1
|
Brooks SM, Marsan C, Reed KB, Yuan SF, Nguyen DD, Trivedi A, Altin-Yavuzarslan G, Ballinger N, Nelson A, Alper HS. A tripartite microbial co-culture system for de novo biosynthesis of diverse plant phenylpropanoids. Nat Commun 2023; 14:4448. [PMID: 37488111 PMCID: PMC10366228 DOI: 10.1038/s41467-023-40242-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/19/2023] [Indexed: 07/26/2023] Open
Abstract
Plant-derived phenylpropanoids, in particular phenylpropenes, have diverse industrial applications ranging from flavors and fragrances to polymers and pharmaceuticals. Heterologous biosynthesis of these products has the potential to address low, seasonally dependent yields hindering ease of widespread manufacturing. However, previous efforts have been hindered by the inherent pathway promiscuity and the microbial toxicity of key pathway intermediates. Here, in this study, we establish the propensity of a tripartite microbial co-culture to overcome these limitations and demonstrate to our knowledge the first reported de novo phenylpropene production from simple sugar starting materials. After initially designing the system to accumulate eugenol, the platform modularity and downstream enzyme promiscuity was leveraged to quickly create avenues for hydroxychavicol and chavicol production. The consortia was found to be compatible with Engineered Living Material production platforms that allow for reusable, cold-chain-independent distributed manufacturing. This work lays the foundation for further deployment of modular microbial approaches to produce plant secondary metabolites.
Collapse
Affiliation(s)
- Sierra M Brooks
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Celeste Marsan
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Kevin B Reed
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Shuo-Fu Yuan
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Dustin-Dat Nguyen
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Adit Trivedi
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Gokce Altin-Yavuzarslan
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, 98195, USA
| | - Nathan Ballinger
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, USA
| | - Alshakim Nelson
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, 98195, USA
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, USA
| | - Hal S Alper
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA.
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
2
|
Upadhyay V, Boorla VS, Maranas CD. Rank-ordering of known enzymes as starting points for re-engineering novel substrate activity using a convolutional neural network. Metab Eng 2023; 78:171-182. [PMID: 37301359 DOI: 10.1016/j.ymben.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/19/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
Retro-biosynthetic approaches have made significant advances in predicting synthesis routes of target biofuel, bio-renewable or bio-active molecules. The use of only cataloged enzymatic activities limits the discovery of new production routes. Recent retro-biosynthetic algorithms increasingly use novel conversions that require altering the substrate or cofactor specificities of existing enzymes while connecting pathways leading to a target metabolite. However, identifying and re-engineering enzymes for desired novel conversions are currently the bottlenecks in implementing such designed pathways. Herein, we present EnzRank, a convolutional neural network (CNN) based approach, to rank-order existing enzymes in terms of their suitability to undergo successful protein engineering through directed evolution or de novo design towards a desired specific substrate activity. We train the CNN model on 11,800 known active enzyme-substrate pairs from the BRENDA database as positive samples and data generated by scrambling these pairs as negative samples using substrate dissimilarity between an enzyme's native substrate and all other molecules present in the dataset using Tanimoto similarity score. EnzRank achieves an average recovery rate of 80.72% and 73.08% for positive and negative pairs on test data after using a 10-fold holdout method for training and cross-validation. We further developed a web-based user interface (available at https://huggingface.co/spaces/vuu10/EnzRank) to predict enzyme-substrate activity using SMILES strings of substrates and enzyme sequence as input to allow convenient and easy-to-use access to EnzRank. In summary, this effort can aid de novo pathway design tools to prioritize starting enzyme re-engineering candidates for novel reactions as well as in predicting the potential secondary activity of enzymes in cell metabolism.
