1
|
Dai JH, Zhou RC, Liu Y. Phylogeny, species delimitation, and biogeographical history of Bredia. Mol Phylogenet Evol 2025; 207:108326. [PMID: 40090390 DOI: 10.1016/j.ympev.2025.108326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 02/24/2025] [Accepted: 03/13/2025] [Indexed: 03/18/2025]
Abstract
Species delimitation in plants is sometimes challenging due to morphological convergence, interspecific gene flow, and historically limited sampling. Bredia Blume as currently defined comprises 27 species and has been resolved as monophyletic in previous phylogenomic studies. However, relationships among several major lineages in the genus remain elusive, and the species boundaries of some problematic taxa have not been tested. In this study, we employed comprehensive taxon sampling and reconstructed the phylogeny of Bredia using single-copy orthologs (SCOs), genomic single nucleotide polymorphisms (SNPs), and whole plastomes. The species tree derived from SCOs provided the highest resolution, strongly supporting all interspecific relationships. We identified instances of morphological convergence and potential hybridization/introgression within groups of interest and discussed species limits based on monophyly, genetic divergence, and morphological diagnosability. Using this robust phylogeny, we inferred divergence times and biogeographical history for Bredia. The genus originated in the Yunnan-Myanmar-Thailand Border region and the Beibu Gulf region during the middle Miocene, initially adapting to karst habitats. Over time, certain lineages shifted to non-karst environments. One such lineage migrated to the southeastern part of the Eastern Asiatic Kingdom in the late Miocene, where it rapidly diversified forming several major lineages. Subsequently, a mainland lineage reached Taiwan via a land bridge between the late Pliocene and the early Pleistocene and diversified in the region, eventually spreading to the Ryukyu Islands in the middle Pleistocene.
Collapse
Affiliation(s)
- Jin-Hong Dai
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou 510275, China
| | - Ren-Chao Zhou
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou 510275, China
| | - Ying Liu
- School of Ecology, Sun Yat-sen University, Shenzhen 518107, China; State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
2
|
Wang Q, An J, Wang Y, Zheng B. The complete chloroplast genome sequences of three Cypripedium species and their phylogenetic analysis. Sci Rep 2025; 15:13461. [PMID: 40251259 PMCID: PMC12008232 DOI: 10.1038/s41598-025-98287-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 04/10/2025] [Indexed: 04/20/2025] Open
Abstract
Cypripedium macranthos Swartz, C. × ventricosum Swartz, and C. shanxiense S. C. Chen were highly promising ornamental plants. In this study, the latest complete chloroplast genome sequence of C. macranthos, C. × ventricosum, and C. shanxiense were reported using correct sample material from their native range, and their phylogenetic relationships with other related species were investigated preliminarily. The whole chloroplast genome lengths of C. macranthos, C. × ventricosum, and C. shanxiense were 181,030 bp, 175,385 bp, and 177,627 bp, respectively, with total GC contents of 34.56%, 34.48%, and 34.42%, respectively. Based on the maximum likelihood phylogenetic tree from the chloroplast genome sequences and internal transcribed spacer (ITS) sequences, it was confirmed that C. × ventricosum is most closely related to C. calceolus, and the idea that C. × ventricosum is an interspecific hybrid between C. calceolus and C. macranthos is supported. By integrating the results of phylogenetic analysis, genomic structural comparison, and considerations of sampling locations, it is evident that the former chloroplast genome of C. macranthos is inaccurate. This study provides crucial information for research on the phylogeny, genetics, and conservation of C. macranthos, C. × ventricosum, and C. shanxiense.
Collapse
Affiliation(s)
- Qun Wang
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Jing An
- Beijing Songshan Natural Reserve Administration, Beijing, 102100, China
| | - Yan Wang
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Baoqiang Zheng
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
| |
Collapse
|
3
|
Cai Y, Tian M, Yang Y, Shi Z, Zhao P, Wang J. Nine complete chloroplast genomes of the Camellia genus provide insights into evolutionary relationships and species differentiation. Sci Rep 2025; 15:8783. [PMID: 40082506 PMCID: PMC11906861 DOI: 10.1038/s41598-025-87764-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/21/2025] [Indexed: 03/16/2025] Open
Abstract
The genus Camellia, known for species such as Camellia japonica, is of significant agricultural and ecological importance. However, the genetic diversity and evolutionary relationships among Camellia species remain insufficiently explored. In this study, we successfully sequenced and assembled the complete chloroplast (cp) genomes of nine Camellia accessions, including the species Camellia petelotii, and eight varieties of C. Japonica (C. Japonica 'Massee Lane', C. Japonica 'L.T.Dees', C. Japonica 'Songzi', C. Japonica 'Kagirohi', C. Japonica 'Sanyuecha', C. Japonica 'Xiameng Hualin', C. Japonica 'Xiameng Wenqing', and C. Japonica 'Xiameng Xiaoxuan'). These genomes exhibited conserved lengths (~ 156,580-157,002 bp), indicating minimal variation in genome size. They consistently predicted 87 protein-coding genes, although variations were observed in the rRNA and tRNA genes. Structural and evolutionary analyses revealed the highly conserved nature of these cp genomes, with no significant inversions or gene rearrangements detected. Consistent codon usage patterns were observed across these accessions. Five hypervariable regions (rpsbK, psbM, ndhJ, ndhF, and ndhD) were identified as potential molecular markers for species differentiation. Phylogenetic analysis of 82 accessions from the Camellia genus, along with outgroup accessions revealed close genetic relationships among certain C. japonica varieties, including Songzi, Sanyuecha, L.T.Dees, and Kagirohi, which formed sister groups. Massee Lane was located within Sect. Camellia. Moreover, Xiameng Hualin, Xiameng Wenqing, Xiameng Xiaoxuan, and C. petelotii demonstrated a strong genetic affinity. These findings provide valuable insights into the structural and evolutionary dynamics of Camellia cp genomes, contributing to species identification and conservation.
Collapse
Affiliation(s)
- Yanfei Cai
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming, 650000, Yunnan, China
- Yunnan Flower Technology Innovation Center, Kunming, 650000, Yunnan, China
| | - Min Tian
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming, 650000, Yunnan, China
- Yunnan Flower Technology Innovation Center, Kunming, 650000, Yunnan, China
| | - Yingjie Yang
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming, 650000, Yunnan, China
- Yunnan Flower Technology Innovation Center, Kunming, 650000, Yunnan, China
| | - Ziming Shi
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming, 650000, Yunnan, China
- Yunnan Flower Technology Innovation Center, Kunming, 650000, Yunnan, China
| | - Peifei Zhao
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming, 650000, Yunnan, China.
- Yunnan Flower Technology Innovation Center, Kunming, 650000, Yunnan, China.
| | - Jihua Wang
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming, 650000, Yunnan, China.
- Yunnan Flower Technology Innovation Center, Kunming, 650000, Yunnan, China.
| |
Collapse
|
4
|
Li Y, Lu X, Li S, Sun Y, Shan Y, Wang S, Jiang N, Xiao Y, Wang Q, Yu J, Cao Q, Wu S, Chen L, Dai X. Unveiling a Meaningful Form of Cypripedium × ventricosum Sw. (Cypripedioideae, Orchidaceae) from Changbai Mountain, China: Insights from Morphological, Molecular, and Plastome Analyses. PLANTS (BASEL, SWITZERLAND) 2025; 14:772. [PMID: 40094749 PMCID: PMC11901617 DOI: 10.3390/plants14050772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/19/2025]
Abstract
A Cypripedium plant was discovered in Wangqing County, Changbai Mountain, Jilin Province. This newly discovered plant of Cypripedium not only inhabits the same natural habitat as Cypripedium calceolus L. and Cypripedium × ventricosum Sw. but also has a morphology intermediate between that of C. calceolus and C. × ventricosum. Its dorsal sepals, petals, and synsepal are similar to those of C. calceolus, while the color of its lip is intermediate between that of C. calceolus and C. × ventricosum. For the purpose of distinguishing the newly discovered plant of Cypripedium from other Cypripedium plants, we provisionally named it W1. To further verify the taxonomic status of W1, we introduced three identified forms of C. × ventricosum and conducted molecular biology analyses with W1, C. calceolus, and C. × ventricosum. The analyses further confirmed the relationship between W1 and C. × ventricosum, and the phylogenetic analysis of the nuclear region demonstrated a close relationship between W1 and C. calceolus. Collectively, the morphological and molecular evidence indicates that W1 is a product of the backcross between C. × ventricosum and C. calceolus. Although it shows morphological differences from typical C. × ventricosum, it can still be considered a form of C. × ventricosum. We further investigated the chloroplast genome of this form of C. × ventricosum and determined that its total genome length was 196,850 bp. The genome contains 132 genes, including 87 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. By analyzing the phylogenetic position and chloroplast genome of the form of C. × ventricosum, this study clarified the relationships among Cypripedium taxa with similar morphological characteristics, laying a foundation for research on orchid evolution and species conservation.
Collapse
Affiliation(s)
- Ying Li
- College of Forestry and Grassland, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, China; (Y.L.); (S.L.); (Y.S.); (S.W.); (J.Y.); (S.W.)
| | - Xi Lu
- College of Horticulture, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, China; (X.L.); (Y.S.); (N.J.); (Y.X.); (Q.W.); (Q.C.)
| | - Shuang Li
- College of Forestry and Grassland, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, China; (Y.L.); (S.L.); (Y.S.); (S.W.); (J.Y.); (S.W.)
| | - Yue Sun
- College of Horticulture, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, China; (X.L.); (Y.S.); (N.J.); (Y.X.); (Q.W.); (Q.C.)
| | - Yuze Shan
- College of Forestry and Grassland, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, China; (Y.L.); (S.L.); (Y.S.); (S.W.); (J.Y.); (S.W.)
| | - Shizhuo Wang
- College of Forestry and Grassland, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, China; (Y.L.); (S.L.); (Y.S.); (S.W.); (J.Y.); (S.W.)
| | - Nan Jiang
- College of Horticulture, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, China; (X.L.); (Y.S.); (N.J.); (Y.X.); (Q.W.); (Q.C.)
| | - Yiting Xiao
- College of Horticulture, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, China; (X.L.); (Y.S.); (N.J.); (Y.X.); (Q.W.); (Q.C.)
| | - Qi Wang
- College of Horticulture, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, China; (X.L.); (Y.S.); (N.J.); (Y.X.); (Q.W.); (Q.C.)
| | - Jiahui Yu
- College of Forestry and Grassland, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, China; (Y.L.); (S.L.); (Y.S.); (S.W.); (J.Y.); (S.W.)
| | - Qingtao Cao
- College of Horticulture, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, China; (X.L.); (Y.S.); (N.J.); (Y.X.); (Q.W.); (Q.C.)
| | - Sulei Wu
- College of Forestry and Grassland, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, China; (Y.L.); (S.L.); (Y.S.); (S.W.); (J.Y.); (S.W.)
| | - Lifei Chen
- College of Horticulture, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, China; (X.L.); (Y.S.); (N.J.); (Y.X.); (Q.W.); (Q.C.)
| | - Xinzhu Dai
- Changchun Academy of Forestry, 5840 Jingyue Street, Jingyuetan Tourist Economic Development Zone, Changchun 130117, China
| |
Collapse
|
5
|
Xu KW, Yang Y, Chen H, Lin CX, Jiang L, Guo ZL, Li M, Hao MZ, Meng KK. Extensive cytonuclear discordance revealed by phylogenomic analyses suggests complex evolutionary history in the holly genus Ilex (Aquifoliaceae). Mol Phylogenet Evol 2025; 204:108255. [PMID: 39622396 DOI: 10.1016/j.ympev.2024.108255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/13/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Ilex L., the exclusive genus of Aquifoliaceae, encompasses over 600 dioecious wood species with a highly irregular distribution, predominantly found in South America and Asia. The phylogeny and classification of this genus remain enigmatic due to significant early extinctions, constrained morphological diversity, recent hybridization/introgression, and conflicting signals from previously utilized markers. This study presents phylogenetic reconstructions based on complete chloroplast genome sequences and single nucleotide polymorphisms (SNPs) derived from genome resequencing data. A total of 116 accessions of Ilex, representing approximately 108 taxa, were included as the ingroup, with five accessions of two species serving as outgroups. Analysis of the chloroplast genome and nuclear SNP data individually resulted in two robust phylogenetic trees, revealing substantial discrepancies between the chloroplast genome and nuclear SNP phylogenies at both the species and clade levels. The chloroplast genome sequences successfully resolved relationships within this genus into eight strongly supported major clades, while the nuclear SNPs resolved relationships into seven highly supported major clades. Our nuclear SNP phylogenetic tree, in comparison to the chloroplast genome tree, aligns more closely with the recently updated classification of Ilex in multiple instances. The extensive cytonuclear discordance identified may be attributed to recent hybridization events and incomplete lineage sorting (ILS).
Collapse
Affiliation(s)
- Ke-Wang Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Science, Nanjing Forestry University, Nanjing 210037, China.
| | - Yi Yang
- School of Agricultural Sciences, Jiangxi Agricultural University, Nanchang 330045, China
| | - Hong Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Chen-Xue Lin
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Science, Nanjing Forestry University, Nanjing 210037, China
| | - Lei Jiang
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Science, Nanjing Forestry University, Nanjing 210037, China
| | - Zhong-Long Guo
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Science, Nanjing Forestry University, Nanjing 210037, China
| | - Meng Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Science, Nanjing Forestry University, Nanjing 210037, China
| | - Ming-Zhuo Hao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Kai-Kai Meng
- Guangxi Key Laboratory of Quality and Safety Control for Subtropical Fruits/Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Guangxi Subtropical Crops Research Institute, Nanning 530001, China.
| |
Collapse
|
6
|
Raman G, Park S. Chloroplast genomics unravels taxonomic status and evolutionary relationships in Euphorbia fauriei and E. pekinensis. Gene 2025; 936:149116. [PMID: 39571662 DOI: 10.1016/j.gene.2024.149116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/23/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024]
Abstract
Euphorbia fauriei, a perennial plant endemic to South Korea, exhibits both morphological characteristics and intricate genetic identities akin to E. pekinensis. This study aimed to provide clarity on the taxonomic status of E. faurirei and E. pekinensis through a comprehensive chloroplast genome analysis. Additionally, we sequenced the Acalypha australis chloroplast genome as an outgroup for the construction of a phylogenetic tree with other Euphorbia species. The three chloroplast genomes, ranging from 162,834 bp to 168,832 bp, displayed typical quadripartite structures. The Euphorbia genomes contained 111 unique genes, whereas the A. australis genome contained two additional protein-coding genes (PCGs), rpl32 and rps16. Comparative analysis unveiled the loss of rpl32 and rps16 as synapomorphic characteristics in Euphorbia, whereas the loss of infA occurred across Euphorbiaceae. High collinearity and sequence similarity were observed among Euphorbia species, accompanied by significant inversion regions in the E. pekinensis chloroplast genomes from China and Japan, indicating regional genetic variability. Nucleotide substitution analysis revealed that the ndh group exhibited the highest KA/KS values (0.224), whereas the atp, psa, psb and rps groups had the lowest. Phylogenomic analysis utilizing whole genomes, PCGs, and intron and intergenic regions consistently demonstrated that E. pekinensis from South Korea clusters closely with E. fauriei. These findings challenge the current taxonomic distinction between E. pekinensis and E. fauriei in Korea, suggesting that while they exhibit distinct characteristics, E. fauriei should be considered a closely related subspecies rather than the same species as E. pekinensis. This study emphasizes the need for population studies to clarify the taxonomic relationships between E. pekinensis and E. fauriei.
Collapse
Affiliation(s)
- Gurusamy Raman
- Department of Life Sciences, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do, Republic of Korea
| | - SeonJoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do, Republic of Korea.
| |
Collapse
|
7
|
Wang HL, Lei T, Wang XW, Cameron S, Navas-Castillo J, Liu YQ, Maruthi MN, Omongo CA, Delatte H, Lee KY, Krause-Sakate R, Ng J, Seal S, Fiallo-Olivé E, Bushley K, Colvin J, Liu SS. A comprehensive framework for the delimitation of species within the Bemisia tabaci cryptic complex, a global pest-species group. INSECT SCIENCE 2025; 32:321-342. [PMID: 38562016 DOI: 10.1111/1744-7917.13361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/11/2024] [Accepted: 02/27/2024] [Indexed: 04/04/2024]
Abstract
Identifying cryptic species poses a substantial challenge to both biologists and naturalists due to morphological similarities. Bemisia tabaci is a cryptic species complex containing more than 44 putative species; several of which are currently among the world's most destructive crop pests. Interpreting and delimiting the evolution of this species complex has proved problematic. To develop a comprehensive framework for species delimitation and identification, we evaluated the performance of distinct data sources both individually and in combination among numerous samples of the B. tabaci species complex acquired worldwide. Distinct datasets include full mitogenomes, single-copy nuclear genes, restriction site-associated DNA sequencing, geographic range, host speciation, and reproductive compatibility datasets. Phylogenetically, our well-supported topologies generated from three dense molecular markers highlighted the evolutionary divergence of species of the B. tabaci complex and suggested that the nuclear markers serve as a more accurate representation of B. tabaci species diversity. Reproductive compatibility datasets facilitated the identification of at least 17 different cryptic species within our samples. Native geographic range information provides a complementary assessment of species recognition, while the host range datasets provide low rate of delimiting resolution. We further summarized different data performances in species classification when compared with reproductive compatibility, indicating that combination of mtCOI divergence, nuclear markers, geographic range provide a complementary assessment of species recognition. Finally, we represent a model for understanding and untangling the cryptic species complexes based on the evidence from this study and previously published articles.
