1
|
Zhang L, Lin Y, Wang K, Han L, Zhang X, Gao X, Li Z, Zhang H, Zhou J, Yu H, Fu X. Multiple-model machine learning identifies potential functional genes in dilated cardiomyopathy. Front Cardiovasc Med 2023; 9:1044443. [PMID: 36712235 PMCID: PMC9874116 DOI: 10.3389/fcvm.2022.1044443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction Machine learning (ML) has gained intensive popularity in various fields, such as disease diagnosis in healthcare. However, it has limitation for single algorithm to explore the diagnosing value of dilated cardiomyopathy (DCM). We aim to develop a novel overall normalized sum weight of multiple-model MLs to assess the diagnosing value in DCM. Methods Gene expression data were selected from previously published databases (six sets of eligible microarrays, 386 samples) with eligible criteria. Two sets of microarrays were used as training; the others were studied in the testing sets (ratio 5:1). Totally, we identified 20 differently expressed genes (DEGs) between DCM and control individuals (7 upregulated and 13 down-regulated). Results We developed six classification ML methods to identify potential candidate genes based on their overall weights. Three genes, serine proteinase inhibitor A3 (SERPINA3), frizzled-related proteins (FRPs) 3 (FRZB), and ficolin 3 (FCN3) were finally identified as the receiver operating characteristic (ROC). Interestingly, we found all three genes correlated considerably with plasma cells. Importantly, not only in training sets but also testing sets, the areas under the curve (AUCs) for SERPINA3, FRZB, and FCN3 were greater than 0.88. The ROC of SERPINA3 was significantly high (0.940 in training and 0.918 in testing sets), indicating it is a potentially functional gene in DCM. Especially, the plasma levels in DCM patients of SERPINA3, FCN, and FRZB were significant compared with healthy control. Discussion SERPINA3, FRZB, and FCN3 might be potential diagnosis targets for DCM, Further verification work could be implemented.
Collapse
Affiliation(s)
- Lin Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yexiang Lin
- Biomedical Engineering, Imperial College London, London, United Kingdom
| | - Kaiyue Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lifeng Han
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xue Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiumei Gao
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zheng Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | | | - Jiashun Zhou
- Tianjin Jinghai District Hospital, Tianjin, China
| | - Heshui Yu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China,*Correspondence: Heshui Yu,
| | - Xuebin Fu
- Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States,Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States,Xuebin Fu,
| |
Collapse
|
2
|
Roy J, Cheung E, Bhatti J, Muneem A, Lobo D. Curation and annotation of planarian gene expression patterns with segmented reference morphologies. Bioinformatics 2020; 36:2881-2887. [DOI: 10.1093/bioinformatics/btaa023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 12/07/2019] [Accepted: 01/14/2020] [Indexed: 12/30/2022] Open
Abstract
Abstract
Motivation
Morphological and genetic spatial data from functional experiments based on genetic, surgical and pharmacological perturbations are being produced at an extraordinary pace in developmental and regenerative biology. However, our ability to extract knowledge from these large datasets are hindered due to the lack of formalization methods and tools able to unambiguously describe, centralize and interpret them. Formalizing spatial phenotypes and gene expression patterns is especially challenging in organisms with highly variable morphologies such as planarian worms, which due to their extraordinary regenerative capability can experimentally result in phenotypes with almost any combination of body regions or parts.
Results
Here, we present a computational methodology and mathematical formalism to encode and curate the morphological outcomes and gene expression patterns in planaria. Worm morphologies are encoded with mathematical graphs based on anatomical ontology terms to automatically generate reference morphologies. Gene expression patterns are registered to these standard reference morphologies, which can then be annotated automatically with anatomical ontology terms by analyzing the spatial expression patterns and their textual descriptions. This methodology enables the curation and annotation of complex experimental morphologies together with their gene expression patterns in a centralized standardized dataset, paving the way for the extraction of knowledge and reverse-engineering of the much sought-after mechanistic models in planaria and other regenerative organisms.
Availability and implementation
We implemented this methodology in a user-friendly graphical software tool, PlanGexQ, freely available together with the data in the manuscript at https://lobolab.umbc.edu/plangexq.
Supplementary information
Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Joy Roy
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Eric Cheung
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Junaid Bhatti
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Abraar Muneem
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Daniel Lobo
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| |
Collapse
|
3
|
Clarkson MD. Representation of anatomy in online atlases and databases: a survey and collection of patterns for interface design. BMC DEVELOPMENTAL BIOLOGY 2016; 16:18. [PMID: 27206491 PMCID: PMC4875762 DOI: 10.1186/s12861-016-0116-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 05/09/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND A large number of online atlases and databases have been developed to mange the rapidly growing amount of data describing embryogenesis. As these community resources continue to evolve, it is important to understand how representations of anatomy can facilitate the sharing and integration of data. In addition, attention to the design of the interfaces is critical to make online resources useful and usable. RESULTS I first present a survey of online atlases and gene expression resources for model organisms, with a focus on methods of semantic and spatial representation of anatomy. A total of 14 anatomical atlases and 21 gene expression resources are included. This survey demonstrates how choices in semantic representation, in the form of ontologies, can enhance interface search functions and provide links between relevant information. This survey also reviews methods for spatially representing anatomy in online resources. I then provide a collection of patterns for interface design based on the atlases and databases surveyed. These patterns include methods for displaying graphics, integrating semantic and spatial representations, organizing information, and querying databases to find genes expressed in anatomical structures. CONCLUSIONS This collection of patterns for interface design will assist biologists and software developers in planning the interfaces of new atlases and databases or enhancing existing ones. They also show the benefits of standardizing semantic and spatial representations of anatomy by demonstrating how interfaces can use standardization to provide enhanced functionality.
