1
|
Cogno N, Axenie C, Bauer R, Vavourakis V. Agent-based modeling in cancer biomedicine: applications and tools for calibration and validation. Cancer Biol Ther 2024; 25:2344600. [PMID: 38678381 PMCID: PMC11057625 DOI: 10.1080/15384047.2024.2344600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 04/15/2024] [Indexed: 04/29/2024] Open
Abstract
Computational models are not just appealing because they can simulate and predict the development of biological phenomena across multiple spatial and temporal scales, but also because they can integrate information from well-established in vitro and in vivo models and test new hypotheses in cancer biomedicine. Agent-based models and simulations are especially interesting candidates among computational modeling procedures in cancer research due to the capability to, for instance, recapitulate the dynamics of neoplasia and tumor - host interactions. Yet, the absence of methods to validate the consistency of the results across scales can hinder adoption by turning fine-tuned models into black boxes. This review compiles relevant literature that explores strategies to leverage high-fidelity simulations of multi-scale, or multi-level, cancer models with a focus on verification approached as simulation calibration. We consolidate our review with an outline of modern approaches for agent-based models' validation and provide an ambitious outlook toward rigorous and reliable calibration.
Collapse
Affiliation(s)
- Nicolò Cogno
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Institute for Condensed Matter Physics, Technische Universit¨at Darmstadt, Darmstadt, Germany
| | - Cristian Axenie
- Computer Science Department and Center for Artificial Intelligence, Technische Hochschule Nürnberg Georg Simon Ohm, Nuremberg, Germany
| | - Roman Bauer
- Nature Inspired Computing and Engineering Research Group, Computer Science Research Centre, University of Surrey, Guildford, UK
| | - Vasileios Vavourakis
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
2
|
Niarakis A, Laubenbacher R, An G, Ilan Y, Fisher J, Flobak Å, Reiche K, Rodríguez Martínez M, Geris L, Ladeira L, Veschini L, Blinov ML, Messina F, Fonseca LL, Ferreira S, Montagud A, Noël V, Marku M, Tsirvouli E, Torres MM, Harris LA, Sego TJ, Cockrell C, Shick AE, Balci H, Salazar A, Rian K, Hemedan AA, Esteban-Medina M, Staumont B, Hernandez-Vargas E, Martis B S, Madrid-Valiente A, Karampelesis P, Sordo Vieira L, Harlapur P, Kulesza A, Nikaein N, Garira W, Malik Sheriff RS, Thakar J, Tran VDT, Carbonell-Caballero J, Safaei S, Valencia A, Zinovyev A, Glazier JA. Immune digital twins for complex human pathologies: applications, limitations, and challenges. NPJ Syst Biol Appl 2024; 10:141. [PMID: 39616158 PMCID: PMC11608242 DOI: 10.1038/s41540-024-00450-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/27/2024] [Indexed: 12/06/2024] Open
Abstract
Digital twins represent a key technology for precision health. Medical digital twins consist of computational models that represent the health state of individual patients over time, enabling optimal therapeutics and forecasting patient prognosis. Many health conditions involve the immune system, so it is crucial to include its key features when designing medical digital twins. The immune response is complex and varies across diseases and patients, and its modelling requires the collective expertise of the clinical, immunology, and computational modelling communities. This review outlines the initial progress on immune digital twins and the various initiatives to facilitate communication between interdisciplinary communities. We also outline the crucial aspects of an immune digital twin design and the prerequisites for its implementation in the clinic. We propose some initial use cases that could serve as "proof of concept" regarding the utility of immune digital technology, focusing on diseases with a very different immune response across spatial and temporal scales (minutes, days, months, years). Lastly, we discuss the use of digital twins in drug discovery and point out emerging challenges that the scientific community needs to collectively overcome to make immune digital twins a reality.
Collapse
Affiliation(s)
- Anna Niarakis
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, UPS, CNRS, Toulouse, France.