Collapse
Affiliation(s)
- Hua-Ling Wang
- College of Forestry, Hebei Agricultural University, Baoding, Hebei Province, China
- The Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- Natural Resources Institute, University of Greenwich, Kent, UK
| | - Teng Lei
- College of Life Sciences, Taizhou University, Taizhou, Zhejiang Province, China
| | - Xiao-Wei Wang
- The Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Stephen Cameron
- Department of Entomology, Purdue University, West Lafayette, IN, USA
| | - Jesús Navas-Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, Malaga, Spain
| | - Yin-Quan Liu
- The Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - M N Maruthi
- Natural Resources Institute, University of Greenwich, Kent, UK
| | | | - Hélène Delatte
- CIRAD, UMR PVBMT CIRAD, Pôle de Protection des Plantes, Saint-Pierre, France
| | - Kyeong-Yeoll Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | | | - James Ng
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA
| | - Susan Seal
- Natural Resources Institute, University of Greenwich, Kent, UK
| | - Elvira Fiallo-Olivé
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, Malaga, Spain
| | - Kathryn Bushley
- USDA Agricultural Research Service, 17123, Emerging Pests and Pathogens Research Unit, Ithaca, NY, USA
| | - John Colvin
- Natural Resources Institute, University of Greenwich, Kent, UK
| | - Shu-Sheng Liu
- The Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Yang L, Zhang S, Wu C, Jiang X, Deng M. Plastome characterization and its phylogenetic implications on Lithocarpus (Fagaceae). BMC PLANT BIOLOGY 2024; 24:1277. [PMID: 39736525 DOI: 10.1186/s12870-024-05874-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 11/25/2024] [Indexed: 01/01/2025]
Abstract
BACKGROUND The genus Lithocarpus is a species-rich dominant woody lineage in East Asian evergreen broad-leaved forests. Despite its ecological and economic significance, the plastome structure and evolutionary history of the genus remain poorly understood. In this study, we comprehensively analyzed the 34 plastomes representing 33 Lithocarpus species. Of which, 21 were newly assembled. The plastome-based phylogenomic tree was reconstructed to reveal the maternal evolutionary patterns of the genus. RESULTS The Lithocarpus plastomes exhibit a typical quadripartite structure, ranging in length from 161,010 to 161,476 bp, and containing 131 genes, including 86 protein-coding genes, 8 rRNA genes, and 37 tRNA genes. Remarkably, the infA gene was identified as a pseudogene in 17 species. Significant variability was observed in simple sequence repeats (SSRs) as well as in the boundary regions between the two single-copy regions and the inverted repeat region (SC/IR) across the plastomes. Additionally, four genes (accD, atpF, rpl32, and rps8) were found to be under positive selection. The monophyletic status of Lithocarpus was strongly supported by plastome-based phylogeny; however, the phylogenetic tree topology showed a significant difference from that obtained by the nuclear genome-based phylogeny. CONCLUSIONS The plastome of Fagaceae is generally conserved. Nevertheless, genes related to metabolism, photosynthesis, and energy were under strong positive selection in Lithocarpus, likely driven by environmental pressures and local adaptation. The plastome-based phylogeny confirmed the monophyletic status of Lithocarpus and revealed a phylogeographic pattern indicating limited seed-mediated gene flow in the ancestral lineage. The prevalence of cytonuclear discordance in Lithocarpus and other Fagaceae genera suggests that ancient introgression, incomplete lineage sorting, and asymmetrical seed- and pollen-mediated geneflow might contribute to this discordance. Future studies are essential to test these hypotheses and further elucidate the divergence patterns of this unique Asian evergreen lineage.
Collapse
Affiliation(s)
- Lifang Yang
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Shoujun Zhang
- Center for Horticulture and Conservation, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Chunya Wu
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Xiaolong Jiang
- College of Forestry, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China.
| | - Min Deng
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China.
- The Key Laboratory of Rare and Endangered Forest Plants of National Forestry and Grassland Administration, The Key Laboratory for Silviculture and Forest Resources Development of Yunnan Province, Yunnan Academy of Forestry and Grassland, Kunming, 650201, China.
| |
Collapse
|
9
|
da Silva GR, de Brito Souza IG, de Mello Pereira F, de Almeida Souza B, do Rêgo Lopes MT, Prosdocimi F, Bentzen P, Diniz FM. The Mitochondrial Genome of Melipona fasciculata (Apidae, Meliponini): Genome Organization and Comparative Analyses, Phylogenetic Implications and Divergence Time Estimations. Biochem Genet 2024:10.1007/s10528-024-10991-3. [PMID: 39643768 DOI: 10.1007/s10528-024-10991-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/26/2024] [Indexed: 12/09/2024]
Abstract
The native stingless bee Melipona fasciculata is economically and ecologically important to the Brazilian Northeast, providing a sustainable source of income to family farmers and being considered an effective pollinator in most ecosystems and crops. This study describes, for the first time, the mitogenome of the species and its phylogenetic position. The mitochondrial genome was sequenced using a MiSeq Sequencer (Illumina Inc.) and compared with other GenBank bee mitogenomes. The length of the mitochondrial DNA, excluding most of the control region, is 14,753 bp, and contains 13 protein-coding genes (PCGs), 21 transfer RNAs, 2 ribosomal RNAs (16S and 12S), and 1 AT-rich region. The GC-content of the M. fasciculata mitogenome was 13.4%. Of the 36 coding regions, 12 tRNAs and 9 PCGs were encoded in the heavy strand, and 9 tRNAs, 4 PCGs and 2 rRNAs were encoded in the light strand. The relative orientation and gene order was the same as other stingless bee mitogenomes. Phylogenetic inference produced well-resolved relationships with high statistical support for concordant branch topologies, under different optimization schemes and model parameters, within and among Melipona, Bombus, Apis, and related clades of Hymenoptera. In general, our divergence time estimates, which were based on the concatenated gene sequences (PCGs + rRNAs) from various groups, overlapped estimations captured by Bayesian analysis from different studies. The divergence time among Melipona species was estimated to occur during the Oligocene, approximately 24 Mya (95% HPD 14-36 Mya). Our results represent a valuable addition to help understanding not only the taxonomy and evolution of Brazilian stingless bee species, but also to uncover historical dispersal and isolation patterns in Meliponinae.
Collapse
Affiliation(s)
- Geice Ribeiro da Silva
- Embrapa Caprinos e Ovinos, Estrada Sobral-Groaíras km 4, Caixa Postal 145, Fazenda Três Lagoas, Sobral, Ceará, CEP: 62011-970, Brazil
| | - Isis Gomes de Brito Souza
- Northeast Biotechnology Network - RENORBIO/Universidade Federal do Piauí, Campus Universitário Ministro Petrônio Portella, Ininga, Teresina, Piauí, CEP: 64049-550, Brazil
| | - Fábia de Mello Pereira
- Embrapa Meio-Norte, Av. Duque de Caxias, 5650, Caixa Postal 01, Teresina, Piauí, 64006-220, Brazil
| | - Bruno de Almeida Souza
- Embrapa Meio-Norte, Av. Duque de Caxias, 5650, Caixa Postal 01, Teresina, Piauí, 64006-220, Brazil
| | | | - Francisco Prosdocimi
- Laboratório de Genômica e Biodiversidade, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, CEP: 21.941-902, Brazil
| | - Paul Bentzen
- Department of Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Fábio Mendonça Diniz
- Embrapa Caprinos e Ovinos, Estrada Sobral-Groaíras km 4, Caixa Postal 145, Fazenda Três Lagoas, Sobral, Ceará, CEP: 62011-970, Brazil.
| |
Collapse
|
10
|
Zhang J, Zhou D, Chen W, Lin P, Zhao S, Wang M, Wang H, Shi S, Mehmood F, Ye X, Meng J, Zhuang W. Comparison of the chloroplast genomics of nine endangered Habenaria species and phylogenetic analysis. BMC PLANT BIOLOGY 2024; 24:1046. [PMID: 39497089 PMCID: PMC11536600 DOI: 10.1186/s12870-024-05766-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/30/2024] [Indexed: 11/06/2024]
Abstract
BACKGROUND Habenaria, a genus in the family Orchidaceae, are the nearly cosmopolitan orchids, and most species have significant medicinal and ornamental values. Despite the morphological and molecular data that have been studied in recent years, the phylogenetic relationship is still unclear. RESULTS We sequenced, assembled, and annotated the chloroplast (cp) genomes of two species (Habenaria aitchisonii Rchb.f. and Habenaria tibetica Schltr.ex Limpricht) of Habenaria grown on the Qinghai-Tibetan Plateau (QTP), and compared them with seven previously published cp genomes which may aid in the genomic profiling of these species. The two genomes ranged from 155,259-155,269 bp in length and both included 132 genes, encoding 86 proteins, 38 tRNAs and 8 rRNAs. In the cp genomes, the tandem repeats (797), SSRs (2195) and diverse loci (3214) were identified. Comparative analyses of codon usage, amino frequency, microsatellite, oligo repeats and transition and transversion substitutions revealed similarities between the species. Moreover, we identified 16 highly polymorphic regions with a nucleotide diversity above 0.02, which may be suitable for robust authentic barcoding and inferring in the phylogeny of Habenaria species. Among the polymorphic regions, positive selection was significantly exerted on several genes, such as cemA, petA, and ycf1. This finding may suggest an important adaptation strategy for the two Habenaria species on the QTP. The phylogenetic relationship revealed that H. aitchisonii and H. tibetica were more closely related to each other than to the other species, and the other seven species were clustered in three groups. In addition, the estimated divergence time suggested that the two species separated from the others approximately 0.39 Mya in the Neogene period. Our findings also suggest that Habenaria can be divided into different sections. CONCLUSIONS The results of this study enriched the genomics resources of Habenaria, and SSR marker may aid in the conservation management of two endangered species.
Collapse
Affiliation(s)
- Jinkui Zhang
- College of Management and Economics, Tianjin University, Tianjin, 300072, China
- The College of Pharmacy, Qinghai Minzu University, Xining, Qinghai, 810007, People's Republic of China
| | - Dangwei Zhou
- The College of Pharmacy, Qinghai Minzu University, Xining, Qinghai, 810007, People's Republic of China.
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, People's Republic of China.
- College of Medicine, Xi'an International University, Xi'an, Shaanxi, 710077, People's Republic of China.
| | - Weidong Chen
- College of Management and Economics, Tianjin University, Tianjin, 300072, China
| | - Pengcheng Lin
- The College of Pharmacy, Qinghai Minzu University, Xining, Qinghai, 810007, People's Republic of China
| | - Suqin Zhao
- School of Physicsand, Electronic Information Engineering , Qinghai Nationalities University, Xining, Qinghai, 810007, People's Republic of China
| | - Min Wang
- The College of Pharmacy, Qinghai Minzu University, Xining, Qinghai, 810007, People's Republic of China
| | - Huan Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, People's Republic of China
| | - Shengbo Shi
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, People's Republic of China
| | - Furrukh Mehmood
- Research and Innovation Center, Foudazione Edmund Mach, San Michele All'Adige, TN, Italy
| | - Xing Ye
- The College of Pharmacy, Qinghai Minzu University, Xining, Qinghai, 810007, People's Republic of China
| | - Jing Meng
- The College of Pharmacy, Qinghai Minzu University, Xining, Qinghai, 810007, People's Republic of China
| | - Wenyuan Zhuang
- The College of Pharmacy, Qinghai Minzu University, Xining, Qinghai, 810007, People's Republic of China
| |
Collapse
|
11
|
Duan Y, Wang Y, Ding W, Wang C, Meng L, Meng J, Chen N, Liu Y, Xing S. Comparative and phylogenetic analysis of the chloroplast genomes of four commonly used medicinal cultivars of Chrysanthemums morifolium. BMC PLANT BIOLOGY 2024; 24:992. [PMID: 39434004 PMCID: PMC11495106 DOI: 10.1186/s12870-024-05679-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024]
Abstract
'Boju' and 'Huaiju' are cultivars of the Chrysanthemum (Chrysanthemum morifolium Ramat.) in the family Asteraceae, valued for their medicinal, tea, and ornamental properties, and valued by individuals. However, the yield and quality of medicinal chrysanthemums are limited by the characteristics of the germplasm resources, including the identification at the varieties and cultivation levels. Currently, research characterizing the chloroplast genomes of medicinal Chrysanthemum flowers is relatively limited. This study conducted chloroplast whole-genome sequencing on two cultivars of Chrysanthemum, 'Boju' and 'Huaiju', and compared them with the previously published chloroplast genomes of 'Hangbaiju' and 'Gongju'. The study analyzed the chloroplast genome structures of these four medicinal Chrysanthemums, identifying mutation hotspots and clarifying their phylogenetic relationships. The chloroplast genome sizes of four medicinal Chrysanthemum cultivation products ranged from 151,057 to 151,109 bp, with GC content ranging from 37.45% to 37.76%. A total of 134 genes were identified, including 89 protein-coding genes, 37 ribosomal RNA genes, and 8 transfer RNA genes. Comparative genomic analysis revealed 159 large repeat sequences, 276 simple sequence repeats, 1 gene, and 8 intergenic regions identified as highly variable regions. Nucleotide diversity (Pi) values were high (≥ 0.004) for the petN-psbM, trnR-UCU-trnT-GGU, trnT-GGU-psbD, ndhC-trnV-UCA, ycf1, ndhI-ndhG, trnL-UGA-rpl32, rpl32-ndhF, and ndhF-ycf1 fragments, aiding in variety identification. Phylogenetic analysis revealed consistent results between maximum likelihood and Bayesian inference trees, showing that the four medicinal Chrysanthemum cultivars, along with their wild counterparts and related species, evolved as a monophyletic group, forming a sister clade to Artemisia and Ajania. Among the six Chrysanthemum species, the wild Chrysanthemum diverged first (Posterior probability = 1, bootstrap = 1,000), followed by Ajania, while C. indicum and C. morifolium clustered together (Bootstrap = 100), indicating their closest genetic relationship. The chloroplast whole-genome data and characteristic information provided in this study can be used for variety identification, genetic conservation, and phylogenetic analysis within the family Asteraceae.
Collapse
Affiliation(s)
- Yingying Duan
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Yuqing Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Wanyue Ding
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Chun Wang
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Ling Meng
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Jie Meng
- Jiuzhou Fangyuan Pharmaceutical Co., Ltd., Anhui Modern Industry Research Institute of Traditional Chinese Medicine, Bozhou, 236821, China
| | - Na Chen
- Joint Research Center for Chinese Herbal Medicine of Anhui of IHM, Anhui University of Chinese Medicine, Hefei, 230012, China
- Joint Research Center for Chinese Herbal Medicine of Anhui of IHM, College of Pharmacy, Bozhou Vocational and Technical College, Bozhou, 236800, China
| | - Yaowu Liu
- Joint Research Center for Chinese Herbal Medicine of Anhui of IHM, College of Pharmacy, Bozhou Vocational and Technical College, Bozhou, 236800, China.
| | - Shihai Xing
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Joint Research Center for Chinese Herbal Medicine of Anhui of IHM, Anhui University of Chinese Medicine, Hefei, 230012, China.
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230038, China.
| |
Collapse
|
12
|
Zeng MY, Li MH, Lan S, Yin WL, Liu ZJ. Comparative Phylogenomic Study of Malaxidinae (Orchidaceae) Sheds Light on Plastome Evolution and Gene Divergence. Int J Mol Sci 2024; 25:11181. [PMID: 39456963 PMCID: PMC11508673 DOI: 10.3390/ijms252011181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Malaxidinae is one of the most confusing groups in the Orchidaceae classification. Previous phylogenetic analyses have revealed that the relationships between the taxa in Malaxidinae have not yet been reliably established, using only a few plastome regions and nuclear ribosomal internal transcribed spacer (nrITS). In the present study, the complete plastomes of Oberonia integerrima and Crepidium purpureum were assembled using high-throughput sequencing. Combined with publicly available complete plastome data, this resulted in a dataset of 19 plastomes, including 17 species of Malaxidinae. The plastome features and phylogenetic relationships were compared and analyzed. The results showed the following: (1) Malaxidinae species plastomes possess the quadripartite structure of typical angiosperms, with sizes ranging from 142,996 to 158,787 bp and encoding from 125 to 133 genes. The ndh genes were lost or pseudogenized to varying degrees in six species. An unusual inversion was detected in the large single-copy region (LSC) of Oberonioides microtatantha. (2) Eight regions, including ycf1, matK, rps16, rpl32, ccsA-ndhD, clpP-psbB, trnFGAA-ndhJ, and trnSGCU-trnGUCC, were identified as mutational hotspots. (3) Based on complete plastomes, 68 protein-coding genes, and 51 intergenic regions, respectively, our phylogenetic analyses revealed the genus-level relationships in this subtribe with strong support. The Liparis was supported as non-monophyletic.
