Wei Hou
- National Engineering Center for New Vaccine Research, Beijing, China
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI), Beijing, China
| | - Fu Jie Shen
- National Engineering Center for New Vaccine Research, Beijing, China
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI), Beijing, China
| | - Wei Bu Wang
- High Performance Computing Center, National Vaccine and Serum Institute (NVSI), Beijing, China
- National Engineering Center for New Vaccine Research, Beijing, China
| | - Qi Ming Li
- National Engineering Center for New Vaccine Research, Beijing, China.
- The Sixth Laboratory, National Vaccine and Serum Institute (NVSI), Beijing, China.
| | - Ji Guo Su
- High Performance Computing Center, National Vaccine and Serum Institute (NVSI), Beijing, China.
- National Engineering Center for New Vaccine Research, Beijing, China.
| |
Collapse
|
4
|
Chen Y, Xu Y, Liu D, Xing Y, Gong H. An end-to-end framework for the prediction of protein structure and fitness from single sequence. Nat Commun 2024; 15:7400. [PMID: 39191788 DOI: 10.1038/s41467-024-51776-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024] Open
Abstract
Significant research progress has been made in the field of protein structure and fitness prediction. Particularly, single-sequence-based structure prediction methods like ESMFold and OmegaFold achieve a balance between inference speed and prediction accuracy, showing promise for many downstream prediction tasks. Here, we propose SPIRED, a single-sequence-based structure prediction model that exhibits comparable performance to the state-of-the-art methods but with approximately 5-fold acceleration in inference and at least one order of magnitude reduction in training consumption. By integrating SPIRED with downstream neural networks, we compose an end-to-end framework named SPIRED-Fitness for the rapid prediction of both protein structure and fitness from single sequence with satisfactory accuracy. Moreover, SPIRED-Stab, the derivative of SPIRED-Fitness, achieves state-of-the-art performance in predicting the mutational effects on protein stability.
Collapse
Affiliation(s)
- Yinghui Chen
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
| | - Yunxin Xu
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
| | - Di Liu
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
| | - Yaoguang Xing
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
| | - Haipeng Gong
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China.
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China.
| |
Collapse
|
5
|
Rollo C, Pancotti C, Birolo G, Rossi I, Sanavia T, Fariselli P. Influence of Model Structures on Predictors of Protein Stability Changes from Single-Point Mutations. Genes (Basel) 2023; 14:2228. [PMID: 38137050 PMCID: PMC10742815 DOI: 10.3390/genes14122228] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Missense variation in genomes can affect protein structure stability and, in turn, the cell physiology behavior. Predicting the impact of those variations is relevant, and the best-performing computational tools exploit the protein structure information. However, most of the current protein sequence variants are unresolved, and comparative or ab initio tools can provide a structure. Here, we evaluate the impact of model structures, compared to experimental structures, on the predictors of protein stability changes upon single-point mutations, where no significant changes are expected between the original and the mutated structures. We show that there are substantial differences among the computational tools. Methods that rely on coarse-grained representation are less sensitive to the underlying protein structures. In contrast, tools that exploit more detailed molecular representations are sensible to structures generated from comparative modeling, even on single-residue substitutions.
Collapse
Affiliation(s)
- Cesare Rollo
- Department of Medical Sciences, University Torino, 10126 Torino, Italy (G.B.); (I.R.); (T.S.); (P.F.)
| | | | | | | | | | | |
Collapse
|
6
|
Kouba P, Kohout P, Haddadi F, Bushuiev A, Samusevich R, Sedlar J, Damborsky J, Pluskal T, Sivic J, Mazurenko S. Machine Learning-Guided Protein Engineering. ACS Catal 2023; 13:13863-13895. [PMID: 37942269 PMCID: PMC10629210 DOI: 10.1021/acscatal.3c02743] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/20/2023] [Indexed: 11/10/2023]
Abstract
Recent progress in engineering highly promising biocatalysts has increasingly involved machine learning methods. These methods leverage existing experimental and simulation data to aid in the discovery and annotation of promising enzymes, as well as in suggesting beneficial mutations for improving known targets. The field of machine learning for protein engineering is gathering steam, driven by recent success stories and notable progress in other areas. It already encompasses ambitious tasks such as understanding and predicting protein structure and function, catalytic efficiency, enantioselectivity, protein dynamics, stability, solubility, aggregation, and more. Nonetheless, the field is still evolving, with many challenges to overcome and questions to address. In this Perspective, we provide an overview of ongoing trends in this domain, highlight recent case studies, and examine the current limitations of machine learning-based methods. We emphasize the crucial importance of thorough experimental validation of emerging models before their use for rational protein design. We present our opinions on the fundamental problems and outline the potential directions for future research.
