1
|
Xiropotamos P, Papageorgiou F, Manousaki H, Sinnis C, Antonatos C, Vasilopoulos Y, Georgakilas GK. aPEAch: Automated Pipeline for End-to-End Analysis of Epigenomic and Transcriptomic Data. BIOLOGY 2024; 13:492. [PMID: 39056686 PMCID: PMC11273691 DOI: 10.3390/biology13070492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024]
Abstract
With the advent of next-generation sequencing (NGS), experimental techniques that capture the biological significance of DNA loci or RNA molecules have emerged as fundamental tools for studying the epigenome and transcriptional regulation on a genome-wide scale. The volume of the generated data and the underlying complexity regarding their analysis highlight the need for robust and easy-to-use computational analytic methods that can streamline the process and provide valuable biological insights. Our solution, aPEAch, is an automated pipeline that facilitates the end-to-end analysis of both DNA- and RNA-sequencing assays, including small RNA sequencing, from assessing the quality of the input sample files to answering meaningful biological questions by exploiting the rich information embedded in biological data. Our method is implemented in Python, based on a modular approach that enables users to choose the path and extent of the analysis and the representations of the results. The pipeline can process samples with single or multiple replicates in batches, allowing the ease of use and reproducibility of the analysis across all samples. aPEAch provides a variety of sample metrics such as quality control reports, fragment size distribution plots, and all intermediate output files, enabling the pipeline to be re-executed with different parameters or algorithms, along with the publication-ready visualization of the results. Furthermore, aPEAch seamlessly incorporates advanced unsupervised learning analyses by automating clustering optimization and visualization, thus providing invaluable insight into the underlying biological mechanisms.
Collapse
Affiliation(s)
- Panagiotis Xiropotamos
- Laboratory of Genetics, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, 26504 Patras, Greece
| | - Foteini Papageorgiou
- Laboratory of Genetics, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, 26504 Patras, Greece
| | - Haris Manousaki
- Information Management Systems Institute, ATHENA Research Center, 15125 Marousi, Greece
| | - Charalampos Sinnis
- Information Management Systems Institute, ATHENA Research Center, 15125 Marousi, Greece
| | - Charalabos Antonatos
- Laboratory of Genetics, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, 26504 Patras, Greece
| | - Yiannis Vasilopoulos
- Laboratory of Genetics, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, 26504 Patras, Greece
| | - Georgios K. Georgakilas
- Laboratory of Genetics, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, 26504 Patras, Greece
- Information Management Systems Institute, ATHENA Research Center, 15125 Marousi, Greece
| |
Collapse
|
2
|
Metzger P, Hess ME, Blaumeiser A, Pauli T, Schipperges V, Mertes R, Christoph J, Unberath P, Reimer N, Scheible R, Illert AL, Busch H, Andrieux G, Boerries M. MIRACUM-Pipe: An Adaptable Pipeline for Next-Generation Sequencing Analysis, Reporting, and Visualization for Clinical Decision Making. Cancers (Basel) 2023; 15:3456. [PMID: 37444566 DOI: 10.3390/cancers15133456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/09/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
(1) Background: Next-generation sequencing (NGS) of patients with advanced tumors is becoming an established method in Molecular Tumor Boards. However, somatic variant detection, interpretation, and report generation, require in-depth knowledge of both bioinformatics and oncology. (2) Methods: MIRACUM-Pipe combines many individual tools into a seamless workflow for comprehensive analyses and annotation of NGS data including quality control, alignment, variant calling, copy number variation estimation, evaluation of complex biomarkers, and RNA fusion detection. (3) Results: MIRACUM-Pipe offers an easy-to-use, one-prompt standardized solution to analyze NGS data, including quality control, variant calling, copy number estimation, annotation, visualization, and report generation. (4) Conclusions: MIRACUM-Pipe, a versatile pipeline for NGS, can be customized according to bioinformatics and clinical needs and to support clinical decision-making with visual processing and interactive reporting.
Collapse
Affiliation(s)
- Patrick Metzger
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Maria Elena Hess
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Andreas Blaumeiser
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Freiburg, 79110 Freiburg, Germany
| | - Thomas Pauli
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Vincent Schipperges
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Ralf Mertes
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Jan Christoph
- Junior Research Group (Bio-)Medical Data Science, Faculty of Medicine, Martin-Luther-University Halle-Wittenberg, 06122 Halle, Germany
- Medical Informatics, Friedrich-Alexander University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Philipp Unberath
- Medical Informatics, Friedrich-Alexander University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Niklas Reimer
- Medical Systems Biology Group, Lübeck Institute Für Experimental Dermatology, University of Lübeck, Ratzeburger Alle 160, 23538 Lübeck, Germany
| | - Raphael Scheible
- Institute for AI and Informatics in Medicine, University Hospital Rechts der Isar, Technical University Munich, 81675 Munich, Germany
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Anna L Illert
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Freiburg, 79110 Freiburg, Germany
- Department of Medicine III, Klinikum Rechts der Isar, Faculty of Medicine, Technical University of Munich, 81675 Munich, Germany
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, 81675 Munich, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Munich, 81675 Munich, Germany
- Center for Personalized Medicine, Klinikum Rechts der Isar, Faculty of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Hauke Busch
- Medical Systems Biology Group, Lübeck Institute Für Experimental Dermatology, University of Lübeck, Ratzeburger Alle 160, 23538 Lübeck, Germany
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Freiburg, 79110 Freiburg, Germany
| |
Collapse
|