Collapse
Affiliation(s)
- Meng-Yao Zeng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.-Y.Z.); (M.-H.L.); (S.L.)
| | - Ming-He Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.-Y.Z.); (M.-H.L.); (S.L.)
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Siren Lan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.-Y.Z.); (M.-H.L.); (S.L.)
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wei-Lun Yin
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.-Y.Z.); (M.-H.L.); (S.L.)
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.-Y.Z.); (M.-H.L.); (S.L.)
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
13
|
Gou X, Li S, Su H. The complete mitochondrial genome of the black-breasted thrush Turdus dissimilis (passeriformes: Turdidae). Mitochondrial DNA B Resour 2024; 9:1298-1301. [PMID: 39377035 PMCID: PMC11457367 DOI: 10.1080/23802359.2023.2278826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/29/2023] [Indexed: 10/09/2024] Open
Abstract
The Back-breasted Thrush (Turdus dissimilis Blyth 1847), a medium-sized Turdus bird in the Turdidae family, is widely distributed in montane areas from northeastern India and Myanmar to southern China. The mitochondrial DNA of T. dissimilis is packaged in a compact 16,761-basepair (bp) circular molecule with A + T content of 52.50%. It contains 37 typical mitochondrial genes, including 13 protein-coding genes, 2 rRNAs and 22 tRNAs, and 1 noncoding region. We reconstructed a phylogenetic tree based on the mitogenome sequences of 10 Turdidae species and one outgroup. Phylogenetic analysis indicated that T. dissimilis is a sister taxon to T. unicolor. The new mitogenome data would provide useful information for application in conservation.
Collapse
Affiliation(s)
- Xue Gou
- Guizhou State-owned Longli Forest Farm, Longli, China
- College of Forestry, Guizhou University, Guiyang, China
| | - Shize Li
- College of Life Sciences, Guizhou University, Guiyang, China
- Department of Food Science and Engineering, Moutai Institute, Renhuai, China
| | - Haijun Su
- College of Forestry, Guizhou University, Guiyang, China
- Research Center for Biodiversity and Natural Conservation, Guizhou University, Guiyang, China
| |
Collapse
|
14
|
Zhang Y, Zhang J, Chen Z, Huang Y, Liu J, Liu Y, Yang Y, Jin X, Yang Y, Chen Y. Comparison of organelle genomes between endangered mangrove plant Dolichandrone spathacea to terrestrial relative provides insights into its origin and adaptative evolution. FRONTIERS IN PLANT SCIENCE 2024; 15:1442178. [PMID: 39376234 PMCID: PMC11457174 DOI: 10.3389/fpls.2024.1442178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 09/02/2024] [Indexed: 10/09/2024]
Abstract
Dolichandrone spathacea is a mangrove associate with high medicinal and ecological values. However, due to the dual-pressure of climate change and human activities, D. spathacea has become endangered in China. Moreover, misidentification between D. spathacea and its terrestrial relative D. cauda-felina poses further challenges to field protection and proper medicinal usage of D. spathacea. Thus, to address these problems, we sequenced and assembled mitochondrial (mt) and chloroplast (cp) genomes for both D. spathacea and D. cauda-felina. Comparative analysis revealed apparently different size and scaffold number between the two mt genomes, but a high similarity between the cp genomes. Eight regions with high sequence divergence were identified between the two cp genomes, which might be used for developing candidate DNA markers for distinguishing the two species. The splitting between D. spathacea and D. cauda-felina was inferred to occur at ~6.8 - 7.7 million years ago (Mya), which may be driven by the environment fluctuations in late Miocene. In the cp genome, 12 genes related to the expression of photosynthesis-associated proteins were detected with signatures of positive selection, which may contribute to the origin and evolutionary adaptation of Dolichandrone mangrove species. These new findings do not only enrich organelle genomic resources of Dolichandrone species, but also provide important genetic clues for improving the conservation and proper usage of endangered mangrove associate D. spathacea.
Collapse
Affiliation(s)
- Ying Zhang
- Hainan Academy of Forestry, Hainan Mangrove Research Institute, Haikou, China
- Mangrove Rare and Endangered Species Protection and Utilization Engineering Technology Research Center, Zhanjiang Key Laboratory of Mangrove Ecosystem Protection and Restoration, Lingnan Normal University, Zhanjiang, China
| | - Jingwen Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Zewei Chen
- Mangrove Rare and Endangered Species Protection and Utilization Engineering Technology Research Center, Zhanjiang Key Laboratory of Mangrove Ecosystem Protection and Restoration, Lingnan Normal University, Zhanjiang, China
| | - Yanni Huang
- Mangrove Rare and Endangered Species Protection and Utilization Engineering Technology Research Center, Zhanjiang Key Laboratory of Mangrove Ecosystem Protection and Restoration, Lingnan Normal University, Zhanjiang, China
| | - Jiaxuan Liu
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Yuqi Liu
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Yong Yang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Xiang Jin
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Yuchen Yang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Yiqing Chen
- Hainan Academy of Forestry, Hainan Mangrove Research Institute, Haikou, China
| |
Collapse
|
15
|
Hu Y, Ye T, Zou H, Wang GT, Li WX, Zhang D. Complete mitochondrial genome and phylogenetic analysis of Dollfustrema vaneyi (Trematoda: Bucephalidae). BMC Genomics 2024; 25:862. [PMID: 39278945 PMCID: PMC11403940 DOI: 10.1186/s12864-024-10740-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/26/2024] [Indexed: 09/18/2024] Open
Abstract
BACKGROUND The Bucephalidae is a large family of digenean trematodes but most previous analyses of its phylogenetic position have relied on a single mitochondrial gene or morphological features. Mitochondrial genomes (mitogenomes) remain unavailable for the entire family. To address this, we sequenced the complete mitogenome of Dollfustrema vaneyi and analyzed the phylogenetic relationships with other trematodes. RESULTS The circular genome of Dollfustrema vaneyi spanned 14,959 bp and contained 12 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes, and a major non-coding region. We used concatenated amino acid and nucleotide sequences of all 36 genes for phylogenetic analyses, conducted using MrBayes, IQ-TREE and PhyloBayes. We identified pronounced topological instability across different analyses. The addition of recently sequenced two mitogenomes for the Aspidogastrea subclass along with the use of a site-heterogeneous model stabilized the topology, particularly the positions of Azygiidae and Bucephalidae. The stabilized results indicated that Azygiidae was the closest lineage to Bucephalidae in the available dataset, and together, they clustered at the base of the Plagiorchiida. CONCLUSIONS Our study provides the first comprehensive description and annotation of the mitochondrial genome for the Bucephalidae family. The results indicate a close phylogenetic relationship between Azygiidae and Bucephalidae, and reveal their basal placement within the order Plagiorchiida. Furthermore, the inclusion of Aspidogastrea mitogenomes and the site-heterogeneous model significantly improved the topological stability. These data will provide key molecular resources for future taxonomic and phylogenetic studies of the family Bucephalidae.
Collapse
Affiliation(s)
- Ye Hu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, and College of Ecology, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Tong Ye
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, and College of Ecology, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Hong Zou
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China
| | - Gui-Tang Wang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China
| | - Wen-Xiang Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China.
| | - Dong Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, and College of Ecology, Lanzhou University, Lanzhou, 730000, People's Republic of China.
- Key Laboratory of Biodiversity and Environment On the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa, 850011, China.
| |
Collapse
|
16
|
Li Z, Han Y, Li Y, Wu W, Lei J, Wang D, Lin Y, Wang X. Whole Mitochondrial Genome Sequencing and Phylogenetic Tree Construction for Procypris mera (Lin 1933). Animals (Basel) 2024; 14:2672. [PMID: 39335261 PMCID: PMC11428242 DOI: 10.3390/ani14182672] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Procypris mera (Lin, 1933), also known as the Chinese ink carp, currently has a second-class protection status in China. Understanding the structure and characteristics of mitochondrial genes provides essential information for resource conservation and phylogenetic studies of P. mera. Here, we sequenced the mitochondrial genomes of three P. mera (WYL1-3) from three sites and performed phylogenetic analysis. The generated three genomes were 16,587 bp in length, comprising 13 protein-coding genes (PCGs), 22 tRNAs, two rRNAs, and two non-coding regions (control region (CR), D-loop, and light-stranded replication start OL), with a preference for codons ending in A or C. The mitochondrial genomes of WYL2 and WYL3 were identical, differing from that of WYL1 by only five single-nucleotide polymorphisms (SNPs). All mitochondrial PCGs had Ka/Ks ratios of less than one, suggesting purifying selection. Phylogenetic tree analysis based on amino acid sequences suggested that the genus Puntioplites is sister to all other genera of the subfamily Cyprinidae of China; the genus Procypris forms a monophyletic group; and the genera Carassioides, Carassius, and Cyprinus form a monophyletic group. This study contributes to our understanding of the phylogenetic relationships in subfamily Cyprininae in China and lays the foundation for resource conservation and management of P. mera.
Collapse
Affiliation(s)
- Zhe Li
- College of Fisheries, Hunan Agricultural University, Changsha 410128, China;
- ASEAN Key Laboratory of Comprehensive Exploitation and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquaculture Genetic and Breeding and Healthy Aquaculture of Guangxi, Guangxi Academy of Fishery Sciences, Nanning 530021, China; (Y.H.)
| | - Yaoquan Han
- ASEAN Key Laboratory of Comprehensive Exploitation and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquaculture Genetic and Breeding and Healthy Aquaculture of Guangxi, Guangxi Academy of Fishery Sciences, Nanning 530021, China; (Y.H.)
| | - Yusen Li
- ASEAN Key Laboratory of Comprehensive Exploitation and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquaculture Genetic and Breeding and Healthy Aquaculture of Guangxi, Guangxi Academy of Fishery Sciences, Nanning 530021, China; (Y.H.)
| | - Weijun Wu
- ASEAN Key Laboratory of Comprehensive Exploitation and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquaculture Genetic and Breeding and Healthy Aquaculture of Guangxi, Guangxi Academy of Fishery Sciences, Nanning 530021, China; (Y.H.)
| | - Jianjun Lei
- ASEAN Key Laboratory of Comprehensive Exploitation and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquaculture Genetic and Breeding and Healthy Aquaculture of Guangxi, Guangxi Academy of Fishery Sciences, Nanning 530021, China; (Y.H.)
| | - Dapeng Wang
- ASEAN Key Laboratory of Comprehensive Exploitation and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquaculture Genetic and Breeding and Healthy Aquaculture of Guangxi, Guangxi Academy of Fishery Sciences, Nanning 530021, China; (Y.H.)
| | - Yong Lin
- ASEAN Key Laboratory of Comprehensive Exploitation and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquaculture Genetic and Breeding and Healthy Aquaculture of Guangxi, Guangxi Academy of Fishery Sciences, Nanning 530021, China; (Y.H.)
| | - Xiaoqing Wang
- College of Fisheries, Hunan Agricultural University, Changsha 410128, China;
| |
Collapse
|
17
|
Wu XY, Wang HF, Zou SP, Wang L, Zhu GF, Li DM. Comparative analysis of the complete chloroplast genomes of thirteen Bougainvillea cultivars from South China with implications for their genome structures and phylogenetic relationships. PLoS One 2024; 19:e0310091. [PMID: 39259741 PMCID: PMC11389920 DOI: 10.1371/journal.pone.0310091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 08/23/2024] [Indexed: 09/13/2024] Open
Abstract
Bougainvillea spp., belonging to the Nyctaginaceae family, have high economic and horticultural value in South China. Despite the high similarity in terms of leaf appearance and hybridization among Bougainvillea species, especially Bougainvillea × buttiana, their phylogenetic relationships are very complicated and controversial. In this study, we sequenced, assembled and analyzed thirteen complete chloroplast genomes of Bougainvillea cultivars from South China, including ten B. × buttiana cultivars and three other Bougainvillea cultivars, and identified their phylogenetic relationships within the Bougainvillea genus and other species of the Nyctaginaceae family for the first time. These 13 chloroplast genomes had typical quadripartite structures, comprising a large single-copy (LSC) region (85,169-85,695 bp), a small single-copy (SSC) region (18,050-21,789 bp), and a pair of inverted-repeat (IR) regions (25,377-25,426 bp). These genomes each contained 112 different genes, including 79 protein-coding genes, 29 tRNAs and 4 rRNAs. The gene content, codon usage, simple sequence repeats (SSRs), and long repeats were essentially conserved among these 13 genomes. Single-nucleotide polymorphisms (SNPs) and insertions/deletions (indels) were detected among these 13 genomes. Four divergent regions, namely, trnH-GUG_psbA, trnS-GCU_trnG-UCC-exon1, trnS-GGA_rps4, and ccsA_ndhD, were identified from the comparative analysis of 16 Bougainvillea cultivar genomes. Among the 46 chloroplast genomes of the Nyctaginaceae family, nine genes, namely, rps12, rbcL, ndhF, rpoB, rpoC2, ndhI, psbT, ycf2, and ycf3, were found to be under positive selection at the amino acid site level. Phylogenetic relationships within the Bougainvillea genus and other species of the Nyctaginaceae family based on complete chloroplast genomes and protein-coding genes revealed that the Bougainvillea genus was a sister to the Belemia genus with strong support and that 35 Bougainvillea individuals were divided into 4 strongly supported clades, namely, Clades Ⅰ, Ⅱ, Ⅲ and Ⅳ. Clade Ⅰ included 6 individuals, which contained 2 cultivars, namely, B. × buttiana 'Gautama's Red' and B. spectabilis 'Flame'. Clades Ⅱ only contained Bougainvillea spinosa. Clade Ⅲ comprised 7 individuals of wild species. Clade Ⅳ included 21 individuals and contained 11 cultivars, namely, B. × buttiana 'Mahara', B. × buttiana 'California Gold', B. × buttiana 'Double Salmon', B. × buttiana 'Double Yellow', B. × buttiana 'Los Banos Beauty', B. × buttiana 'Big Chitra', B. × buttiana 'San Diego Red', B. × buttiana 'Barbara Karst', B. glabra 'White Stripe', B. spectabilis 'Splendens' and B. × buttiana 'Miss Manila' sp. 1. In conclusion, this study not only provided valuable genome resources but also helped to identify Bougainvillea cultivars and understand the chloroplast genome evolution of the Nyctaginaceae family.
Collapse
Affiliation(s)
- Xiao-Ye Wu
- Research Institute of Living Environment, Guangdong Bailin Ecology and Technology Co., Ltd., Dongguan, China
| | - He-Fa Wang
- Xiamen Qianrihong Horticulture Co., Ltd., Xiamen, China
| | - Shui-Ping Zou
- Research Institute of Living Environment, Guangdong Bailin Ecology and Technology Co., Ltd., Dongguan, China
| | - Lan Wang
- Research Institute of Living Environment, Guangdong Bailin Ecology and Technology Co., Ltd., Dongguan, China
| | - Gen-Fa Zhu
- Guangdong Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Dong-Mei Li
- Guangdong Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
18
|
Kou YX, Liu ML, López-Pujol J, Zhang QJ, Zhang ZY, Li ZH. Contrasting demographic history and mutational load in three threatened whitebark pines (Pinus subsect. Gerardianae): implications for conservation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2967-2981. [PMID: 39115017 DOI: 10.1111/tpj.16965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/12/2024] [Accepted: 07/25/2024] [Indexed: 11/15/2024]
Abstract
Demographic history and mutational load are of paramount importance for the adaptation of the endangered species. However, the effects of population evolutionary history and genetic load on the adaptive potential in endangered conifers remain unclear. Here, using population transcriptome sequencing, whole chloroplast genomes and mitochondrial DNA markers, combined with niche analysis, we determined the demographic history and mutational load for three threatened whitebark pines having different endangered statuses, Pinus bungeana, P. gerardiana and P. squamata. Demographic inference indicated that severe bottlenecks occurred in all three pines at different times, coinciding with periods of major climate and geological changes; in contrast, while P. bungeana experienced a recent population expansion, P. gerardiana and P. squamata maintained small population sizes after bottlenecking. Abundant homozygous-derived variants accumulated in the three pines, particularly in P. squamata, while the species with most heterozygous variants was P. gerardiana. Abundant moderately and few highly deleterious variants accumulated in the pine species that have experienced the most severe demographic bottlenecks (P. gerardiana and P. squamata), most likely because of purging effects. Finally, niche modeling showed that the distribution of P. bungeana might experience a significant expansion in the future, and the species' identified genetic clusters are also supported by differences in the ecological niche. The integration of genomic, demographic and niche data has allowed us to prove that the three threatened pines have contrasting patterns of demographic history and mutational load, which may have important implications in their adaptive potential and thus are also key for informing conservation planning.