Collapse
Affiliation(s)
- Vikas Upadhyay
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Veda Sheersh Boorla
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Costas D Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
3
|
Abdel-Shafy EA, Melak T, MacIntyre DA, Zadra G, Zerbini LF, Piazza S, Cacciatore S. MetChem: a new pipeline to explore structural similarity across metabolite modules. BIOINFORMATICS ADVANCES 2023; 3:vbad053. [PMID: 37424942 PMCID: PMC10322652 DOI: 10.1093/bioadv/vbad053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/28/2023] [Accepted: 04/19/2023] [Indexed: 07/11/2023]
Abstract
Summary Computational analysis and interpretation of metabolomic profiling data remains a major challenge in translational research. Exploring metabolic biomarkers and dysregulated metabolic pathways associated with a patient phenotype could offer new opportunities for targeted therapeutic intervention. Metabolite clustering based on structural similarity has the potential to uncover common underpinnings of biological processes. To address this need, we have developed the MetChem package. MetChem is a quick and simple tool that allows to classify metabolites in structurally related modules, thus revealing their functional information. Availabilityand implementation MetChem is freely available from the R archive CRAN (http://cran.r-project.org). The software is distributed under the GNU General Public License (version 3 or later).
Collapse
Affiliation(s)
- Ebtesam A Abdel-Shafy
- Bioinformatics Unit, International Centre for Genetic Engineering and Biotechnology, Cape Town 7925, South Africa
- National Research Centre, Cairo 12622, Egypt
| | - Tadele Melak
- Computation Biology, International Centre for Genetic Engineering and Biotechnology, Trieste 34149, Italy
- Department of Clinical Chemistry, University of Gondar, Gondar 196, Ethiopia
| | - David A MacIntyre
- March of Dimes Prematurity Research Centre, Imperial College London, London SW7 2AZ, UK
- Imperial College Parturition Research Group, Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK
| | - Giorgia Zadra
- Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy
| | - Luiz F Zerbini
- Cancer Genomics, International Centre for Genetic Engineering and Biotechnology, Cape Town 7925, South Africa
| | - Silvano Piazza
- Computation Biology, International Centre for Genetic Engineering and Biotechnology, Trieste 34149, Italy
| | - Stefano Cacciatore
- Bioinformatics Unit, International Centre for Genetic Engineering and Biotechnology, Cape Town 7925, South Africa
- Imperial College Parturition Research Group, Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
4
|
Xu Z, Mahadevan R. Efficient Enumeration of Branched Novel Biochemical Pathways Using a Probabilistic Technique. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c02211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhiqing Xu
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
5
|
Visani GM, Hughes MC, Hassoun S. Enzyme Promiscuity Prediction Using Hierarchy-Informed Multi-Label Classification. Bioinformatics 2021; 37:2017–2024. [PMID: 33515234 PMCID: PMC8337005 DOI: 10.1093/bioinformatics/btab054] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/30/2020] [Accepted: 01/22/2021] [Indexed: 11/25/2022] Open
Abstract
MOTIVATION As experimental efforts are costly and time consuming, computational characterization of enzyme capabilities is an attractive alternative. We present and evaluate several machine-learning models to predict which of 983 distinct enzymes, as defined via the Enzyme Commission (EC) numbers, are likely to interact with a given query molecule. Our data consists of enzyme-substrate interactions from the BRENDA database. Some interactions are attributed to natural selection and involve the enzyme's natural substrates. The majority of the interactions however involve non-natural substrates, thus reflecting promiscuous enzymatic activities. RESULTS We frame this "enzyme promiscuity prediction" problem as a multi-label classification task. We maximally utilize inhibitor and unlabelled data to train prediction models that can take advantage of known hierarchical relationships between enzyme classes. We report that a hierarchical multi-label neural network, EPP-HMCNF, is the best model for solving this problem, outperforming k-nearest neighbours similarity-based and other machine learning models. We show that inhibitor information during training consistently improves predictive power, particularly for EPP-HMCNF. We also show that all promiscuity prediction models perform worse under a realistic data split when compared to a random data split, and when evaluating performance on non-natural substrates compared to natural substrates. AVAILABILITY AND IMPLEMENTATION We provide Python code for EPP-HMCNF and other models in a repository termed EPP (Enzyme Promiscuity Prediction) at https://github.com/hassounlab/EPP. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Gian Marco Visani