Collapse
Affiliation(s)
- Melissa D Clarkson
- Department of Biological Structure, School of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
4
|
Castro-González C, Ledesma-Carbayo MJ, Peyriéras N, Santos A. Assembling models of embryo development: Image analysis and the construction of digital atlases. ACTA ACUST UNITED AC 2012; 96:109-20. [DOI: 10.1002/bdrc.21012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Roberts N, Magee D, Song Y, Brabazon K, Shires M, Crellin D, Orsi NM, Quirke R, Quirke P, Treanor D. Toward routine use of 3D histopathology as a research tool. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:1835-42. [PMID: 22490922 PMCID: PMC3538002 DOI: 10.1016/j.ajpath.2012.01.033] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 12/16/2011] [Accepted: 01/20/2012] [Indexed: 01/27/2023]
Abstract
Three-dimensional (3D) reconstruction and examination of tissue at microscopic resolution have significant potential to enhance the study of both normal and disease processes, particularly those involving structural changes or those in which the spatial relationship of disease features is important. Although other methods exist for studying tissue in 3D, using conventional histopathological features has significant advantages because it allows for conventional histopathological staining and interpretation techniques. Until now, its use has not been routine in research because of the technical difficulty in constructing 3D tissue models. We describe a novel system for 3D histological reconstruction, integrating whole-slide imaging (virtual slides), image serving, registration, and visualization into one user-friendly package. It produces high-resolution 3D reconstructions with minimal user interaction and can be used in a histopathological laboratory without input from computing specialists. It uses a novel method for slice-to-slice image registration using automatic registration algorithms custom designed for both virtual slides and histopathological images. This system has been applied to >300 separate 3D volumes from eight different tissue types, using a total of 5500 virtual slides comprising 1.45 TB of primary image data. Qualitative and quantitative metrics for the accuracy of 3D reconstruction are provided, with measured registration accuracy approaching 120 μm for a 1-cm piece of tissue. Both 3D tissue volumes and generated 3D models are presented for four demonstrator cases.
Collapse
Affiliation(s)
- Nicholas Roberts
- Department of Pathology and Tumor Biology, Leeds Institute of Molecular Medicine, Leeds, United Kingdom
| | - Derek Magee
- School of Computing, University of Leeds, Leeds, United Kingdom
| | - Yi Song
- School of Computing, University of Leeds, Leeds, United Kingdom
| | - Keeran Brabazon
- School of Computing, University of Leeds, Leeds, United Kingdom
| | - Mike Shires
- Department of Pathology and Tumor Biology, Leeds Institute of Molecular Medicine, Leeds, United Kingdom
| | - Doreen Crellin
- Department of Pathology and Tumor Biology, Leeds Institute of Molecular Medicine, Leeds, United Kingdom
| | - Nicolas M. Orsi
- Department of Pathology and Tumor Biology, Leeds Institute of Molecular Medicine, Leeds, United Kingdom
| | - Richard Quirke
- Department of Pathology and Tumor Biology, Leeds Institute of Molecular Medicine, Leeds, United Kingdom
| | - Philip Quirke
- Department of Pathology and Tumor Biology, Leeds Institute of Molecular Medicine, Leeds, United Kingdom
| | - Darren Treanor
- Department of Pathology and Tumor Biology, Leeds Institute of Molecular Medicine, Leeds, United Kingdom
- Leeds Teaching Hospitals Trust, Leeds, United Kingdom
| |
Collapse
|
6
|
Baldock RA, Burger A. Biomedical atlases: systematics, informatics and analysis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 736:655-77. [PMID: 22161358 DOI: 10.1007/978-1-4419-7210-1_39] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Biomedical imaging is ubiquitous in the Life Sciences. Technology advances, and the resulting multitude of imaging modalities, have led to a sharp rise in the quantity and quality of such images. In addition, computational models are increasingly used to study biological processes involving spatio-temporal changes from the cell to the organism level, e.g., the development of an embryo or the growth of a tumour, and models and images are extensively described in natural language, for example, in research publications and patient records. Together this leads to a major spatio-temporal data and model integration challenge. Biomedical atlases have emerged as a key technology in solving this integration problem. Such atlases typically include an image-based (2D and/or 3D) component as well as a conceptual representation (ontologies) of the organisms involved. In this chapter, we review the notion of atlases in the biomedical domain, how they can be created, how they provide an index to spatio-temporal experimental data, issues of atlas data integration and their use for the analysis of large volumes of biomedical data.
Collapse
Affiliation(s)
- Richard A Baldock
- MRC Human Genetics Unit, MRC Institute of Genetic and Molecular Medicine, Western General Hospital, Edinburgh EH4 2XU, UK.
| | | |
Collapse
|