Collapse
Affiliation(s)
- Yi-Xuan Kou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, Guangxi, 541006, China
| | - Mi-Li Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Jordi López-Pujol
- Botanic Institute of Barcelona (IBB), CSIC-CMCNB, Barcelona, Catalonia, 08038, Spain
- Escuela de Ciencias Ambientales, Universidad Espíritu Santo (UEES), Samborondón, 091650, Ecuador
| | - Qi-Jing Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Zhi-Yong Zhang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, Guangxi, 541006, China
| | - Zhong-Hu Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| |
Collapse
|
19
|
Qi Z, Shi J, Yu Y, Yin G, Zhou X, Yu Y. Paternal Mitochondrial DNA Leakage in Natural Populations of Large-Scale Loach, Paramisgurnus dabryanus. BIOLOGY 2024; 13:604. [PMID: 39194542 DOI: 10.3390/biology13080604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024]
Abstract
Animal mitochondrial DNA is usually considered to comply with strict maternal inheritance, and only one mitochondrial DNA haplotype exists in an individual. However, mitochondrial heteroplasmy, the occurrence of more than one mitochondrial haplotype, has recently been reported in some animals, such as mice, mussels, and birds. This study conducted extensive field surveys to obtain representative samples to investigate the existence of paternal inheritance of mitochondrial DNA (mtDNA) in natural fish populations. Evidence of paternal mitochondrial DNA leakage of P. dabryanus was discovered using high-throughput sequencing and bioinformatics methods. Two distinct mitochondrial haplotypes (16,569 bp for haplotype I and 16,646 bp for haplotype II) were observed, differing by 18.83% in nucleotide sequence. Phylogenetic analysis suggests divergence between these haplotypes and potential interspecific hybridization with M. anguillicaudatus, leading to paternal leakage. In natural populations of P. dabryanus along the Yangtze River, both haplotypes are present, with Type I being dominant (75% copy number). Expression analysis shows that Type I has higher expression levels of ND3 and ND6 genes compared to Type II, suggesting Type I's primary role. This discovery of a species with two mitochondrial types provides a model for studying paternal leakage heterogeneity and insights into mitochondrial genome evolution and inheritance.
Collapse
Affiliation(s)
- Zixin Qi
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiaoxu Shi
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
- Agronomy and Life Science Department, Zhaotong University, Zhaotong 657000, China
| | - Yue Yu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Guangmei Yin
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoyun Zhou
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongyao Yu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
20
|
Qu J, Lu X, Teng X, Xing Z, Wang S, Feng C, Wang X, Wang L. Mitochondrial Genomes of Streptopelia decaocto: Insights into Columbidae Phylogeny. Animals (Basel) 2024; 14:2220. [PMID: 39123752 PMCID: PMC11310995 DOI: 10.3390/ani14152220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/18/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
In this research, the mitochondrial genome of the Streptopelia decaocto was sequenced and examined for the first time to enhance the comprehension of the phylogenetic relationships within the Columbidae. The complete mitochondrial genome of Streptopelia decaocto (17,160 bp) was structurally similar to the recognized members of the Columbidae family, but with minor differences in gene size and arrangement. The structural AT content was 54.12%. Additionally, 150 mitochondrial datasets, representing valid species, were amassed in this investigation. Maximum likelihood (ML) and Bayesian inference (BI) phylogenetic trees and evolutionary time relationships of species were reconstructed based on cytb gene sequences. The findings from the phylogenetic evaluations suggest that the S. decaocto was classified under the Columbinae subfamily, diverging from the Miocene approximately 8.1 million years ago, indicating intricate evolutionary connections with its close relatives, implying a history of species divergence and geographic isolation. The diversification of the Columbidae commenced during the Late Oligocene and extended into the Miocene. This exploration offers crucial molecular data for the S. decaocto, facilitating the systematic taxonomic examination of the Columbidae and Columbiformes, and establishing a scientific foundation for species preservation and genetic resource management.
Collapse
Affiliation(s)
- Jiangyong Qu
- College of Life Science, Yantai University, Yantai 264005, China; (J.Q.); (X.L.); (Z.X.); (S.W.); (C.F.)
| | - Xiaofei Lu
- College of Life Science, Yantai University, Yantai 264005, China; (J.Q.); (X.L.); (Z.X.); (S.W.); (C.F.)
| | - Xindong Teng
- Qingdao International Travel Healthcare Center, Qingdao 266071, China;
| | - Zhikai Xing
- College of Life Science, Yantai University, Yantai 264005, China; (J.Q.); (X.L.); (Z.X.); (S.W.); (C.F.)
| | - Shuang Wang
- College of Life Science, Yantai University, Yantai 264005, China; (J.Q.); (X.L.); (Z.X.); (S.W.); (C.F.)
| | - Chunyu Feng
- College of Life Science, Yantai University, Yantai 264005, China; (J.Q.); (X.L.); (Z.X.); (S.W.); (C.F.)
| | - Xumin Wang
- College of Life Science, Yantai University, Yantai 264005, China; (J.Q.); (X.L.); (Z.X.); (S.W.); (C.F.)
| | - Lijun Wang
- College of Life Science, Yantai University, Yantai 264005, China; (J.Q.); (X.L.); (Z.X.); (S.W.); (C.F.)
| |
Collapse
|
21
|
Li DM, Pan YG, Wu XY, Zou SP, Wang L, Zhu GF. Comparative chloroplast genomics, phylogenetic relationships and molecular markers development of Aglaonema commutatum and seven green cultivars of Aglaonema. Sci Rep 2024; 14:11820. [PMID: 38783007 PMCID: PMC11116548 DOI: 10.1038/s41598-024-62586-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
Aglaonema commutatum is a famous species in the Aglaonema genus, which has important ornamental and economic value. However, its chloroplast genome information and phylogenetic relationships among popular green cultivars of Aglaonema in southern China have not been reported. Herein, chloroplast genomes of one variety of A. commutatum and seven green cultivars of Aglaonema, namely, A. commutatum 'San Remo', 'Kai Sa', 'Pattaya Beauty', 'Sapphire', 'Silver Queen', 'Snow White', 'White Gem', and 'White Horse Prince', were sequenced and assembled for comparative analysis and phylogeny. These eight genomes possessed a typical quadripartite structure that consisted of a LSC region (90,799-91,486 bp), an SSC region (20,508-21,137 bp) and a pair of IR regions (26,661-26,750 bp). Each genome contained 112 different genes, comprising 79 protein-coding genes, 29 tRNA genes and 4 rRNA genes. The gene orders, GC contents, codon usage frequency, and IR/SC boundaries were highly conserved among these eight genomes. Long repeats, SSRs, SNPs and indels were analyzed among these eight genomes. Comparative analysis of 15 Aglaonema chloroplast genomes identified 7 highly variable regions, including trnH-GUG-exon1-psbA, trnS-GCU-trnG-UCC-exon1, trnY-GUA-trnE-UUC, psbC-trnS-UGA, trnF-GAA-ndhJ, ccsA-ndhD, and rps15-ycf1-D2. Reconstruction of the phylogenetic trees based on chloroplast genomes, strongly supported that Aglaonema was a sister to Anchomanes, and that the Aglaonema genus was classified into two sister clades including clade I and clade II, which corresponded to two sections, Aglaonema and Chamaecaulon, respectively. One variety and five cultivars, including A. commutatum 'San Remo', 'Kai Sa', 'Pattaya Beauty', 'Silver Queen', 'Snow White', and 'White Horse Prince', were classified into clade I; and the rest of the two cultivars, including 'Sapphire' and 'White Gem', were classified into clade II. Positive selection was observed in 34 protein-coding genes at the level of the amino acid sites among 77 chloroplast genomes of the Araceae family. Based on the highly variable regions and SSRs, 4 DNA markers were developed to differentiate the clade I and clade II in Aglaonema. In conclusion, this study provided chloroplast genomic resources for Aglaonema, which were useful for its classification and phylogeny.
Collapse
Affiliation(s)
- Dong-Mei Li
- Guangdong Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China.
| | - Yan-Gu Pan
- Guangdong Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiao-Ye Wu
- Research Institute of Living Environment, Guangdong Bailin Ecology and Technology Co., LTD, Dongguan, China
| | - Shui-Ping Zou
- Research Institute of Living Environment, Guangdong Bailin Ecology and Technology Co., LTD, Dongguan, China
| | - Lan Wang
- Research Institute of Living Environment, Guangdong Bailin Ecology and Technology Co., LTD, Dongguan, China
| | - Gen-Fa Zhu
- Guangdong Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China.
| |
Collapse
|
22
|
Lin Y, Yao G, Huang C, Chao Z, Tian E. Molecular evidence provides new insights into the evolutionary origin of an ancient traditional Chinese medicine, the domesticated "Baizhi". FRONTIERS IN PLANT SCIENCE 2024; 15:1388586. [PMID: 38779069 PMCID: PMC11110842 DOI: 10.3389/fpls.2024.1388586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024]
Abstract
Introduction "Baizhi" is a famous herbal medicine in China, and it includes four landraces named as 'Hangbaizhi', 'Chuanbaizhi', 'Qibaizhi', and 'Yubaizhi'. Long-term artificial selection had caused serious degradation of these germplasms. Determining the wild progenitor of the landraces would be benefit for their breed improvements. Previous studies have suggested Angelica dahurica var. dahurica, A. dahurica var. formosana, or A. porphyrocaulis as potential candidates, but the conclusion remains uncertain, and their phylogenetic relationships are still in controversy. Methods In this study, the genetic variation and phylogenetic analyses of these species and four landraces were conducted on the basis of both the nrITS and plastome datasets. Results Genetic variation analysis showed that all 8 population of four landraces shared only one ITS haplotype, meanwhile extremely low variation occurred within 6 population at plastid genome level. Both datasets supported the four landraces might be originated from a single wild germplasm. Phylogenetic analyses with both datasets revealed largely consistent topology using Bayesian inference and Maximum likelihood methods. Samples of the four landraces and all wild A. dahurica var. dahurica formed a highly supported monophyletic clade, and then sister to the monophyly clade comprised by samples of A. porphyrocaulis, while four landraces were clustered into one clade, which further clustered with a mixed branches of A. porphyrocaulis and A. dahurica var. dahurica to form sister branches for plastid genomes. Furthermore, the monophyletic A. dahurica var. formosana was far distant from the A. dahurica var. dahurica-"Baizhi" clade in Angelica phylogeny. Such inferences was also supported by the evolutionary patterns of nrITS haplotype network and K2P genetic distances. The outcomes indicated A. dahurica var. dahurica is most likely the original plant of "Baizhi". Discussion Considering of phylogenetic inference and evolutionary history, the species-level status of A. dahurica var. formosana should be accepted, and the taxonomic level and phylgenetic position of A. porphyrocaulis should be further confirmed. This study preliminarily determined the wild progenitor of "Baizhi" and clarified the phylogenetic relationships among A. dahurica var. dahurica, A. dahurica var. formosana and A. porphyrocaulis, which will provide scientific guidance for wild resources protections and improvement of "Baizhi".
Collapse
Affiliation(s)
- Yingyu Lin
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Gang Yao
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Chunxiu Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zhi Chao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Enwei Tian
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, China
- Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Southern Medical University, Guangzhou, China
| |
Collapse
|
23
|
Li Y, Yi H, Zhu Y. Novel insights into adaptive evolution based on the unusual AT-skew in Acheilognathus gracilis mitogenome and phylogenetic relationships of bitterling. Gene 2024; 902:148154. [PMID: 38218382 DOI: 10.1016/j.gene.2024.148154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/20/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Acheilognathus gracilis, a bitterling species, distribute in lower reaches of Yangtze River. They are identified as the top-priority bitterling species for conservation as having high evolutionary distinctiveness and are at risk of extinction. In present study, we first sequenced the complete mitogenome of A. gracilis and analyzed its phylogenetic position using 13 PCGs. The A. gracilis mitogenome is 16,774 bp in length, including 13 protein-coding genes, 2 ribosomal RNAs, 22 transfer RNAs, a control region and the origin of the light strand replication. The overall base composition of A. gracilis in descending order is T 27.9 %, A 27.7 %, C 26.1 % and G 18.3 %, shows a unusual AT-skew with slightly negative. Further investigation revealed A. gracilis uses excess T over A in NADH dehydrogenase 5 (nd5), whereas the most of other bitterlings are biased toward to use A not T, implying there is likely to be unique strategy of adaptive evolution in A. gracilis. We also compared 13 PCGs of 30 bitterling mitogenomes and the results exhibit highly conservative. Phylogenetic trees constructed by 13 PCGs strongly support the monophyly of Acheilognathus and the paraphyly of Rhodeus and Tanakia. Current results will provide valuable information for follow-up research on conservation of species facing with serious population decline and can provide novel insights into the phylogenetic analysis and evolutionary biology research.
Collapse
Affiliation(s)
- Yuxuan Li
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongbo Yi
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Yurong Zhu
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Hubei, China.
| |
Collapse
|
24
|
Choi TY, Lee SR. Complete plastid genome of Iris orchioides and comparative analysis with 19 Iris plastomes. PLoS One 2024; 19:e0301346. [PMID: 38578735 PMCID: PMC10997070 DOI: 10.1371/journal.pone.0301346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/14/2024] [Indexed: 04/07/2024] Open
Abstract
Iris is a cosmopolitan genus comprising approximately 280 species distributed throughout the Northern Hemisphere. Although Iris is the most diverse group in the Iridaceae, the number of taxa is debatable owing to various taxonomic issues. Plastid genomes have been widely used for phylogenetic research in plants; however, only limited number of plastid DNA markers are available for phylogenetic study of the Iris. To understand the genomic features of plastids within the genus, including its structural and genetic variation, we newly sequenced and analyzed the complete plastid genome of I. orchioides and compared it with those of 19 other Iris taxa. Potential plastid markers for phylogenetic research were identified by computing the sequence divergence and phylogenetic informativeness. We then tested the utility of the markers with the phylogenies inferred from the markers and whole-plastome data. The average size of the plastid genome was 152,926 bp, and the overall genomic content and organization were nearly identical among the 20 Iris taxa, except for minor variations in the inverted repeats. We identified 10 highly informative regions (matK, ndhF, rpoC2, ycf1, ycf2, rps15-ycf, rpoB-trnC, petA-psbJ, ndhG-ndhI and psbK-trnQ) and inferred a phylogeny from each region individually, as well as from their concatenated data. Remarkably, the phylogeny reconstructed from the concatenated data comprising three selected regions (rpoC2, ycf1 and ycf2) exhibited the highest congruence with the phylogeny derived from the entire plastome dataset. The result suggests that this subset of data could serve as a viable alternative to the complete plastome data, especially for molecular diagnoses among closely related Iris taxa, and at a lower cost.
Collapse
Affiliation(s)
- Tae-Young Choi
- Department of Biology Education, Chosun University, Gwangju, South Korea
| | - Soo-Rang Lee
- Department of Biology Education, Chosun University, Gwangju, South Korea
| |
Collapse
|
25
|
Peng C, Liao D, Liu K, Wang X, Guo W. The complete chloroplast genome sequence of Calanthe sieboldii (orchidaceae). Mitochondrial DNA B Resour 2024; 9:314-317. [PMID: 38450411 PMCID: PMC10913714 DOI: 10.1080/23802359.2024.2324927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/24/2024] [Indexed: 03/08/2024] Open
Abstract
Calanthe sieboldii Decne. ex Regel is a terrestrial orchid with high ornamental and commercial value. In the present study, the chloroplast genome of C. sieboldii was characterized using Illumina technology. The chloroplast genome is 158,345 bp in length with a total AT content of 63.28%. There are 127 genes, comprising 37 tRNA genes, 82 protein-coding genes, and 8 rRNA genes. Phylogenetic relationship analysis was performed using common protein-coding genes extracted from 13 chloroplast genomes of Orchidaceae. It was revealed that C. sieboldi was sister to C. hancockii and closely clustered with C. aristulifera and C. henryi. These findings provide valuable genomic resources that are helpful for further phylogenetic and evolutionary studies of Calanthe.