- Lifeware Group, Inria, Saclay-île de France, Palaiseau, France.
| | | | - Gary An
- Department of Surgery, University of Vermont Larner College of Medicine, Vermont, USA
| | - Yaron Ilan
- Faculty of Medicine Hebrew University, Hadassah Medical Center, Jerusalem, Israel
| | - Jasmin Fisher
- UCL Cancer Institute, University College London, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK
| | - Åsmund Flobak
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- The Cancer Clinic, St Olav's University Hospital, Trondheim, Norway
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Kristin Reiche
- Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
- Institute of Clinical Immunology, Medical Faculty, University Hospital, University of Leipzig, Leipzig, Germany
- Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI), Dresden/Leipzig, Germany
| | - María Rodríguez Martínez
- Department of Biomedical Informatics & Data Science, Yale School of Medicine, New Haven, CT, USA
| | - Liesbet Geris
- Prometheus Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Biomechanics Research Unit, GIGA Molecular and Computational Biology, University of Liège, Liège, Belgium
| | - Luiz Ladeira
- Biomechanics Research Unit, GIGA Molecular and Computational Biology, University of Liège, Liège, Belgium
| | - Lorenzo Veschini
- Faculty of Dentistry Oral & Craniofacial Sciences, King's College London, London, UK
- Biocomplexity Institute and Department of Intelligent Systems Engineering, Indiana University, Bloomington, Indiana, 47408, USA
| | - Michael L Blinov
- Center for Cell Analysis and Modeling, UConn Health, Farmington, CT, 06030, USA
| | - Francesco Messina
- Department of Epidemiology, Preclinical Research and Advanced Diagnostic, National Institute for Infectious Diseases 'Lazzaro Spallanzani' - I.R.C.C.S., Rome, Italy
| | - Luis L Fonseca
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Sandra Ferreira
- Mathematics Department and Center of Mathematics, University of Beira Interior, Covilhã, Portugal
| | - Arnau Montagud
- Barcelona Supercomputing Center (BSC), Barcelone, Spain
- Institute for Integrative Systems Biology (I2SysBio), CSIC-UV, Valencia, Spain
| | - Vincent Noël
- Institut Curie, Université PSL, F-75005, Paris, France
- INSERM, U900, F-75005, Paris, France
- Mines ParisTech, Université PSL, F-75005, Paris, France
| | - Malvina Marku
- Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Eirini Tsirvouli
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Marcella M Torres
- Department of Mathematics and Statistics, University of Richmond, Richmond, VA, USA
| | - Leonard A Harris
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
- Interdisciplinary Graduate Program in Cell and Molecular Biology, University of Arkansas, Fayetteville, AR, USA
- Cancer Biology Program, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - T J Sego
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Chase Cockrell
- Department of Surgery, University of Vermont Larner College of Medicine, Vermont, USA
| | - Amanda E Shick
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, USA
| | - Hasan Balci
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, The Netherlands
| | - Albin Salazar
- INRIA Paris/CNRS/École Normale Supérieure/PSL Research University, Paris, France
| | - Kinza Rian
- Andalusian Platform for Computational Medicine, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain
| | - Ahmed Abdelmonem Hemedan
- Bioinformatics Core Unit, Luxembourg Centre of Systems Biomedicine LCSB, Luxembourg University, Esch-sur-Alzette, Luxembourg
| | - Marina Esteban-Medina
- Andalusian Platform for Computational Medicine, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain
| | - Bernard Staumont
- Biomechanics Research Unit, GIGA Molecular and Computational Biology, University of Liège, Liège, Belgium
| | - Esteban Hernandez-Vargas
- Department of Mathematics and Statistical Science, University of Idaho, Moscow, ID, 83844-1103, USA
| | | | | | | | | | - Pradyumna Harlapur
- Department of Bioengineering, Indian Institute of Science, Bengaluru, India
| | | | - Niloofar Nikaein
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, SE-70182, Örebro, Sweden
- X-HiDE - Exploring Inflammation in Health and Disease Consortium, Örebro University, Örebro, Sweden
| | - Winston Garira
- Multiscale Mathematical Modelling of Living Systems program (M3-LSP), Kimberley, South Africa
- Department of Mathematical Sciences, Sol Plaatje University, Kimberley, South Africa
- Private Bag X5008, Kimberley, 8300, South Africa
| | - Rahuman S Malik Sheriff
- European Bioinformatics Institute, European Molecular Biology Laboratory (EMBL-EBI), Hinxton, Cambridge, UK
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Juilee Thakar
- Department of Microbiology & Immunology and Department of Biostatistics & Computational Biology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Van Du T Tran
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | - Soroush Safaei
- Institute of Biomedical Engineering and Technology, Ghent University, Gent, Belgium
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Alfonso Valencia
- Barcelona Supercomputing Center (BSC), Barcelone, Spain
- ICREA, 23 Passeig Lluís Companys, 08010, Barcelona, Spain
| | | | - James A Glazier
- Biocomplexity Institute and Department of Intelligent Systems Engineering, Indiana University, Bloomington, Indiana, 47408, USA
| |
Collapse
|
3
|
Noël V, Ruscone M, Shuttleworth R, Macnamara CK. PhysiMeSS - a new physiCell addon for extracellular matrix modelling. GIGABYTE 2024; 2024:gigabyte136. [PMID: 39449986 PMCID: PMC11500100 DOI: 10.46471/gigabyte.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
The extracellular matrix, composed of macromolecules like collagen fibres, provides structural support to cells and acts as a barrier that metastatic cells degrade to spread beyond the primary tumour. While agent-based frameworks, such as PhysiCell, can simulate the spatial dynamics of tumour evolution, they only implement cells as circles (2D) or spheres (3D). To model the extracellular matrix as a network of fibres, we require a new type of agent represented by line segments (2D) or cylinders (3D). Here, we present PhysiMeSS, an addon of PhysiCell, introducing a new agent type to describe fibres and their physical interactions with cells and other fibres. PhysiMeSS implementation is available at https://github.com/PhysiMeSS/PhysiMeSS and in the official PhysiCell repository. We provide examples describing the possibilities of this framework. This tool may help tackle important biological questions, such as diseases linked to dysregulation of the extracellular matrix or the processes leading to cancer metastasis.