Collapse
Affiliation(s)
- Petr Kouba
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech
Republic
- Czech Institute
of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, Jugoslavskych partyzanu 1580/3, 160 00 Prague 6, Czech Republic
- Faculty of
Electrical Engineering, Czech Technical
University in Prague, Technicka 2, 166 27 Prague 6, Czech Republic
| | - Pavel Kohout
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech
Republic
- International
Clinical Research Center, St. Anne’s
University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Faraneh Haddadi
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech
Republic
- International
Clinical Research Center, St. Anne’s
University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Anton Bushuiev
- Czech Institute
of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, Jugoslavskych partyzanu 1580/3, 160 00 Prague 6, Czech Republic
| | - Raman Samusevich
- Czech Institute
of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, Jugoslavskych partyzanu 1580/3, 160 00 Prague 6, Czech Republic
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic
| | - Jiri Sedlar
- Czech Institute
of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, Jugoslavskych partyzanu 1580/3, 160 00 Prague 6, Czech Republic
| | - Jiri Damborsky
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech
Republic
- International
Clinical Research Center, St. Anne’s
University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Tomas Pluskal
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic
| | - Josef Sivic
- Czech Institute
of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, Jugoslavskych partyzanu 1580/3, 160 00 Prague 6, Czech Republic
| | - Stanislav Mazurenko
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech
Republic
- International
Clinical Research Center, St. Anne’s
University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| |
Collapse
|
7
|
Gong H, Zhang Y, Dong C, Wang Y, Chen G, Liang B, Li H, Liu L, Xu J, Li G. Unbiased curriculum learning enhanced global-local graph neural network for protein thermodynamic stability prediction. Bioinformatics 2023; 39:btad589. [PMID: 37740312 PMCID: PMC10918760 DOI: 10.1093/bioinformatics/btad589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/04/2023] [Accepted: 09/21/2023] [Indexed: 09/24/2023] Open
Abstract
MOTIVATION Proteins play crucial roles in biological processes, with their functions being closely tied to thermodynamic stability. However, measuring stability changes upon point mutations of amino acid residues using physical methods can be time-consuming. In recent years, several computational methods for protein thermodynamic stability prediction (PTSP) based on deep learning have emerged. Nevertheless, these approaches either overlook the natural topology of protein structures or neglect the inherent noisy samples resulting from theoretical calculation or experimental errors. RESULTS We propose a novel Global-Local Graph Neural Network powered by Unbiased Curriculum Learning for the PTSP task. Our method first builds a Siamese graph neural network to extract protein features before and after mutation. Since the graph's topological changes stem from local node mutations, we design a local feature transformation module to make the model focus on the mutated site. To address model bias caused by noisy samples, which represent unavoidable errors from physical experiments, we introduce an unbiased curriculum learning method. This approach effectively identifies and re-weights noisy samples during the training process. Extensive experiments demonstrate that our proposed method outperforms advanced protein stability prediction methods, and surpasses state-of-the-art learning methods for regression prediction tasks. AVAILABILITY AND IMPLEMENTATION All code and data is available at https://github.com/haifangong/UCL-GLGNN.
Collapse
Affiliation(s)
- Haifan Gong
- Shanghai Artificial Intelligence Laboratory, Shanghai 200000, China
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou 510000, China
- SRIBD, Chinese University of Hong Kong (Shenzhen), Shenzhen 518000, China
| | - Yumeng Zhang
- Shanghai Jiao Tong University, Shanghai 200000, China
| | - Chenhe Dong
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou 510000, China
| | - Yue Wang
- Qilu Hospital, Shandong University, Shandong 250000, China
| | - Guanqi Chen
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou 510000, China
| | - Bilin Liang
- Shanghai Artificial Intelligence Laboratory, Shanghai 200000, China
| | - Haofeng Li
- SRIBD, Chinese University of Hong Kong (Shenzhen), Shenzhen 518000, China
| | - Lanxuan Liu
- Shanghai Artificial Intelligence Laboratory, Shanghai 200000, China
| | - Jie Xu
- Shanghai Artificial Intelligence Laboratory, Shanghai 200000, China
| | - Guanbin Li
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou 510000, China
| |
Collapse
|
8
|
Quan N, Eguchi Y, Geiler-Samerotte K. Intra- FCY1: a novel system to identify mutations that cause protein misfolding. Front Genet 2023; 14:1198203. [PMID: 37745845 PMCID: PMC10512024 DOI: 10.3389/fgene.2023.1198203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Protein misfolding is a common intracellular occurrence. Most mutations to coding sequences increase the propensity of the encoded protein to misfold. These misfolded molecules can have devastating effects on cells. Despite the importance of protein misfolding in human disease and protein evolution, there are fundamental questions that remain unanswered, such as, which mutations cause the most misfolding? These questions are difficult to answer partially because we lack high-throughput methods to compare the destabilizing effects of different mutations. Commonly used systems to assess the stability of mutant proteins in vivo often rely upon essential proteins as sensors, but misfolded proteins can disrupt the function of the essential protein enough to kill the cell. This makes it difficult to identify and compare mutations that cause protein misfolding using these systems. Here, we present a novel in vivo system named Intra-FCY1 that we use to identify mutations that cause misfolding of a model protein [yellow fluorescent protein (YFP)] in Saccharomyces cerevisiae. The Intra-FCY1 system utilizes two complementary fragments of the yeast cytosine deaminase Fcy1, a toxic protein, into which YFP is inserted. When YFP folds, the Fcy1 fragments associate together to reconstitute their function, conferring toxicity in media containing 5-fluorocytosine and hindering growth. But mutations that make YFP misfold abrogate Fcy1 toxicity, thus strains possessing misfolded YFP variants rise to high frequency in growth competition experiments. This makes such strains easier to study. The Intra-FCY1 system cancels localization of the protein of interest, thus can be applied to study the relative stability of mutant versions of diverse cellular proteins. Here, we confirm this method can identify novel mutations that cause misfolding, highlighting the potential for Intra-FCY1 to illuminate the relationship between protein sequence and stability.
Collapse
Affiliation(s)
- N. Quan
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ, United States
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Y. Eguchi
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ, United States
| | - K. Geiler-Samerotte
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ, United States
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| |
Collapse
|