Collapse
Affiliation(s)
- Cuiying Peng
- Hunan Academy of Forestry, Changsha, P. R. China
| | - Dezhi Liao
- Hunan Academy of Forestry, Changsha, P. R. China
| | - Kun Liu
- Jindong Forest Farm of Yongzhou City, Yongzhou, P. R. China
| | - Xujun Wang
- Hunan Academy of Forestry, Changsha, P. R. China
| | - Wei Guo
- Taishan Academy of Forestry Sciences, Taian, P. R. China
| |
Collapse
|
26
|
Jost M, Wanke S. A comparative analysis of plastome evolution in autotrophic Piperales. AMERICAN JOURNAL OF BOTANY 2024; 111:e16300. [PMID: 38469876 DOI: 10.1002/ajb2.16300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 03/13/2024]
Abstract
PREMISE Many plastomes of autotrophic Piperales have been reported to date, describing a variety of differences. Most studies focused only on a few species or a single genus, and extensive, comparative analyses have not been done. Here, we reviewed publicly available plastome reconstructions for autotrophic Piperales, reanalyzed publicly available raw data, and provided new sequence data for all previously missing genera. Comparative plastome genomics of >100 autotrophic Piperales were performed. METHODS We performed de novo assemblies to reconstruct the plastomes of newly generated sequence data. We used Sanger sequencing and read mapping to verify the assemblies and to bridge assembly gaps. Furthermore, we reconstructed the phylogenetic relationships as a foundation for comparative plastome genomics. RESULTS We identified a plethora of assembly and annotation issues in published plastome data, which, if unattended, will lead to an artificial increase of diversity. We were able to detect patterns of missing and incorrect feature annotation and determined that the inverted repeat (IR) boundaries were the major source for erroneous assembly. Accounting for the aforementioned issues, we discovered relatively stable junctions of the IRs and the small single-copy region (SSC), whereas the majority of plastome variations among Piperales stems from fluctuations of the boundaries of the IR and the large single-copy (LSC) region. CONCLUSIONS This study of all available plastomes of autotrophic Piperales, expanded by new data for previously missing genera, highlights the IR-LSC junctions as a potential marker for discrimination of various taxonomic levels. Our data indicates a pseudogene-like status for cemA and ycf15 in various Piperales. Based on a review of published data, we conclude that incorrect IR-SSC boundary identification is the major source for erroneous plastome assembly. We propose a gold standard for assembly and annotation of high-quality plastomes based on de novo assembly methods and appropriate references for gene annotation.
Collapse
Affiliation(s)
- Matthias Jost
- Institut für Botanik, Technische Universität Dresden, Dresden, Germany
- Departamento de Botánica, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Stefan Wanke
- Institut für Botanik, Technische Universität Dresden, Dresden, Germany
- Departamento de Botánica, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Botanik und Molekulare Evolutionsforschung, Senckenberg Forschungsinstitut und Naturmuseum, Frankfurt am Main, Germany
- Institut für Ökologie, Evolution und Biodiversität, Goethe-Universität, Frankfurt am Main, Germany
| |
Collapse
|
27
|
Wu Y, Zeng MY, Wang HX, Lan S, Liu ZJ, Zhang S, Li MH, Guan Y. The Complete Chloroplast Genomes of Bulbophyllum (Orchidaceae) Species: Insight into Genome Structure Divergence and Phylogenetic Analysis. Int J Mol Sci 2024; 25:2665. [PMID: 38473912 DOI: 10.3390/ijms25052665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Bulbophyllum is one of the largest genera and presents some of the most intricate taxonomic problems in the family Orchidaceae, including species of ornamental and medical importance. The lack of knowledge regarding the characterization of Bulbophyllum chloroplast (cp) genomes has imposed current limitations on our study. Here, we report the complete cp genomes of seven Bulbophyllum species, including B. ambrosia, B. crassipes, B. farreri, B. hamatum, B. shanicum, B. triste, and B. violaceolabellum, and compared with related taxa to provide a better understanding of their genomic information on taxonomy and phylogeny. A total of 28 Bulbophyllum cp genomes exhibit typical quadripartite structures with lengths ranging from 145,092 bp to 165,812 bp and a GC content of 36.60% to 38.04%. Each genome contained 125-132 genes, encompassing 74-86 protein-coding genes, 38 tRNA genes, and eight rRNA genes. The genome arrangements, gene contents, and length were similar, with differences observed in ndh gene composition. It is worth noting that there were exogenous fragment insertions in the IR regions of B. crassipes. A total of 18-49 long repeats and 38-80 simple sequence repeats (SSRs) were detected and the single nucleotide (A/T) was dominant in Bulbophyllum cp genomes, with an obvious A/T preference. An analysis of relative synonymous codon usage (RSCU) revealed that leucine (Leu) was the most frequently used codon, while cysteine (Cys) was the least used. Six highly variable regions (rpl32-trnLUAG > trnTUGU-trnLUAA > trnFGAA-ndhJ > rps15-ycf1 > rbcL-accD > psbI-trnSGCU) and five coding sequences (ycf1 > rps12 > matK > psbK > rps15) were identified as potential DNA markers based on nucleotide diversity. Additionally, 31,641 molecular diagnostic characters (MDCs) were identified in complete cp genomes. A phylogenetic analysis based on the complete cp genome sequences and 68 protein-coding genes strongly supported that 28 Bulbophyllum species can be divided into four branches, sects. Brachyantha, Cirrhopetalum, and Leopardinae, defined by morphology, were non-monophyly. Our results enriched the genetic resources of Bulbophyllum, providing valuable information to illustrate the complicated taxonomy, phylogeny, and evolution process of the genus.
Collapse
Affiliation(s)
- Yuwei Wu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meng-Yao Zeng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huan-Xin Wang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Siren Lan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shibao Zhang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Ming-He Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yunxiao Guan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
28
|
Wang R, Yang Y, Tian H, Yi H, Xu L, Lv Y, Ge J, Zhao Y, Wang L, Zhou S, Wang F. A Scalable and Robust Chloroplast Genotyping Solution: Development and Application of SNP and InDel Markers in the Maize Chloroplast Genome. Genes (Basel) 2024; 15:293. [PMID: 38540352 PMCID: PMC10970264 DOI: 10.3390/genes15030293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 06/14/2024] Open
Abstract
Maize(Zea mays. L) is a globally important crop, and understanding its genetic diversity is crucial for plant breeding phylogenetic analyses and comparative genetics. While nuclear markers have been extensively used for mapping agriculturally important genes, they are limited in recognizing characteristics, such as cytoplasmic male sterility and reciprocal cross hybrids. In this study, we performed next-generation sequencing of 176samples, and the maize cultivars represented five distinct groups. A total of 89 single nucleotide polymorphisms (SNPs) and 11 insertion/deletion polymorphisms (InDels) were identified. To enable high-throughput detection, we successfully amplified and confirmed 49 SNP and InDel markers, which were defined as a Varietal Chloroplast Panel (VCP) using the Kompetitive Allele Specific PCR (KASP). The specific markers provided a valuable tool for identifying chloroplast groups. The verification experiment, focusing on the identification of reciprocal cross hybrids and cytoplasmic male sterility hybrids, demonstrated the significant advantages of VCP markers in maternal inheritance characterization. Furthermore, only a small subset of these markers is needed to provide useful information, showcasing the effectiveness of these markers in elucidating the artificial selection process of elite maize lines.
Collapse
Affiliation(s)
- Rui Wang
- Maize Research Institute, Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Key Laboratory of Crop DNA Fingerprinting Innovation and Utilization (Co-construction by Ministry and Province), Beijing Academy of Agricultural and Forest Sciences (BAAFS), Beijing 100097, China; (R.W.); (Y.Y.); (H.T.); (H.Y.); (L.X.); (J.G.); (Y.Z.); (L.W.)
| | - Yang Yang
- Maize Research Institute, Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Key Laboratory of Crop DNA Fingerprinting Innovation and Utilization (Co-construction by Ministry and Province), Beijing Academy of Agricultural and Forest Sciences (BAAFS), Beijing 100097, China; (R.W.); (Y.Y.); (H.T.); (H.Y.); (L.X.); (J.G.); (Y.Z.); (L.W.)
| | - Hongli Tian
- Maize Research Institute, Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Key Laboratory of Crop DNA Fingerprinting Innovation and Utilization (Co-construction by Ministry and Province), Beijing Academy of Agricultural and Forest Sciences (BAAFS), Beijing 100097, China; (R.W.); (Y.Y.); (H.T.); (H.Y.); (L.X.); (J.G.); (Y.Z.); (L.W.)
| | - Hongmei Yi
- Maize Research Institute, Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Key Laboratory of Crop DNA Fingerprinting Innovation and Utilization (Co-construction by Ministry and Province), Beijing Academy of Agricultural and Forest Sciences (BAAFS), Beijing 100097, China; (R.W.); (Y.Y.); (H.T.); (H.Y.); (L.X.); (J.G.); (Y.Z.); (L.W.)
| | - Liwen Xu
- Maize Research Institute, Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Key Laboratory of Crop DNA Fingerprinting Innovation and Utilization (Co-construction by Ministry and Province), Beijing Academy of Agricultural and Forest Sciences (BAAFS), Beijing 100097, China; (R.W.); (Y.Y.); (H.T.); (H.Y.); (L.X.); (J.G.); (Y.Z.); (L.W.)
| | - Yuanda Lv
- Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Jianrong Ge
- Maize Research Institute, Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Key Laboratory of Crop DNA Fingerprinting Innovation and Utilization (Co-construction by Ministry and Province), Beijing Academy of Agricultural and Forest Sciences (BAAFS), Beijing 100097, China; (R.W.); (Y.Y.); (H.T.); (H.Y.); (L.X.); (J.G.); (Y.Z.); (L.W.)
| | - Yikun Zhao
- Maize Research Institute, Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Key Laboratory of Crop DNA Fingerprinting Innovation and Utilization (Co-construction by Ministry and Province), Beijing Academy of Agricultural and Forest Sciences (BAAFS), Beijing 100097, China; (R.W.); (Y.Y.); (H.T.); (H.Y.); (L.X.); (J.G.); (Y.Z.); (L.W.)
| | - Lu Wang
- Maize Research Institute, Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Key Laboratory of Crop DNA Fingerprinting Innovation and Utilization (Co-construction by Ministry and Province), Beijing Academy of Agricultural and Forest Sciences (BAAFS), Beijing 100097, China; (R.W.); (Y.Y.); (H.T.); (H.Y.); (L.X.); (J.G.); (Y.Z.); (L.W.)
| | - Shiliang Zhou
- State Key Laboratory of Systematic and Evolutionary Botany (LSEB), Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Fengge Wang
- Maize Research Institute, Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Key Laboratory of Crop DNA Fingerprinting Innovation and Utilization (Co-construction by Ministry and Province), Beijing Academy of Agricultural and Forest Sciences (BAAFS), Beijing 100097, China; (R.W.); (Y.Y.); (H.T.); (H.Y.); (L.X.); (J.G.); (Y.Z.); (L.W.)
| |
Collapse
|
29
|
Lubna, Asaf S, Jan R, Asif S, Bilal S, Khan AL, Al-Rawahi AN, Kim KM, Al-Harrasi A. The complete plastome sequences of invasive weed Parthenium hysterophorus: genome organization, evolutionary significance, structural features, and comparative analysis. Sci Rep 2024; 14:4006. [PMID: 38369569 PMCID: PMC10874969 DOI: 10.1038/s41598-024-54503-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/13/2024] [Indexed: 02/20/2024] Open
Abstract
Parthenium hysterophorus, a globally widespread weed, poses a significant threat to agricultural ecosystems due to its invasive nature. We investigated the chloroplast genome of P. hysterophorus in this study. Our analysis revealed that the chloroplast genome of P. hysterophorus spans a length of 151,881 base pairs (bp). It exhibits typical quadripartite structure commonly found in chloroplast genomes, including inverted repeat regions (IR) of 25,085 bp, a small single copy (SSC) region of 18,052 bp, and a large single copy (LSC) region of 83,588 bp. A total of 129 unique genes were identified in P. hysterophorus chloroplast genomes, including 85 protein-coding genes, 36 tRNAs, and eight rRNAs genes. Comparative analysis of the P. hysterophorus plastome with those of related species from the tribe Heliantheae revealed both conserved structures and intriguing variations. While many structural elements were shared among the species, we identified a rearrangement in the large single-copy region of P. hysterophorus. Moreover, our study highlighted notable gene divergence in several specific genes, namely matK, ndhF, clpP, rps16, ndhA, rps3, and ndhD. Phylogenetic analysis based on the 72 shared genes placed P. hysterophorus in a distinct clade alongside another species, P. argentatum. Additionally, the estimated divergence time between the Parthenium genus and Helianthus (sunflowers) was approximately 15.1 million years ago (Mya). These findings provide valuable insights into the evolutionary history and genetic relationships of P. hysterophorus, shedding light on its divergence and adaptation over time.
Collapse
Affiliation(s)
- Lubna
- Natural and Medical Sciences Research Center, University of Nizwa, 616, Nizwa, Oman
| | - Sajjad Asaf
- Natural and Medical Sciences Research Center, University of Nizwa, 616, Nizwa, Oman.
| | - Rahmatullah Jan
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Saleem Asif
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Saqib Bilal
- Natural and Medical Sciences Research Center, University of Nizwa, 616, Nizwa, Oman.
| | - Abdul Latif Khan
- Department of Engineering Technology, University of Houston, Sugar Land, TX, 77479, USA
| | - Ahmed N Al-Rawahi
- Natural and Medical Sciences Research Center, University of Nizwa, 616, Nizwa, Oman
| | - Kyung-Min Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, 616, Nizwa, Oman.
| |
Collapse
|
30
|
Ha YH, Chang KS, Gil HY. Characteristics of chloroplast and mitochondrial genomes and intracellular gene transfer in the Korean endemic shrub, Sophora koreensis Nakai (Fabaceae). Gene 2024; 894:147963. [PMID: 37926173 DOI: 10.1016/j.gene.2023.147963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023]
Abstract
Sophora koreensis Nakai, an endemic species distributed only in the Korean Peninsula, is of great geographical, economic, and taxonomic importance. Although its complete chloroplast (cp) genome sequence has been reported, its mitochondrial (mt) genome sequence has not yet been studied. Therefore, in this study, we aimed to investigate its mt genome sequence and compare it with those reported for other Fabaceae species. Total genomic DNA was extracted from fresh S. koreensis leaves collected from natural habitats in Gangwon-do Province, South Korea. This was followed by polymerase chain reaction (PCR) amplification of cpDNA insertions in the mt genome and the detection of microsatellites and dispersed repeats in the cp and mt genomes. Finally, the cp and mt genomes of S. koreensis were compared with those reported for other Fabaceae species. The cp sequence of S. koreensis showed identical gene orders and contents as those previously reported. Only six substitutions and one deletion were detected with 99 % homology. Conversely, the complete mt genome sequence, which was 517,845 bp in length and encoded 61 genes, including 43 protein-coding, 15 transfer RNAs, and 3 ribosomal RNA genes, was considerably different from that of S. japonica in terms of gene order and composition. Further, the mt genome of S. koreensis included ca. 7 and 3 kb insertions, representing an intracellular gene transfer (IGT) event, and the regions with these insertions were determined to be originally present in the cp genome. This IGT event was also confirmed via PCR amplification. IGT events can be induced via biological gene expression control or the use of repetitive sequences, and they provide important insights into the evolutionary lineage of S. koreensis. However, further studies are needed to clarify the gene transfer mechanisms between the two organelles.
Collapse
Affiliation(s)
- Young-Ho Ha
- Division of Forest Biodiversity, Korea National Arboretum, Pocheon-si, Gyeonggi-do 11186, Republic of Korea
| | - Kae Sun Chang
- DMZ Botanic Garden, Korea National Arboretum, Yanggu-gun, Gangwon-do 24564, Republic of Korea
| | - Hee-Young Gil
- Division of Forest Biodiversity, Korea National Arboretum, Pocheon-si, Gyeonggi-do 11186, Republic of Korea.
| |
Collapse
|
31
|
Lubna, Asaf S, Jan R, Asif S, Bilal S, Khan AL, Kim KM, Lee IJ, Al-Harrasi A. Plastome diversity and evolution in mosses: Insights from structural characterization, comparative genomics, and phylogenetic analysis. Int J Biol Macromol 2024; 257:128608. [PMID: 38065441 DOI: 10.1016/j.ijbiomac.2023.128608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 11/09/2023] [Accepted: 11/27/2023] [Indexed: 01/27/2024]
Abstract
Mosses play a significant role in ecology, evolution, and the economy. They belong to the nonvascular plant kingdom and are considered the closest living relatives of the first terrestrial plants. The circular chloroplast DNA molecules (plastomes) of mosses contain all the genetic information essential for chloroplast functions and represent the source of the evolutionary history of these organisms. This study comprehensively analyzed the plastomes of 47 moss species belonging to 14 orders, focusing on their size, GC content, gene loss, gene content, synteny, and evolution. The findings revealed great differences among plastome sizes, with Takakia lepidozioides (Takakiopsida) and Funaria hygrometrica (Funariales) having the largest and smallest plastomes, respectively. Moss plastomes included 69 to 89 protein-coding genes, 8 rRNA genes, and 34 to 42 tRNA genes, resulting in the total number of genes in a plastome ranging between 115 and 138. Various genes have been lost from the plastomes of different moss species, with Atrichum angustatum lacking the highest number of genes. This study also examined plastome synteny and moss evolution using comparative genomics and repeat sequence analysis. The results demonstrated that synteny and similarity levels varied across the 47 moss examined species, with some exhibiting structure similarity and others displaying structural inversions. Maximum likelihood and Bayesian approaches were used to construct a phylogenetic tree using 36 concatenated protein-coding genes, and the results revealed that the genera Sphagnum and Takakia are sister groups to the other mosses. Additionally, it was found that Tetraphidales, Polytrichales, Buxbaumiales, and Diphysciales are closely related. This research describes the evolutionary diversity of mosses and offers guidelines for future studies in this field. The findings also highlight the need for more investigations into the factors regulating plastome size variation in these plants.