Collapse
Affiliation(s)
- Vincent Noël
- Institut Curie, Université PSL, F-75005, Paris, France
- INSERM, U900, F-75005, Paris, France
- Mines ParisTech, Université PSL, F-75005, Paris, France
| | - Marco Ruscone
- Institut Curie, Université PSL, F-75005, Paris, France
- INSERM, U900, F-75005, Paris, France
- Mines ParisTech, Université PSL, F-75005, Paris, France
- Sorbonne Université, Collège Doctoral, F-75005, Paris, France
| | | | - Cicely K. Macnamara
- School of Mathematics and Statistics, University of Glasgow, University Place, Glasgow, G12 8QQ, UK
| |
Collapse
|
4
|
Ruscone M, Checcoli A, Heiland R, Barillot E, Macklin P, Calzone L, Noël V. Building multiscale models with PhysiBoSS, an agent-based modeling tool. Brief Bioinform 2024; 25:bbae509. [PMID: 39425527 PMCID: PMC11489466 DOI: 10.1093/bib/bbae509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/03/2024] [Accepted: 10/01/2024] [Indexed: 10/21/2024] Open
Abstract
Multiscale models provide a unique tool for analyzing complex processes that study events occurring at different scales across space and time. In the context of biological systems, such models can simulate mechanisms happening at the intracellular level such as signaling, and at the extracellular level where cells communicate and coordinate with other cells. These models aim to understand the impact of genetic or environmental deregulation observed in complex diseases, describe the interplay between a pathological tissue and the immune system, and suggest strategies to revert the diseased phenotypes. The construction of these multiscale models remains a very complex task, including the choice of the components to consider, the level of details of the processes to simulate, or the fitting of the parameters to the data. One additional difficulty is the expert knowledge needed to program these models in languages such as C++ or Python, which may discourage the participation of non-experts. Simplifying this process through structured description formalisms-coupled with a graphical interface-is crucial in making modeling more accessible to the broader scientific community, as well as streamlining the process for advanced users. This article introduces three examples of multiscale models which rely on the framework PhysiBoSS, an add-on of PhysiCell that includes intracellular descriptions as continuous time Boolean models to the agent-based approach. The article demonstrates how to construct these models more easily, relying on PhysiCell Studio, the PhysiCell Graphical User Interface. A step-by-step tutorial is provided as Supplementary Material and all models are provided at https://physiboss.github.io/tutorial/.
