1
|
Duenas S, McGee Z, Mhatre I, Mayilvahanan K, Patel KK, Abdelhalim H, Jayprakash A, Wasif U, Nwankwo O, Degroat W, Yanamala N, Sengupta PP, Fine D, Ahmed Z. Computational approaches to investigate the relationship between periodontitis and cardiovascular diseases for precision medicine. Hum Genomics 2024; 18:116. [PMID: 39427205 PMCID: PMC11491019 DOI: 10.1186/s40246-024-00685-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024] Open
Abstract
Periodontitis is a highly prevalent inflammatory illness that leads to the destruction of tooth supporting tissue structures and has been associated with an increased risk of cardiovascular disease (CVD). Precision medicine, an emerging branch of medical treatment, aims can further improve current traditional treatment by personalizing care based on one's environment, genetic makeup, and lifestyle. Genomic databases have paved the way for precision medicine by elucidating the pathophysiology of complex, heritable diseases. Therefore, the investigation of novel periodontitis-linked genes associated with CVD will enhance our understanding of their linkage and related biochemical pathways for targeted therapies. In this article, we highlight possible mechanisms of actions connecting PD and CVD. Furthermore, we delve deeper into certain heritable inflammatory-associated pathways linking the two. The goal is to gather, compare, and assess high-quality scientific literature alongside genomic datasets that seek to establish a link between periodontitis and CVD. The scope is focused on the most up to date and authentic literature published within the last 10 years, indexed and available from PubMed Central, that analyzes periodontitis-associated genes linked to CVD. Based on the comparative analysis criteria, fifty-one genes associated with both periodontitis and CVD were identified and reported. The prevalence of genes associated with both CVD and periodontitis warrants investigation to assess the validity of a potential linkage between the pathophysiology of both diseases.
Collapse
Affiliation(s)
- Sophia Duenas
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson Street, New Brunswick, NJ, 08901, USA
| | - Zachary McGee
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson Street, New Brunswick, NJ, 08901, USA
| | - Ishani Mhatre
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson Street, New Brunswick, NJ, 08901, USA
| | - Karthikeyan Mayilvahanan
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson Street, New Brunswick, NJ, 08901, USA
| | - Kush Ketan Patel
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson Street, New Brunswick, NJ, 08901, USA
| | - Habiba Abdelhalim
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson Street, New Brunswick, NJ, 08901, USA
| | - Atharv Jayprakash
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson Street, New Brunswick, NJ, 08901, USA
| | - Uzayr Wasif
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson Street, New Brunswick, NJ, 08901, USA
| | - Oluchi Nwankwo
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson Street, New Brunswick, NJ, 08901, USA
| | - William Degroat
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson Street, New Brunswick, NJ, 08901, USA
| | - Naveena Yanamala
- Division of Cardiovascular Diseases and Hypertension, Rutgers Biomedical and Health Sciences, Robert Wood Johnson Medical School, 125 Paterson St, New Brunswick, NJ, USA
- Department of Medicine, Rutgers Biomedical and Health Sciences, Robert Wood Johnson Medical School, 125 Paterson St, New Brunswick, NJ, USA
| | - Partho P Sengupta
- Division of Cardiovascular Diseases and Hypertension, Rutgers Biomedical and Health Sciences, Robert Wood Johnson Medical School, 125 Paterson St, New Brunswick, NJ, USA
- Department of Medicine, Rutgers Biomedical and Health Sciences, Robert Wood Johnson Medical School, 125 Paterson St, New Brunswick, NJ, USA
| | - Daniel Fine
- Department of Oral Biology, Rutgers School of Dental Medicine, 110 Bergen Street, Newark, NJ, US
| | - Zeeshan Ahmed
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson Street, New Brunswick, NJ, 08901, USA.
- Division of Cardiovascular Diseases and Hypertension, Rutgers Biomedical and Health Sciences, Robert Wood Johnson Medical School, 125 Paterson St, New Brunswick, NJ, USA.