Collapse
Affiliation(s)
- Lubna
- Natural and Medical Science Research Center, University of Nizwa, 616 Nizwa, Oman
| | - Sajjad Asaf
- Natural and Medical Science Research Center, University of Nizwa, 616 Nizwa, Oman.
| | - Rahmatullah Jan
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Saleem Asif
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Saqib Bilal
- Natural and Medical Science Research Center, University of Nizwa, 616 Nizwa, Oman
| | - Abdul Latif Khan
- Department of Engineering Technology, University of Houston, Sugar Land, TX, 77479, USA
| | - Kyung-Min Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Ahmed Al-Harrasi
- Natural and Medical Science Research Center, University of Nizwa, 616 Nizwa, Oman.
| |
Collapse
|
32
|
Wang W, Xu T, Lu H, Li G, Gao L, Liu D, Han B, Yi S. Chloroplast genome of Justicia procumbens: genomic features, comparative analysis, and phylogenetic relationships among Justicieae species. J Appl Genet 2024; 65:31-46. [PMID: 38133708 DOI: 10.1007/s13353-023-00812-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/10/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023]
Abstract
Justicia procumbens L. is a traditional medicinal plant that is widely distributed in China. However, little is known about the genetic diversity and evolution of this genus, and no genomic studies have been carried out on J. procumbens previously. In this study, we aimed to assemble and annotate the first complete chloroplast genome (cpDNA) of J. procumbens and compare it with all previously published cpDNAs within the tribe Justicieae. Genome structure and comparative and phylogenetic analyses were performed. The 150,454 bp-long J. procumbens cpDNA has a circular and quadripartite structure consisting of a large single copy, a small single copy, and two inverted repeat regions. It contains 133 genes, of which 88 are protein-coding genes, 37 are tRNA genes, and eight are rRNA genes. Twenty-four simple sequence repeats (SSRs) and 81 repeat sequences were identified. Comparative analyses with other Justicieae species revealed that the non-coding regions of J. procumbens cpDNA showed greater variation than did the coding regions. Moreover, phylogenetic analysis based on 14 cpDNA sequences from Justicieae species showed that J. procumbens and J. flava were most closely related. This study provides valuable genetic information to support further research on the genetic diversity and evolutionary development of the tribe Justicieae.
Collapse
Affiliation(s)
- Wei Wang
- Traditional Chinese Medicine Institute of Anhui Dabie Mountain, West Anhui University, Lu'an, Anhui, China
- Anhui Engineering Research Center for Eco-Agriculture of Traditional Chinese Medicine, West Anhui University, Lu'an, Anhui, China
| | - Tao Xu
- Traditional Chinese Medicine Institute of Anhui Dabie Mountain, West Anhui University, Lu'an, Anhui, China
- Anhui Engineering Research Center for Eco-Agriculture of Traditional Chinese Medicine, West Anhui University, Lu'an, Anhui, China
| | - Haibo Lu
- Traditional Chinese Medicine Institute of Anhui Dabie Mountain, West Anhui University, Lu'an, Anhui, China
- Anhui Engineering Research Center for Eco-Agriculture of Traditional Chinese Medicine, West Anhui University, Lu'an, Anhui, China
| | - Guosi Li
- Traditional Chinese Medicine Institute of Anhui Dabie Mountain, West Anhui University, Lu'an, Anhui, China
- Anhui Engineering Research Center for Eco-Agriculture of Traditional Chinese Medicine, West Anhui University, Lu'an, Anhui, China
| | - Leilei Gao
- Traditional Chinese Medicine Institute of Anhui Dabie Mountain, West Anhui University, Lu'an, Anhui, China
- Anhui Engineering Research Center for Eco-Agriculture of Traditional Chinese Medicine, West Anhui University, Lu'an, Anhui, China
| | - Dong Liu
- Traditional Chinese Medicine Institute of Anhui Dabie Mountain, West Anhui University, Lu'an, Anhui, China
- Anhui Engineering Research Center for Eco-Agriculture of Traditional Chinese Medicine, West Anhui University, Lu'an, Anhui, China
| | - Bangxing Han
- Traditional Chinese Medicine Institute of Anhui Dabie Mountain, West Anhui University, Lu'an, Anhui, China.
- Anhui Engineering Research Center for Eco-Agriculture of Traditional Chinese Medicine, West Anhui University, Lu'an, Anhui, China.
| | - Shanyong Yi
- Traditional Chinese Medicine Institute of Anhui Dabie Mountain, West Anhui University, Lu'an, Anhui, China.
- Anhui Engineering Research Center for Eco-Agriculture of Traditional Chinese Medicine, West Anhui University, Lu'an, Anhui, China.
| |
Collapse
|
33
|
Song BN, Liu CK, Zhao AQ, Tian RM, Xie DF, Xiao YL, Chen H, Zhou SD, He XJ. Phylogeny and diversification of genus Sanicula L. (Apiaceae): novel insights from plastid phylogenomic analyses. BMC PLANT BIOLOGY 2024; 24:70. [PMID: 38263006 PMCID: PMC10807117 DOI: 10.1186/s12870-024-04750-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/12/2024] [Indexed: 01/25/2024]
Abstract
BACKGROUND The genus Sanicula L. is a unique perennial herb that holds important medicinal values. Although the previous studies on Sanicula provided us with a good research basis, its taxonomic system and interspecific relationships have not been satisfactorily resolved, especially for those endemic to China. Moreover, the evolutionary history of this genus also remains inadequately understood. The plastid genomes possessing highly conserved structure and limited evolutionary rate have proved to be an effective tool for studying plant phylogeny and evolution. RESULTS In the current study, we newly sequenced and assembled fifteen Sanicula complete plastomes. Combined with two previously reported plastomes, we performed comprehensively plastid phylogenomics analyses to gain novel insights into the evolutionary history of this genus. The comparative results indicated that the seventeen plastomes exhibited a high degree of conservation and similarity in terms of their structure, size, GC content, gene order, IR borders, codon bias patterns and SSRs profiles. Such as all of them displayed a typical quadripartite structure, including a large single copy region (LSC: 85,074-86,197 bp), a small single copy region (SSC: 17,047-17,132 bp) separated by a pair of inverted repeat regions (IRs: 26,176-26,334 bp). And the seventeen plastomes had similar IR boundaries and the adjacent genes were identical. The rps19 gene was located at the junction of the LSC/IRa, the IRa/SSC junction region was located between the trnN gene and ndhF gene, the ycf1 gene appeared in the SSC/IRb junction and the IRb/LSC boundary was located between rpl12 gene and trnH gene. Twelve specific mutation hotspots (atpF, cemA, accD, rpl22, rbcL, matK, ycf1, trnH-psbA, ycf4-cemA, rbcL-accD, trnE-trnT and trnG-trnR) were identified that can serve as potential DNA barcodes for species identification within the genus Sanicula. Furthermore, the plastomes data and Internal Transcribed Spacer (ITS) sequences were performed to reconstruct the phylogeny of Sanicula. Although the tree topologies of them were incongruent, both provided strong evidence supporting the monophyly of Saniculoideae and Apioideae. In addition, the sister groups between Saniculoideae and Apioideae were strongly suggested. The Sanicula species involved in this study were clustered into a clade, and the Eryngium species were also clustered together. However, it was clearly observed that the sections of Sanicula involved in the current study were not respectively recovered as monophyletic group. Molecular dating analysis explored that the origin of this genus was occurred during the late Eocene period, approximately 37.84 Ma (95% HPD: 20.33-52.21 Ma) years ago and the diversification of the genus was occurred in early Miocene 18.38 Ma (95% HPD: 10.68-25.28 Ma). CONCLUSION The plastome-based tree and ITS-based tree generated incongruences, which may be attributed to the event of hybridization/introgression, incomplete lineage sorting (ILS) and chloroplast capture. Our study highlighted the power of plastome data to significantly improve the phylogenetic supports and resolutions, and to efficiently explore the evolutionary history of this genus. Molecular dating analysis explored that the diversification of the genus occurred in the early Miocene, which was largely influenced by the prevalence of the East Asian monsoon and the uplift of the Hengduan Mountains (HDM). In summary, our study provides novel insights into the plastome evolution, phylogenetic relationships, taxonomic framework and evolution of genus Sanicula.
Collapse
Affiliation(s)
- Bo-Ni Song
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Chang-Kun Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - An-Qi Zhao
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Rong-Ming Tian
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Deng-Feng Xie
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yu-Lin Xiao
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Huai Chen
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Song-Dong Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| | - Xing-Jin He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
34
|
Sterling-Montealegre RA, Prada CF. Variability and evolution of gene order rearrangement in mitochondrial genomes of arthropods (except Hexapoda). Gene 2024; 892:147906. [PMID: 37844850 DOI: 10.1016/j.gene.2023.147906] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/29/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
In the species-rich Phylum Arthropoda, the mitochondrial genome is relatively well conserved both in terms of number and order of genes. However, specific clades have a 'typical' gene order that differs from the putative arthropod ancestral arrangement. The aim of this work was to compare the rate of mitochondrial gene rearrangements at inter- and intra-taxonomic levels in the Arthropoda and to postulate the most parsimonious ancestral orders representing the four major arthropod lineages. For this purpose, we performed a comparative genomic analysis of arthropod mitochondrial genomes available in the NCBI database. Using a combination of bioinformatics methods that examined mitochondrial gene rearrangements in 464 species of arthropods from three subphyla (Chelicerata, Myriapoda, and Crustacea [except Hexapoda, previously analyzed]), we observed differences in the rate of rearrangement within major lineages. A higher rate of mitochondrial genome rearrangement was observed in Crustacea and Chelicerata compared to Myriapoda. Likewise, early branching clades exhibit less variability in mitochondrial genome order than late branching clades, within each subphylum. We identified 'hot regions' in the mitochondrial genome of each studied subphylum, and postulated the most likely ancestral gene order in each subphylum and taxonomic order. Our work provides new evidence on the evolutionary dynamics of mitochondrial genome gene order in arthropods and new mitochondrial genome architectures in different taxonomic divisions within each major lineage of arthropods.
Collapse
Affiliation(s)
| | - Carlos Fernando Prada
- Grupo de Investigación de Biología y Ecología de Artrópodos, Facultad de Ciencias, Universidad del Tolima, Colombia.
| |
Collapse
|
35
|
Li DM, Pan YG, Liu HL, Yu B, Huang D, Zhu GF. Thirteen complete chloroplast genomes of the costaceae family: insights into genome structure, selective pressure and phylogenetic relationships. BMC Genomics 2024; 25:68. [PMID: 38233753 PMCID: PMC10792896 DOI: 10.1186/s12864-024-09996-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/09/2024] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Costaceae, commonly known as the spiral ginger family, consists of approximately 120 species distributed in the tropical regions of South America, Africa, and Southeast Asia, of which some species have important ornamental, medicinal and ecological values. Previous studies on the phylogenetic and taxonomic of Costaceae by using nuclear internal transcribed spacer (ITS) and chloroplast genome fragments data had low resolutions. Additionally, the structures, variations and molecular evolution of complete chloroplast genomes in Costaceae still remain unclear. Herein, a total of 13 complete chloroplast genomes of Costaceae including 8 newly sequenced and 5 from the NCBI GenBank database, representing all three distribution regions of this family, were comprehensively analyzed for comparative genomics and phylogenetic relationships. RESULT The 13 complete chloroplast genomes of Costaceae possessed typical quadripartite structures with lengths from 166,360 to 168,966 bp, comprising a large single copy (LSC, 90,802 - 92,189 bp), a small single copy (SSC, 18,363 - 20,124 bp) and a pair of inverted repeats (IRs, 27,982 - 29,203 bp). These genomes coded 111 - 113 different genes, including 79 protein-coding genes, 4 rRNA genes and 28 - 30 tRNAs genes. The gene orders, gene contents, amino acid frequencies and codon usage within Costaceae were highly conservative, but several variations in intron loss, long repeats, simple sequence repeats (SSRs) and gene expansion on the IR/SC boundaries were also found among these 13 genomes. Comparative genomics within Costaceae identified five highly divergent regions including ndhF, ycf1-D2, ccsA-ndhD, rps15-ycf1-D2 and rpl16-exon2-rpl16-exon1. Five combined DNA regions (ycf1-D2 + ndhF, ccsA-ndhD + rps15-ycf1-D2, rps15-ycf1-D2 + rpl16-exon2-rpl16-exon1, ccsA-ndhD + rpl16-exon2-rpl16-exon1, and ccsA-ndhD + rps15-ycf1-D2 + rpl16-exon2-rpl16-exon1) could be used as potential markers for future phylogenetic analyses and species identification in Costaceae. Positive selection was found in eight protein-coding genes, including cemA, clpP, ndhA, ndhF, petB, psbD, rps12 and ycf1. Maximum likelihood and Bayesian phylogenetic trees using chloroplast genome sequences consistently revealed identical tree topologies with high supports between species of Costaceae. Three clades were divided within Costaceae, including the Asian clade, Costus clade and South American clade. Tapeinochilos was a sister of Hellenia, and Parahellenia was a sister to the cluster of Tapeinochilos + Hellenia with strong support in the Asian clade. The results of molecular dating showed that the crown age of Costaceae was about 30.5 Mya (95% HPD: 14.9 - 49.3 Mya), and then started to diverge into the Costus clade and Asian clade around 23.8 Mya (95% HPD: 10.1 - 41.5 Mya). The Asian clade diverged into Hellenia and Parahellenia at approximately 10.7 Mya (95% HPD: 3.5 - 25.1 Mya). CONCLUSION The complete chloroplast genomes can resolve the phylogenetic relationships of Costaceae and provide new insights into genome structures, variations and evolution. The identified DNA divergent regions would be useful for species identification and phylogenetic inference in Costaceae.
Collapse
Affiliation(s)
- Dong-Mei Li
- Guangdong Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| | - Yan-Gu Pan
- Guangdong Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Hai-Lin Liu
- Guangdong Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Bo Yu
- Guangdong Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Dan Huang
- Guangdong Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Gen-Fa Zhu
- Guangdong Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| |
Collapse
|
36
|
Wu J, Zhang J, Guo X, Yu N, Peng D, Xing S. Comprehensive analysis of complete chloroplast genome sequence of Plantago asiatica L. (Plantaginaceae). PLANT SIGNALING & BEHAVIOR 2023; 18:2163345. [PMID: 36592637 PMCID: PMC9809945 DOI: 10.1080/15592324.2022.2163345] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Plantago asiatica L. is a representative individual species of Plantaginaceae, whose high reputation is owed to its edible and medicinal values. However, the phylogeny and genes of the P. asiatica chloroplast have not yet been well described. Here we report the findings of a comprehensive analysis of the P. asiatica chloroplast genome. The P. asiatica chloroplast genome is 164,992 bp, circular, and has a GC content of 37.98%. The circular genome contains 141 genes, including 8 rRNAs, 38 tRNAs, and 95 protein-coding genes. Seventy-two simple sequence repeats are detected. Comparative chloroplast genome analysis of six related species suggests that a higher similarity exists in the coding region than the non-coding region, and differences in the degree of preservation is smaller between P. asiatica and Plantago depressa than among others. Our phylogenetic analysis illustrates P. asiatica has a relatively close relationship with P. depressa, which was also divided into different clades with Plantago ovata and Plantago lagopus in the genus Plantago. This analysis of the P. asiatica chloroplast genome contributes to an improved deeply understanding of the evolutionary relationships among Plantaginaceae.