Collapse
Affiliation(s)
- Marco Ruscone
- Institut Curie, Université PSL, 26 rue d’Ulm, 75005, Paris, France
- INSERM, U900, 26 rue d’Ulm, 75005, Paris, France
- Mines ParisTech, Université PSL, 60, boulevard Saint-Michel 75006 Paris, France
| | - Andrea Checcoli
- Centre de Recherche des Cordeliers, Sorbonne Université 15 rue de l'École de Médecine, 75006 Paris, France
- INSERM, U1138, 15 rue de l'École de Médecine, 75006 Paris, France
| | - Randy Heiland
- Department of Intelligent Systems Engineering, Indiana University, 700 N Woodlawn Ave, Bloomington, IN 47408, USA
| | - Emmanuel Barillot
- Institut Curie, Université PSL, 26 rue d’Ulm, 75005, Paris, France
- INSERM, U900, 26 rue d’Ulm, 75005, Paris, France
- Mines ParisTech, Université PSL, 60, boulevard Saint-Michel 75006 Paris, France
| | - Paul Macklin
- Department of Intelligent Systems Engineering, Indiana University, 700 N Woodlawn Ave, Bloomington, IN 47408, USA
| | - Laurence Calzone
- Institut Curie, Université PSL, 26 rue d’Ulm, 75005, Paris, France
- INSERM, U900, 26 rue d’Ulm, 75005, Paris, France
- Mines ParisTech, Université PSL, 60, boulevard Saint-Michel 75006 Paris, France
| | - Vincent Noël
- Institut Curie, Université PSL, 26 rue d’Ulm, 75005, Paris, France
- INSERM, U900, 26 rue d’Ulm, 75005, Paris, France
- Mines ParisTech, Université PSL, 60, boulevard Saint-Michel 75006 Paris, France
| |
Collapse
|
5
|
Mutsuddy A, Huggins JR, Amrit A, Erdem C, Calhoun JC, Birtwistle MR. Mechanistic modeling of cell viability assays with in silico lineage tracing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.609433. [PMID: 39253474 PMCID: PMC11383287 DOI: 10.1101/2024.08.23.609433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Data from cell viability assays, which measure cumulative division and death events in a population and reflect substantial cellular heterogeneity, are widely available. However, interpreting such data with mechanistic computational models is hindered because direct model/data comparison is often muddled. We developed an algorithm that tracks simulated division and death events in mechanistically detailed single-cell lineages to enable such a model/data comparison and suggest causes of cell-cell drug response variability. Using our previously developed model of mammalian single-cell proliferation and death signaling, we simulated drug dose response experiments for four targeted anti-cancer drugs (alpelisib, neratinib, trametinib and palbociclib) and compared them to experimental data. Simulations are consistent with data for strong growth inhibition by trametinib (MEK inhibitor) and overall lack of efficacy for alpelisib (PI-3K inhibitor), but are inconsistent with data for palbociclib (CDK4/6 inhibitor) and neratinib (EGFR inhibitor). Model/data inconsistencies suggest (i) the importance of CDK4/6 for driving the cell cycle may be overestimated, and (ii) that the cellular balance between basal (tonic) and ligand-induced signaling is a critical determinant of receptor inhibitor response. Simulations show subpopulations of rapidly and slowly dividing cells in both control and drug-treated conditions. Variations in mother cells prior to drug treatment all impinging on ERK pathway activity are associated with the rapidly dividing phenotype and trametinib resistance. This work lays a foundation for the application of mechanistic modeling to large-scale cell viability assay datasets and better understanding determinants of cellular heterogeneity in drug response.
Collapse
Affiliation(s)
- Arnab Mutsuddy
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA
| | - Jonah R. Huggins
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA
| | - Aurore Amrit
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA
- Faculté de Pharmacie, Université Paris Cité, Paris, France
| | - Cemal Erdem
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | - Jon C. Calhoun
- Holcombe Department of Electrical and Computer Engineering, Clemson University, Clemson, SC, USA
| | - Marc R. Birtwistle
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| |
Collapse
|
6
|
Ma C, Gurkan-Cavusoglu E. A comprehensive review of computational cell cycle models in guiding cancer treatment strategies. NPJ Syst Biol Appl 2024; 10:71. [PMID: 38969664 PMCID: PMC11226463 DOI: 10.1038/s41540-024-00397-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/24/2024] [Indexed: 07/07/2024] Open
Abstract
This article reviews the current knowledge and recent advancements in computational modeling of the cell cycle. It offers a comparative analysis of various modeling paradigms, highlighting their unique strengths, limitations, and applications. Specifically, the article compares deterministic and stochastic models, single-cell versus population models, and mechanistic versus abstract models. This detailed analysis helps determine the most suitable modeling framework for various research needs. Additionally, the discussion extends to the utilization of these computational models to illuminate cell cycle dynamics, with a particular focus on cell cycle viability, crosstalk with signaling pathways, tumor microenvironment, DNA replication, and repair mechanisms, underscoring their critical roles in tumor progression and the optimization of cancer therapies. By applying these models to crucial aspects of cancer therapy planning for better outcomes, including drug efficacy quantification, drug discovery, drug resistance analysis, and dose optimization, the review highlights the significant potential of computational insights in enhancing the precision and effectiveness of cancer treatments. This emphasis on the intricate relationship between computational modeling and therapeutic strategy development underscores the pivotal role of advanced modeling techniques in navigating the complexities of cell cycle dynamics and their implications for cancer therapy.