- Department of Medicine, Rutgers Biomedical and Health Sciences, Robert Wood Johnson Medical School, 125 Paterson St, New Brunswick, NJ, USA.
| |
Collapse
|
3
|
Nguyen PN. Biomarker discovery with quantum neural networks: a case-study in CTLA4-activation pathways. BMC Bioinformatics 2024; 25:149. [PMID: 38609844 PMCID: PMC11265126 DOI: 10.1186/s12859-024-05755-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Biomarker discovery is a challenging task due to the massive search space. Quantum computing and quantum Artificial Intelligence (quantum AI) can be used to address the computational problem of biomarker discovery from genetic data. METHOD We propose a Quantum Neural Networks architecture to discover genetic biomarkers for input activation pathways. The Maximum Relevance-Minimum Redundancy criteria score biomarker candidate sets. Our proposed model is economical since the neural solution can be delivered on constrained hardware. RESULTS We demonstrate the proof of concept on four activation pathways associated with CTLA4, including (1) CTLA4-activation stand-alone, (2) CTLA4-CD8A-CD8B co-activation, (3) CTLA4-CD2 co-activation, and (4) CTLA4-CD2-CD48-CD53-CD58-CD84 co-activation. CONCLUSION The model indicates new genetic biomarkers associated with the mutational activation of CLTA4-associated pathways, including 20 genes: CLIC4, CPE, ETS2, FAM107A, GPR116, HYOU1, LCN2, MACF1, MT1G, NAPA, NDUFS5, PAK1, PFN1, PGAP3, PPM1G, PSMD8, RNF213, SLC25A3, UBA1, and WLS. We open source the implementation at: https://github.com/namnguyen0510/Biomarker-Discovery-with-Quantum-Neural-Networks .
Collapse
Affiliation(s)
- Phuong-Nam Nguyen
- Faculty of Computer Science, PHENIKAA University, Yen Nghia, Ha Dong, Hanoi, 12116, Vietnam.
| |
Collapse
|
4
|
DeGroat W, Abdelhalim H, Patel K, Mendhe D, Zeeshan S, Ahmed Z. Discovering biomarkers associated and predicting cardiovascular disease with high accuracy using a novel nexus of machine learning techniques for precision medicine. Sci Rep 2024; 14:1. [PMID: 38167627 PMCID: PMC10762256 DOI: 10.1038/s41598-023-50600-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024] Open
Abstract
Personalized interventions are deemed vital given the intricate characteristics, advancement, inherent genetic composition, and diversity of cardiovascular diseases (CVDs). The appropriate utilization of artificial intelligence (AI) and machine learning (ML) methodologies can yield novel understandings of CVDs, enabling improved personalized treatments through predictive analysis and deep phenotyping. In this study, we proposed and employed a novel approach combining traditional statistics and a nexus of cutting-edge AI/ML techniques to identify significant biomarkers for our predictive engine by analyzing the complete transcriptome of CVD patients. After robust gene expression data pre-processing, we utilized three statistical tests (Pearson correlation, Chi-square test, and ANOVA) to assess the differences in transcriptomic expression and clinical characteristics between healthy individuals and CVD patients. Next, the recursive feature elimination classifier assigned rankings to transcriptomic features based on their relation to the case-control variable. The top ten percent of commonly observed significant biomarkers were evaluated using four unique ML classifiers (Random Forest, Support Vector Machine, Xtreme Gradient Boosting Decision Trees, and k-Nearest Neighbors). After optimizing hyperparameters, the ensembled models, which were implemented using a soft voting classifier, accurately differentiated between patients and healthy individuals. We have uncovered 18 transcriptomic biomarkers that are highly significant in the CVD population that were used to predict disease with up to 96% accuracy. Additionally, we cross-validated our results with clinical records collected from patients in our cohort. The identified biomarkers served as potential indicators for early detection of CVDs. With its successful implementation, our newly developed predictive engine provides a valuable framework for identifying patients with CVDs based on their biomarker profiles.
Collapse
Affiliation(s)
- William DeGroat
- Health Care Policy and Aging Research, Rutgers Institute for Health, Rutgers University, 112 Paterson St, New Brunswick, NJ, 08901, USA
| | - Habiba Abdelhalim
- Health Care Policy and Aging Research, Rutgers Institute for Health, Rutgers University, 112 Paterson St, New Brunswick, NJ, 08901, USA
| | - Kush Patel
- Health Care Policy and Aging Research, Rutgers Institute for Health, Rutgers University, 112 Paterson St, New Brunswick, NJ, 08901, USA
| | - Dinesh Mendhe
- Health Care Policy and Aging Research, Rutgers Institute for Health, Rutgers University, 112 Paterson St, New Brunswick, NJ, 08901, USA
| | - Saman Zeeshan
- Rutgers Cancer Institute of New Jersey, Rutgers University, 195 Little Albany St, New Brunswick, NJ, USA
| | - Zeeshan Ahmed
- Health Care Policy and Aging Research, Rutgers Institute for Health, Rutgers University, 112 Paterson St, New Brunswick, NJ, 08901, USA.
- Department of Medicine/Cardiovascular Disease and Hypertension, Robert Wood Johnson Medical School, Rutgers Biomedical and Health Sciences, 125 Paterson St, New Brunswick, NJ, USA.
| |
Collapse
|