Collapse
Affiliation(s)
- Jing Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Jing Zhang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xiaohu Guo
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Nianjun Yu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China
| | - Daiyin Peng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China
| | - Shihai Xing
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, China
| |
Collapse
|
37
|
Yang Q, Xin C, Xiao QS, Lin YT, Li L, Zhao JL. Codon usage bias in chloroplast genes implicate adaptive evolution of four ginger species. FRONTIERS IN PLANT SCIENCE 2023; 14:1304264. [PMID: 38169692 PMCID: PMC10758403 DOI: 10.3389/fpls.2023.1304264] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024]
Abstract
Codon usage bias (CUB) refers to different codons exhibiting varying frequencies of usage in the genome. Studying CUB is crucial for understanding genome structure, function, and evolutionary processes. Herein, we investigated the codon usage patterns and influencing factors of protein-coding genes in the chloroplast genomes of four sister genera (monophyletic Roscoea and Cautleya, and monophyletic Pommereschea and Rhynchanthus) from the Zingiberaceae family with contrasting habitats in southwestern China. These genera exhibit distinct habitats, providing a unique opportunity to explore the adaptive evolution of codon usage. We conducted a comprehensive analysis of nucleotide composition and codon usage on protein-coding genes in the chloroplast genomes. The study focused on understanding the relationship between codon usage and environmental adaptation, with a particular emphasis on genes associated with photosynthesis. Nucleotide composition analysis revealed that the overall G/C content of the coding genes was ˂ 48%, indicating an enrichment of A/T bases. Additionally, synonymous and optimal codons were biased toward ending with A/U bases. Natural selection is the primary factor influencing CUB characteristics, particularly photosynthesis-associated genes. We observed differential gene expressions related to light adaptation among sister genera inhabiting different environments. Certain codons were favored under specific conditions, possibly contributing to gene expression regulation in particular environments. This study provides insights into the adaptive evolution of these sister genera by analyzing CUB and offers theoretical assistance for understanding gene expression and regulation. In addition, the data support the relationship between RNA editing and CUB, and the findings shed light on potential research directions for investigating adaptive evolution.
Collapse
Affiliation(s)
- Qian Yang
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, China
| | - Cheng Xin
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Qing-Song Xiao
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, China
| | - Ya-Ting Lin
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, China
| | - Li Li
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, China
| | - Jian-Li Zhao
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, China
| |
Collapse
|
38
|
Liu H, Liu X, Sun C, Li HL, Li ZX, Guo Y, Fu XQ, Liao QH, Zhang WL, Liu YQ. Chloroplast Genome Comparison and Phylogenetic Analysis of the Commercial Variety Actinidia chinensis 'Hongyang'. Genes (Basel) 2023; 14:2136. [PMID: 38136958 PMCID: PMC10743354 DOI: 10.3390/genes14122136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/23/2023] [Accepted: 11/25/2023] [Indexed: 12/24/2023] Open
Abstract
Actinidia chinensis 'Hongyang', also known as red yangtao (red heart kiwifruit), is a vine fruit tree native to China possessing significant nutritional and economic value. However, information on its genetic diversity and phylogeny is still very limited. The first chloroplast (cp) genome of A. chinensis 'Hongyang' cultivated in China was sequenced using de novo technology in this study. A. chinensis 'Hongyang' possesses a cp genome that spans 156,267 base pairs (bp), exhibiting an overall GC content of 37.20%. There were 132 genes that were annotated, with 85 of them being protein-coding genes, 39 transfer RNA (tRNA) genes, and 8 ribosomal RNA (rRNA) genes. A total of 49 microsatellite sequences (SSRs) were detected, mainly single nucleotide repeats, mostly consisting of A or T base repeats. Compared with 14 other species, the cp genomes of A. chinensis 'Hongyang' were biased towards the use of codons containing A/U, and the non-protein coding regions in the A. chinensis 'Hongyang' cpDNA showed greater variation than the coding regions. The nucleotide polymorphism analysis (Pi) yielded nine highly variable region hotspots, most in the large single copy (LSC) region. The cp genome boundary analysis revealed a conservative order of gene arrangement in the inverted repeats (IRs) region of the cp genomes of 15 Actinidia plants, with small expansions and contractions of the boundaries. Furthermore, phylogenetic tree indicated that A. chinensis 'Hongyang' was the closest relative to A. indochinensis. This research provides a useful basis for future genetic and evolutionary studies of A. chinensis 'Hongyang', and enriches the biological information of Actinidia species.
Collapse
Affiliation(s)
- Han Liu
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (H.L.); (C.S.); (H.-L.L.); (Z.-X.L.); (Y.G.); (X.-Q.F.); (Q.-H.L.); (W.-L.Z.)
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404000, China
| | - Xia Liu
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (H.L.); (C.S.); (H.-L.L.); (Z.-X.L.); (Y.G.); (X.-Q.F.); (Q.-H.L.); (W.-L.Z.)
| | - Chong Sun
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (H.L.); (C.S.); (H.-L.L.); (Z.-X.L.); (Y.G.); (X.-Q.F.); (Q.-H.L.); (W.-L.Z.)
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou 434023, China;
| | - Hong-Lei Li
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (H.L.); (C.S.); (H.-L.L.); (Z.-X.L.); (Y.G.); (X.-Q.F.); (Q.-H.L.); (W.-L.Z.)
| | - Zhe-Xin Li
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (H.L.); (C.S.); (H.-L.L.); (Z.-X.L.); (Y.G.); (X.-Q.F.); (Q.-H.L.); (W.-L.Z.)
| | - Yuan Guo
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (H.L.); (C.S.); (H.-L.L.); (Z.-X.L.); (Y.G.); (X.-Q.F.); (Q.-H.L.); (W.-L.Z.)
| | - Xue-Qian Fu
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (H.L.); (C.S.); (H.-L.L.); (Z.-X.L.); (Y.G.); (X.-Q.F.); (Q.-H.L.); (W.-L.Z.)
| | - Qin-Hong Liao
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (H.L.); (C.S.); (H.-L.L.); (Z.-X.L.); (Y.G.); (X.-Q.F.); (Q.-H.L.); (W.-L.Z.)
| | - Wen-Lin Zhang
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (H.L.); (C.S.); (H.-L.L.); (Z.-X.L.); (Y.G.); (X.-Q.F.); (Q.-H.L.); (W.-L.Z.)
| | - Yi-Qing Liu
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou 434023, China;
| |
Collapse
|
39
|
Wang M, Yu W, Yang J, Hou Z, Li C, Niu Z, Zhang B, Xue Q, Liu W, Ding X. Mitochondrial genome comparison and phylogenetic analysis of Dendrobium (Orchidaceae) based on whole mitogenomes. BMC PLANT BIOLOGY 2023; 23:586. [PMID: 37993773 PMCID: PMC10666434 DOI: 10.1186/s12870-023-04618-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 11/17/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND Mitochondrial genomes are essential for deciphering the unique evolutionary history of seed plants. However, the rules of their extreme variation in genomic size, multi-chromosomal structure, and foreign sequences remain unresolved in most plant lineages, which further hindered the application of mitogenomes in phylogenetic analyses. RESULTS Here, we took Dendrobium (Orchidaceae) which shows the great divergence of morphology and difficulty in species taxonomy as the study focus. We first de novo assembled two complete mitogenomes of Dendrobium wilsonii and Dendrobium henanense that were 763,005 bp and 807,551 bp long with multichromosomal structures. To understand the evolution of Dendrobium mitogenomes, we compared them with those of four other orchid species. The results showed great variations of repetitive and chloroplast-derived sequences in Dendrobium mitogenomes. Moreover, the intergenic content of Dendrobium mitogenomes has undergone expansion during evolution. We also newly sequenced mitogenomes of 26 Dendrobium species and reconstructed phylogenetic relationships of Dendrobium based on genomic mitochondrial and plastid data. The results indicated that the existence of chloroplast-derived sequences made the mitochondrial phylogeny display partial characteristics of the plastid phylogeny. Additionally, the mitochondrial phylogeny provided new insights into the phylogenetic relationships of Dendrobium species. CONCLUSIONS Our study revealed the evolution of Dendrobium mitogenomes and the potential of mitogenomes in deciphering phylogenetic relationships at low taxonomic levels.
Collapse
Grants
- 32070353 National Natural Science Foundation of China
- 32070353 National Natural Science Foundation of China
- 32070353 National Natural Science Foundation of China
- 32070353 National Natural Science Foundation of China
- 32070353 National Natural Science Foundation of China
- 32070353 National Natural Science Foundation of China
- 32070353 National Natural Science Foundation of China
- 32070353 National Natural Science Foundation of China
- 32070353 National Natural Science Foundation of China
- 32070353 National Natural Science Foundation of China
- LYKJ[2021]12 Forestry independent innovation project of Jiangsu Province, China
- LYKJ[2021]12 Forestry independent innovation project of Jiangsu Province, China
- LYKJ[2021]12 Forestry independent innovation project of Jiangsu Province, China
- LYKJ[2021]12 Forestry independent innovation project of Jiangsu Province, China
- LYKJ[2021]12 Forestry independent innovation project of Jiangsu Province, China
- LYKJ[2021]12 Forestry independent innovation project of Jiangsu Province, China
- LYKJ[2021]12 Forestry independent innovation project of Jiangsu Province, China
- LYKJ[2021]12 Forestry independent innovation project of Jiangsu Province, China
- LYKJ[2021]12 Forestry independent innovation project of Jiangsu Province, China
- LYKJ[2021]12 Forestry independent innovation project of Jiangsu Province, China
- CX (22) 3147 Agricultural independent innovation project of Jiangsu Province, China
- CX (22) 3147 Agricultural independent innovation project of Jiangsu Province, China
- CX (22) 3147 Agricultural independent innovation project of Jiangsu Province, China
- CX (22) 3147 Agricultural independent innovation project of Jiangsu Province, China
- CX (22) 3147 Agricultural independent innovation project of Jiangsu Province, China
- CX (22) 3147 Agricultural independent innovation project of Jiangsu Province, China
- CX (22) 3147 Agricultural independent innovation project of Jiangsu Province, China
- CX (22) 3147 Agricultural independent innovation project of Jiangsu Province, China
- CX (22) 3147 Agricultural independent innovation project of Jiangsu Province, China
- CX (22) 3147 Agricultural independent innovation project of Jiangsu Province, China
Collapse
Affiliation(s)
- Mengting Wang
- College of Life Sciences, Nanjing Normal University, Nanjing, China
- Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science and Technology, Ningbo University, Cixi, China
| | - Wenhui Yu
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jiapeng Yang
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhenyu Hou
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Chao Li
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhitao Niu
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Benhou Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Qingyun Xue
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Wei Liu
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xiaoyu Ding
- College of Life Sciences, Nanjing Normal University, Nanjing, China.
| |
Collapse
|
40
|
Jin L, Shi HY, Li T, Zhao N, Xu Y, Xiao TW, Song F, Ma CX, Li QM, Lin LX, Shao XN, Li BH, Mi XC, Ren HB, Qiao XJ, Lian JY, Du H, Ge XJ. A DNA barcode library for woody plants in tropical and subtropical China. Sci Data 2023; 10:819. [PMID: 37993453 PMCID: PMC10665436 DOI: 10.1038/s41597-023-02742-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 11/10/2023] [Indexed: 11/24/2023] Open
Abstract
The application of DNA barcoding has been significantly limited by the scarcity of reliable specimens and inadequate coverage and replication across all species. The deficiency of DNA barcode reference coverage is particularly striking for highly biodiverse subtropical and tropical regions. In this study, we present a comprehensive barcode library for woody plants in tropical and subtropical China. Our dataset includes a standard barcode library comprising the four most widely used barcodes (rbcL, matK, ITS, and ITS2) for 2,520 species from 4,654 samples across 49 orders, 144 families, and 693 genera, along with 79 samples identified at the genus level. This dataset also provides a super-barcode library consisting of 1,239 samples from 1,139 species, 411 genera, 113 families, and 40 orders. This newly developed library will serve as a valuable resource for DNA barcoding research in tropical and subtropical China and bordering countries, enable more accurate species identification, and contribute to the conservation and management of tropical and subtropical forests.
Collapse
Affiliation(s)
- Lu Jin
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Hao-You Shi
- Central South Academy of Inventory and Planning of NFGA, Changsha, 410014, China
| | - Ting Li
- Yiyang Forestry Bureau, Yiyang, 413000, China
| | - Nan Zhao
- Hunan Police Academy, Changsha, 410138, China
| | - Yong Xu
- Conghua Middle School, Guangzhou, 510900, China
| | - Tian-Wen Xiao
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Feng Song
- College of Forestry, Central South University of Forestry & Technology, Changsha, 410004, China
| | - Chen-Xin Ma
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Qiao-Ming Li
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650201, China
| | - Lu-Xiang Lin
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650201, China
| | - Xiao-Na Shao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650201, China
| | - Bu-Hang Li
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xiang-Cheng Mi
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Hai-Bao Ren
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xiu-Juan Qiao
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Ju-Yu Lian
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Hu Du
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, China
| | - Xue-Jun Ge
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
41
|
Jiang M, Zhu Y, Wang J, Bao H, Zhang H. Complete chloroplast genome of Impatiens huangyanensis Jin and Ding 2002: genomic features and phylogenetic relationship within genus Impatiens (Balsaminaceae). Mitochondrial DNA B Resour 2023; 8:1229-1233. [PMID: 38026496 PMCID: PMC10653657 DOI: 10.1080/23802359.2023.2280277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023] Open
Abstract
Impatiens huangyanensis Jin and Ding 2002 is a plant species with very small populations, and it distributes only in Huangyan, Zhejiang Province, China. In this study, the complete chloroplast genome of I. huangyanensis was assembled by using high-throughput Illumina paired-end sequences. Its genomic feature was determined, and comparative genomic analysis of the genus Impatiens was performed. The results revealed that the full-length chloroplast genome of I. huangyanensis was 152,156 bp with a GC content of 36.8%. The chloroplast genome contains a typical quadripartite structure, comprising two copies of inverted repeats (IRs), a small single-copy (SSC) region, and a large single-copy (LSC) region. The sequence lengths of IR, SSC, and LSC were 25,756 bp, 17,662 bp, and 82,982 bp, respectively. The chloroplast genome consisted of 134 genes, including 84 protein-coding genes, 37 transfer RNA genes, eight ribosomal RNA genes, and five pseudogenes. Phylogenic results indicated I. huangyanensis shared a clade with I. davidii Franchet 1883, I. macrovexilla Chen 2000, I. fanjingshanica Chen 1999, and I. piufanensis Hook 1908, with a support rate of 100%. Our study provided insight into further studies on the conservation genetics of I. huangyanensis.
Collapse
Affiliation(s)
- Ming Jiang
- College of Life Sciences, Taizhou University, Taizhou, China
| | - Yan Zhu
- College of Life Sciences, Taizhou University, Taizhou, China
| | - Junfeng Wang
- Scientific Research Management Center, East China Medicinal Botanical Garden, Lishui, China
| | - Honghua Bao
- Luqiao Branch, Taizhou Municipal Ecology and Environment Bureau, Luqiao, China
| | - Huijuan Zhang
- College of Life Sciences, Taizhou University, Taizhou, China
| |
Collapse
|
42
|
Skopalíková J, Leong-Škorničková J, Šída O, Newman M, Chumová Z, Zeisek V, Jarolímová V, Poulsen AD, Dantas-Queiroz MV, Fér T, Záveská E. Ancient hybridization in Curcuma (Zingiberaceae)-Accelerator or brake in lineage diversifications? THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:773-785. [PMID: 37537754 DOI: 10.1111/tpj.16408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023]
Abstract
Hybridization is a widespread phenomenon in the evolution of plants and exploring its role is crucial to understanding diversification processes of many taxonomic groups. Recently, more attention is focused on the role of ancient hybridization that has repeatedly been shown as triggers of evolutionary radiation, although in some cases, it can prevent further diversification. The causes, frequency, and consequences of ancient hybridization remain to be explored. Here, we present an account of several events of ancient hybridization in turmeric, the economically important plant genus Curcuma (Zingiberaceae), which harbors about 130 known species. We analyzed 1094 targeted low-copy genes and plastomes obtained by next-generation sequencing of 37 species of Curcuma, representing the known genetic diversity and spanning the geographical distribution of the genus. Using phylogenetic network analysis, we show that the entire genus Curcuma as well as its most speciose lineage arose via introgression from the genus Pyrgophyllum and one of the extinct lineages, respectively. We also document a single event of ancient hybridization, with C. vamana as a product, that represents an evolutionary dead end. We further discuss distinct circumstances of those hybridization events that deal mainly with (in)congruence in chromosome counts of the parental lineages.