Collapse
Affiliation(s)
- Chenhui Ma
- Department of Electrical, Computer and Systems Engineering, Case Western Reserve University, Cleveland, OH, USA.
| | - Evren Gurkan-Cavusoglu
- Department of Electrical, Computer and Systems Engineering, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
7
|
Ruscone M, Checcoli A, Heiland R, Barillot E, Macklin P, Calzone L, Noël V. Building multiscale models with PhysiBoSS, an agent-based modeling tool. ARXIV 2024:arXiv:2406.18371v1. [PMID: 38979487 PMCID: PMC11230347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Multiscale models provide a unique tool for studying complex processes that study events occurring at different scales across space and time. In the context of biological systems, such models can simulate mechanisms happening at the intracellular level such as signaling, and at the extracellular level where cells communicate and coordinate with other cells. They aim to understand the impact of genetic or environmental deregulation observed in complex diseases, describe the interplay between a pathological tissue and the immune system, and suggest strategies to revert the diseased phenotypes. The construction of these multiscale models remains a very complex task, including the choice of the components to consider, the level of details of the processes to simulate, or the fitting of the parameters to the data. One additional difficulty is the expert knowledge needed to program these models in languages such as C++ or Python, which may discourage the participation of non-experts. Simplifying this process through structured description formalisms - coupled with a graphical interface - is crucial in making modeling more accessible to the broader scientific community, as well as streamlining the process for advanced users. This article introduces three examples of multiscale models which rely on the framework PhysiBoSS, an add-on of PhysiCell that includes intracellular descriptions as continuous time Boolean models to the agent-based approach. The article demonstrates how to easily construct such models, relying on PhysiCell Studio, the PhysiCell Graphical User Interface. A step-by-step tutorial is provided as a Supplementary Material and all models are provided at: https://physiboss.github.io/tutorial/.
Collapse
Affiliation(s)
- Marco Ruscone
- Institut Curie, Université PSL, F-75005, Paris, France
- INSERM, U900, F-75005, Paris, France
- Mines ParisTech, Université PSL, F-75005, Paris, France
| | - Andrea Checcoli
- Centre de Recherche des Cordeliers, Sorbonne Université F-75005, Paris, France
- INSERM, U1138, F-75005, Paris, France
| | - Randy Heiland
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
| | - Emmanuel Barillot
- Institut Curie, Université PSL, F-75005, Paris, France
- INSERM, U900, F-75005, Paris, France
- Mines ParisTech, Université PSL, F-75005, Paris, France
| | - Paul Macklin
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
| | - Laurence Calzone
- Institut Curie, Université PSL, F-75005, Paris, France
- INSERM, U900, F-75005, Paris, France
- Mines ParisTech, Université PSL, F-75005, Paris, France
| | - Vincent Noël
- Institut Curie, Université PSL, F-75005, Paris, France
- INSERM, U900, F-75005, Paris, France
- Mines ParisTech, Université PSL, F-75005, Paris, France
| |
Collapse
|
8
|
Crossley RM, Johnson S, Tsingos E, Bell Z, Berardi M, Botticelli M, Braat QJS, Metzcar J, Ruscone M, Yin Y, Shuttleworth R. Modeling the extracellular matrix in cell migration and morphogenesis: a guide for the curious biologist. Front Cell Dev Biol 2024; 12:1354132. [PMID: 38495620 PMCID: PMC10940354 DOI: 10.3389/fcell.2024.1354132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/12/2024] [Indexed: 03/19/2024] Open
Abstract
The extracellular matrix (ECM) is a highly complex structure through which biochemical and mechanical signals are transmitted. In processes of cell migration, the ECM also acts as a scaffold, providing structural support to cells as well as points of potential attachment. Although the ECM is a well-studied structure, its role in many biological processes remains difficult to investigate comprehensively due to its complexity and structural variation within an organism. In tandem with experiments, mathematical models are helpful in refining and testing hypotheses, generating predictions, and exploring conditions outside the scope of experiments. Such models can be combined and calibrated with in vivo and in vitro data to identify critical cell-ECM interactions that drive developmental and homeostatic processes, or the progression of diseases. In this review, we focus on mathematical and computational models of the ECM in processes such as cell migration including cancer metastasis, and in tissue structure and morphogenesis. By highlighting the predictive power of these models, we aim to help bridge the gap between experimental and computational approaches to studying the ECM and to provide guidance on selecting an appropriate model framework to complement corresponding experimental studies.
Collapse
Affiliation(s)
- Rebecca M. Crossley
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - Samuel Johnson
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - Erika Tsingos
- Computational Developmental Biology Group, Institute of Biodynamics and Biocomplexity, Utrecht University, Utrecht, Netherlands
| | - Zoe Bell
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Massimiliano Berardi
- LaserLab, Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Optics11 life, Amsterdam, Netherlands
| | | | - Quirine J. S. Braat
- Department of Applied Physics and Science Education, Eindhoven University of Technology, Eindhoven, Netherlands
| | - John Metzcar
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, United States
- Department of Informatics, Indiana University, Bloomington, IN, United States
| | | | - Yuan Yin
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
9
|
Ponce-de-Leon M, Montagud A, Noël V, Meert A, Pradas G, Barillot E, Calzone L, Valencia A. PhysiBoSS 2.0: a sustainable integration of stochastic Boolean and agent-based modelling frameworks. NPJ Syst Biol Appl 2023; 9:54. [PMID: 37903760 PMCID: PMC10616087 DOI: 10.1038/s41540-023-00314-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/11/2023] [Indexed: 11/01/2023] Open
Abstract
In systems biology, mathematical models and simulations play a crucial role in understanding complex biological systems. Different modelling frameworks are employed depending on the nature and scales of the system under study. For instance, signalling and regulatory networks can be simulated using Boolean modelling, whereas multicellular systems can be studied using agent-based modelling. Herein, we present PhysiBoSS 2.0, a hybrid agent-based modelling framework that allows simulating signalling and regulatory networks within individual cell agents. PhysiBoSS 2.0 is a redesign and reimplementation of PhysiBoSS 1.0 and was conceived as an add-on that expands the PhysiCell functionalities by enabling the simulation of intracellular cell signalling using MaBoSS while keeping a decoupled, maintainable and model-agnostic design. PhysiBoSS 2.0 also expands the set of functionalities offered to the users, including custom models and cell specifications, mechanistic submodels of substrate internalisation and detailed control over simulation parameters. Together with PhysiBoSS 2.0, we introduce PCTK, a Python package developed for handling and processing simulation outputs, and generating summary plots and 3D renders. PhysiBoSS 2.0 allows studying the interplay between the microenvironment, the signalling pathways that control cellular processes and population dynamics, suitable for modelling cancer. We show different approaches for integrating Boolean networks into multi-scale simulations using strategies to study the drug effects and synergies in models of cancer cell lines and validate them using experimental data. PhysiBoSS 2.0 is open-source and publicly available on GitHub with several repositories of accompanying interoperable tools.
Collapse
Affiliation(s)
- Miguel Ponce-de-Leon
- Life Science, Barcelona Supercomputing Center (BSC), 1-3 Plaça Eusebi Güell, 08034, Barcelona, Spain
| | - Arnau Montagud
- Life Science, Barcelona Supercomputing Center (BSC), 1-3 Plaça Eusebi Güell, 08034, Barcelona, Spain
| | - Vincent Noël
- Institut Curie, Université PSL, 26 rue d'Ulm, 75248, Paris, France
- INSERM U900, Paris, France
- Mines ParisTech, Université PSL, Paris, France
| | - Annika Meert
- Life Science, Barcelona Supercomputing Center (BSC), 1-3 Plaça Eusebi Güell, 08034, Barcelona, Spain
| | - Gerard Pradas
- Life Science, Barcelona Supercomputing Center (BSC), 1-3 Plaça Eusebi Güell, 08034, Barcelona, Spain
| | - Emmanuel Barillot
- Institut Curie, Université PSL, 26 rue d'Ulm, 75248, Paris, France
- INSERM U900, Paris, France
- Mines ParisTech, Université PSL, Paris, France
| | - Laurence Calzone
- Institut Curie, Université PSL, 26 rue d'Ulm, 75248, Paris, France
- INSERM U900, Paris, France
- Mines ParisTech, Université PSL, Paris, France
| | - Alfonso Valencia
- Life Science, Barcelona Supercomputing Center (BSC), 1-3 Plaça Eusebi Güell, 08034, Barcelona, Spain.
- ICREA, 23 Passeig Lluís Companys, 08010, Barcelona, Spain.
| |
Collapse
|