Collapse
Affiliation(s)
- Jana Skopalíková
- Department of Botany, Charles University, Prague, Czech Republic
- Czech Academy of Sciences, Institute of Botany, Průhonice, Czech Republic
| | - Jana Leong-Škorničková
- The Herbarium, Singapore Botanic Gardens, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Otakar Šída
- Department of Botany, National Museum in Prague, Prague, Czech Republic
| | - Mark Newman
- Royal Botanic Garden Edinburgh, Edinburgh, Scotland, UK
| | - Zuzana Chumová
- Czech Academy of Sciences, Institute of Botany, Průhonice, Czech Republic
| | - Vojtěch Zeisek
- Department of Botany, Charles University, Prague, Czech Republic
- Czech Academy of Sciences, Institute of Botany, Průhonice, Czech Republic
| | - Vlasta Jarolímová
- Czech Academy of Sciences, Institute of Botany, Průhonice, Czech Republic
| | | | | | - Tomáš Fér
- Department of Botany, Charles University, Prague, Czech Republic
| | - Eliška Záveská
- Czech Academy of Sciences, Institute of Botany, Průhonice, Czech Republic
| |
Collapse
|
43
|
Huang L, Lu Z, Wang J, Zhang H, Jiang M. Complete chloroplast genome of a traditional medicinal plant Luisia hancockii Rolfe 1896: genomic features and phylogenetic relationship within subtribe Aeridinae (Orchidaceae). Mitochondrial DNA B Resour 2023; 8:1149-1153. [PMID: 38188444 PMCID: PMC10769519 DOI: 10.1080/23802359.2023.2275334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/19/2023] [Indexed: 01/09/2024] Open
Abstract
Luisia hancockii Rolfe 1896 is an epiphytic orchid species. In our present study, the whole chloroplast genome sequence of L. hancockii was de novo assembled by using high-throughput Illumina reads, and phylogenetic analysis was conducted within species of subtribe Aeridinae. The complete chloroplast genome sequence of L. hancockii was 146,243 bp in length, with a typical quadripartite structure, and its large single-copy, small single-copy, and inverted repeat were 84,441 bp, 11,412 bp, and 25,195 bp long, respectively. The GC content of the whole chloroplast genome was 36.6%, while the GC contents of LSC, SSC, and IR were 33.8%, 27.5%, and 43.3%, respectively. The chloroplast genome consisted of 129 genes, including 74 protein-coding genes, eight rRNAs, 38 tRNAs, and nine pseudogenes. Phylogenic tree was generated using the best model GTR + R, and the results showed that L. hancockii was sister to Holcoglossum and Vanda species, with a support of 100%.
Collapse
Affiliation(s)
- Leqin Huang
- College of Life Sciences, Taizhou University, Taizhou, China
| | - Zhenyu Lu
- College of Life Sciences, Taizhou University, Taizhou, China
| | - Junfeng Wang
- Scientific Research Management Center, East China Medicinal Botanical Garden, Lishui, China
| | - Huijuan Zhang
- College of Life Sciences, Taizhou University, Taizhou, China
| | - Ming Jiang
- College of Life Sciences, Taizhou University, Taizhou, China
| |
Collapse
|
44
|
Li DM, Liu HL, Pan YG, Yu B, Huang D, Zhu GF. Comparative Chloroplast Genomics of 21 Species in Zingiberales with Implications for Their Phylogenetic Relationships and Molecular Dating. Int J Mol Sci 2023; 24:15031. [PMID: 37834481 PMCID: PMC10648771 DOI: 10.3390/ijms241915031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Zingiberales includes eight families and more than 2600 species, with many species having important economic and ecological value. However, the backbone phylogenetic relationships of Zingiberales still remain controversial, as demonstrated in previous studies, and molecular dating based on chloroplast genomes has not been comprehensively studied for the whole order. Herein, 22 complete chloroplast genomes from 21 species in Zingiberales were sequenced, assembled, and analyzed. These 22 genomes displayed typical quadripartite structures, which ranged from 161,303 bp to 163,979 bp in length and contained 111-112 different genes. The genome structures, gene contents, simple sequence repeats, long repeats, and codon usage were highly conserved, with slight differences among these genomes. Further comparative analysis of the 111 complete chloroplast genomes of Zingiberales, including 22 newly sequenced ones and the remaining ones from the national center for biotechnology information (NCBI) database, identified three highly divergent regions comprising ccsA, psaC, and psaC-ndhE. Maximum likelihood and Bayesian inference phylogenetic analyses based on chloroplast genome sequences found identical topological structures and identified a strongly supported backbone of phylogenetic relationships. Cannaceae was sister to Marantaceae, forming a clade that was collectively sister to the clade of (Costaceae, Zingiberaceae) with strong support (bootstrap (BS) = 100%, and posterior probability (PP) = 0.99-1.0); Heliconiaceae was sister to the clade of (Lowiaceae, Strelitziaceae), then collectively sister to Musaceae with strong support (BS = 94-100%, and PP = 0.93-1.0); the clade of ((Cannaceae, Marantaceae), (Costaceae, Zingiberaceae)) was sister to the clade of (Musaceae, (Heliconiaceae, (Lowiaceae, Strelitziaceae))) with robust support (BS = 100%, and PP = 1.0). The results of divergence time estimation of Zingiberales indicated that the crown node of Zingiberales occurred approximately 85.0 Mya (95% highest posterior density (HPD) = 81.6-89.3 million years ago (Mya)), with major family-level lineages becoming from 46.8 to 80.5 Mya. These findings proved that chloroplast genomes could contribute to the study of phylogenetic relationships and molecular dating in Zingiberales, as well as provide potential molecular markers for further taxonomic and phylogenetic studies of Zingiberales.
Collapse
Affiliation(s)
- Dong-Mei Li
- Guangdong Provincial Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (H.-L.L.); (Y.-G.P.); (B.Y.); (D.H.)
| | | | | | | | | | - Gen-Fa Zhu
- Guangdong Provincial Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (H.-L.L.); (Y.-G.P.); (B.Y.); (D.H.)
| |
Collapse
|
45
|
Chen Y, Guo Y, Xie X, Wang Z, Miao L, Yang Z, Jiao Y, Xie C, Liu J, Hu Z, Xin M, Yao Y, Ni Z, Sun Q, Peng H, Guo W. Pangenome-based trajectories of intracellular gene transfers in Poaceae unveil high cumulation in Triticeae. PLANT PHYSIOLOGY 2023; 193:578-594. [PMID: 37249052 PMCID: PMC10469385 DOI: 10.1093/plphys/kiad319] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/04/2023] [Indexed: 05/31/2023]
Abstract
Intracellular gene transfers (IGTs) between the nucleus and organelles, including plastids and mitochondria, constantly reshape the nuclear genome during evolution. Despite the substantial contribution of IGTs to genome variation, the dynamic trajectories of IGTs at the pangenomic level remain elusive. Here, we developed an approach, IGTminer, that maps the evolutionary trajectories of IGTs using collinearity and gene reannotation across multiple genome assemblies. We applied IGTminer to create a nuclear organellar gene (NOG) map across 67 genomes covering 15 Poaceae species, including important crops. The resulting NOGs were verified by experiments and sequencing data sets. Our analysis revealed that most NOGs were recently transferred and lineage specific and that Triticeae species tended to have more NOGs than other Poaceae species. Wheat (Triticum aestivum) had a higher retention rate of NOGs than maize (Zea mays) and rice (Oryza sativa), and the retained NOGs were likely involved in photosynthesis and translation pathways. Large numbers of NOG clusters were aggregated in hexaploid wheat during 2 rounds of polyploidization, contributing to the genetic diversity among modern wheat accessions. We implemented an interactive web server to facilitate the exploration of NOGs in Poaceae. In summary, this study provides resources and insights into the roles of IGTs in shaping interspecies and intraspecies genome variation and driving plant genome evolution.
Collapse
Affiliation(s)
- Yongming Chen
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yiwen Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Xiaoming Xie
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zihao Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Lingfeng Miao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhengzhao Yang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yuannian Jiao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaojie Xie
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jie Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhaorong Hu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| |
Collapse
|
46
|
Fiedler L, Middendorf M, Bernt M. Fully automated annotation of mitochondrial genomes using a cluster-based approach with de Bruijn graphs. Front Genet 2023; 14:1250907. [PMID: 37636259 PMCID: PMC10448254 DOI: 10.3389/fgene.2023.1250907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
A wide range of scientific fields, such as forensics, anthropology, medicine, and molecular evolution, benefits from the analysis of mitogenomic data. With the development of new sequencing technologies, the amount of mitochondrial sequence data to be analyzed has increased exponentially over the last few years. The accurate annotation of mitochondrial DNA is a prerequisite for any mitogenomic comparative analysis. To sustain with the growth of the available mitochondrial sequence data, highly efficient automatic computational methods are, hence, needed. Automatic annotation methods are typically based on databases that contain information about already annotated (and often pre-curated) mitogenomes of different species. However, the existing approaches have several shortcomings: 1) they do not scale well with the size of the database; 2) they do not allow for a fast (and easy) update of the database; and 3) they can only be applied to a relatively small taxonomic subset of all species. Here, we present a novel approach that does not have any of these aforementioned shortcomings, (1), (2), and (3). The reference database of mitogenomes is represented as a richly annotated de Bruijn graph. To generate gene predictions for a new user-supplied mitogenome, the method utilizes a clustering routine that uses the mapping information of the provided sequence to this graph. The method is implemented in a software package called DeGeCI (De Bruijn graph Gene Cluster Identification). For a large set of mitogenomes, for which expert-curated annotations are available, DeGeCI generates gene predictions of high conformity. In a comparative evaluation with MITOS2, a state-of-the-art annotation tool for mitochondrial genomes, DeGeCI shows better database scalability while still matching MITOS2 in terms of result quality and providing a fully automated means to update the underlying database. Moreover, unlike MITOS2, DeGeCI can be run in parallel on several processors to make use of modern multi-processor systems.
Collapse
Affiliation(s)
- Lisa Fiedler
- Department of Computer Science, Leipzig University, Leipzig, Germany
| | - Martin Middendorf
- Department of Computer Science, Leipzig University, Leipzig, Germany
| | - Matthias Bernt
- Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
| |
Collapse
|
47
|
Chen J, Wang F, Zhou C, Ahmad S, Zhou Y, Li M, Liu Z, Peng D. Comparative Phylogenetic Analysis for Aerides (Aeridinae, Orchidaceae) Based on Six Complete Plastid Genomes. Int J Mol Sci 2023; 24:12473. [PMID: 37569853 PMCID: PMC10420012 DOI: 10.3390/ijms241512473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/04/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Aerides Lour. (Orchidaceae, Aeridinae) is a group of epiphytic orchids with high ornamental value, mainly distributed in tropical and subtropical forests, that comprises approximately 20 species. The species are of great value in floriculture and garden designing because of their beautiful flower shapes and colors. Although the morphological boundaries of Aerides are clearly defined, the relationship between Aerides and other closely related genera is still ambiguous in terms of phylogeny. To better understand their phylogenetic relationships, this study used next-generation sequencing technology to investigate the phylogeny and DNA barcoding of this taxonomic unit using genetic information from six Aerides plastid genomes. The quadripartite-structure plastomes ranged from 147,244 bp to 148,391 bp and included 120 genes. Among them, 74 were protein coding genes, 38 were tRNA genes and 8 were rRNA genes, while the ndh genes were pseudogenized or lost. Four non-coding mutational hotspots (rpl20-rpl33, psbM, petB, rpoB-trnCGCA, Pi > 0.06) were identified. A total of 71-77 SSRs and 19-46 long repeats (>30 bp) were recognized in Aerides plastomes, which were mostly located in the large single-copy region. Phylogenetic analysis indicated that Aerides was monophylic and sister to Renanthera. Moreover, our results confirmed that six Aerides species can be divided into three major clades. These findings provide assistance for species identification and DNA barcoding investigation in Aerides, as well as contributes to future research on the phylogenomics of Orchidaceae.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhongjian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Donghui Peng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
48
|
Zhang JM, Wang X, Wang QX, Liao LP, Chen FM, Wang YZ, Lin Q, Liu CJ, Bin SY. The complete mitochondrial genome of the Anas platyrhynchos Linnaeus, 1758 breed Longshengcui and its phylogenetic analyses. Mitochondrial DNA B Resour 2023; 8:836-840. [PMID: 37554696 PMCID: PMC10405745 DOI: 10.1080/23802359.2023.2233742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 06/30/2023] [Indexed: 08/10/2023] Open
Abstract
Duck breed Longshengcui (Anas platyrhynchos Linnaeus, 1758 breed Longshengcui, LSC) is one of the famous native breed of the Guangxi Zhuang Nationality Autonomous Region in China. In this study, we report the complete mitochondrial genome of LSC. The mitogenome (GenBank accession no. MZ895120) has 16,602 bp in length and consisted of the well-known 13 protein-coding genes, 22 tRNA genes, two rRNA genes, and the control region. The phylogenetic analysis showed that LSC and Zhijiang duck have highly similar genetic relationship. These results are helpful for the conservation of genetic resources and phylogeny of this species.
Collapse
Affiliation(s)
- Jing-Meng Zhang
- College of Life Sciences, Guangxi Normal University, Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Xin Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Qing-Xi Wang
- Hunan Traditional Chinese Medical College, Zhuzhou, China
| | - Li-Ping Liao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Feng-Ming Chen
- Academician Workstation, Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, China
| | - Yan-Zhou Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Qian Lin
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
- Academician Workstation, Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, China
| | - Chun-Jie Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Shi-Yu Bin
- College of Life Sciences, Guangxi Normal University, Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
| |
Collapse
|
49
|
Wang Y, Yang Y, Kong L, Sasaki T, Li Q. Phylogenomic resolution of Imparidentia (Mollusca: Bivalvia) diversification through mitochondrial genomes. MARINE LIFE SCIENCE & TECHNOLOGY 2023; 5:326-336. [PMID: 37637250 PMCID: PMC10449738 DOI: 10.1007/s42995-023-00178-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 04/25/2023] [Indexed: 08/29/2023]
Abstract
Despite significant advances in the phylogenomics of bivalves over the past decade, the higher-level phylogeny of Imparidentia (a superorder of Heterodonta) remains elusive. Here, a total of five new mitochondrial sequences (Chama asperella, Chama limbula, Chama dunkeri, Barnea manilensis and Ctena divergens) was added to provide resolution in nodes that required additional study. Although the monophyly of Lucinida remains less clear, the results revealed the overall backbone of the Imparidentia tree and the monophyly of Imparidentia. Likewise, most relationships among the five major Imparidentia lineages-Lucinida, Cardiida, Adapedonta, Myida and Venerida-were addressed with a well-supported topology. Basal relationships of Imparidentia recovered Lucinidae as the sister group to all remaining imparidentian taxa. Thyasiridae is a sister group to other imparidentian bivalves (except Lucinidae species) which is split into Cardiida, Adapedonta and the divergent clade of Neoheterodontei. Neoheterodontei was comprised of Venerida and Myida, the former of which now also contains Chamidae as the sister group to all the remaining venerid taxa. Moreover, molecular divergence times were inferred by calibrating nine nodes in the Imparidentia tree of life by extinct taxa. The origin of these major clades ranged from Ordovician to Permian with the diversification through the Palaeozoic to Mesozoic. Overall, the results obtained in this study demonstrate a better-resolved Imparidentia phylogeny based on mitochondrial genomes. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00178-x.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003 China
| | - Yi Yang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003 China
| | - Lingfeng Kong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003 China
| | - Takenori Sasaki
- The University Museum, The University of Tokyo, Tokyo, 113-0033 Japan
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, 266237 China
| |
Collapse
|
50
|
Yang W, Zou J, Wang J, Li N, Luo X, Jiang X, Li S. Variation in Rice Plastid Genomes in Wide Crossing Reveals Dynamic Nucleo-Cytoplasmic Interaction. Genes (Basel) 2023; 14:1411. [PMID: 37510315 PMCID: PMC10379430 DOI: 10.3390/genes14071411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Plastid genomes (plastomes) of angiosperms are well known for their relative stability in size, structure, and gene content. However, little is known about their heredity and variations in wide crossing. To such an end, the plastomes of five representative rice backcross inbred lines (BILs) developed from crosses of O. glaberrima/O. sativa were analyzed. We found that the size of all plastomes was about 134,580 bp, with a quadripartite structure that included a pair of inverted repeat (IR) regions, a small single-copy (SSC) region and a large single-copy (LSC) region. They contained 76 protein genes, 4 rRNA genes, and 30 tRNA genes. Although their size, structure, and gene content were stable, repeat-mediated recombination, gene expression, and RNA editing were extensively changed between the maternal line and the BILs. These novel discoveries demonstrate that wide crossing causes not only nuclear genomic recombination, but also plastome variation in plants, and that the plastome plays a critical role in coordinating the nuclear-cytoplasmic interaction.
Collapse
Affiliation(s)
- Weilong Yang
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory of Hubei Province, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen 518036, China
| | - Jianing Zou
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory of Hubei Province, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Jiajia Wang
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory of Hubei Province, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Nengwu Li
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory of Hubei Province, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Xiaoyun Luo
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory of Hubei Province, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Xiaofen Jiang
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory of Hubei Province, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Shaoqing Li
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory of Hubei Province, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China
| |
Collapse
|