- Department of Computer Science, Tufts University, Medford, MA 02155, USA
| | - Michael C Hughes
- Department of Computer Science, Tufts University, Medford, MA 02155, USA
| | - Soha Hassoun
- Department of Computer Science, Tufts University, Medford, MA 02155, USA
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
6
|
Jiang J, Liu LP, Hassoun S. Learning graph representations of biochemical networks and its application to enzymatic link prediction. Bioinformatics 2021; 37:793-799. [PMID: 33051674 PMCID: PMC8097755 DOI: 10.1093/bioinformatics/btaa881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 08/01/2020] [Accepted: 09/29/2020] [Indexed: 11/20/2022] Open
Abstract
Motivation The complete characterization of enzymatic activities between molecules remains incomplete, hindering biological engineering and limiting biological discovery. We develop in this work a technique, enzymatic link prediction (ELP), for predicting the likelihood of an enzymatic transformation between two molecules. ELP models enzymatic reactions cataloged in the KEGG database as a graph. ELP is innovative over prior works in using graph embedding to learn molecular representations that capture not only molecular and enzymatic attributes but also graph connectivity. Results We explore transductive (test nodes included in the training graph) and inductive (test nodes not part of the training graph) learning models. We show that ELP achieves high AUC when learning node embeddings using both graph connectivity and node attributes. Further, we show that graph embedding improves link prediction by 30% in area under curve over fingerprint-based similarity approaches and by 8% over support vector machines. We compare ELP against rule-based methods. We also evaluate ELP for predicting links in pathway maps and for reconstruction of edges in reaction networks of four common gut microbiota phyla: actinobacteria, bacteroidetes, firmicutes and proteobacteria. To emphasize the importance of graph embedding in the context of biochemical networks, we illustrate how graph embedding can guide visualization. Availability and implementation The code and datasets are available through https://github.com/HassounLab/ELP.
Collapse
Affiliation(s)
- Julie Jiang
- Department of Computer Science, Tufts University, Medford 02155, USA
| | - Li-Ping Liu
- Department of Computer Science, Tufts University, Medford 02155, USA
| | - Soha Hassoun
- Department of Computer Science, Tufts University, Medford 02155, USA.,Department of Chemical and Biological Engineering, Tufts University, Medford 02155, USA
| |
Collapse
|
7
|
Wang L, Maranas CD. Computationally Prospecting Potential Pathways from Lignin Monomers and Dimers toward Aromatic Compounds. ACS Synth Biol 2021; 10:1064-1076. [PMID: 33877818 DOI: 10.1021/acssynbio.0c00598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The heterogeneity of the aromatic products originating from lignin catalytic depolymerization remains one of the major challenges associated with lignin valorization. Microbes have evolved catabolic pathways that can funnel heterogeneous intermediates to a few central aromatic products. These aromatic compounds can subsequently undergo intra- or extradiol ring opening to produce value-added chemicals. However, such funneling pathways are only partially characterized for a few organisms such as Sphingobium sp. SYK-6 and Pseudomonas putida KT2440. Herein, we apply the de novo pathway design tool (novoStoic) to computationally prospect possible ways of funneling lignin-derived mono- and biaryls. novoStoic employs reaction rules between molecular moieties to hypothesize de novo conversions by flagging known enzymes that carry out the same biotransformation on the most similar substrate. Both reaction rules and known reactions are then deployed by novoStoic to identify a mass-balanced biochemical network that converts a source to a target metabolite while minimizing the number of de novo steps. We demonstrate the application of novoStoic for (i) designing alternative pathways of funneling S, G, and H lignin monomers, and (ii) exploring cleavage pathways of β-1 and β-β dimers. By exploring the uncharted chemical space afforded by enzyme promiscuity, novoStoic can help predict previously unknown native pathways leveraging enzyme promiscuity and propose new carbon/energy efficient lignin funneling pathways with few heterologous enzymes.
Collapse
Affiliation(s)
- Lin Wang
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Costas D. Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
8
|
Hafner J, Hatzimanikatis V. Finding metabolic pathways in large networks through atom-conserving substrate-product pairs. Bioinformatics 2021; 37:3560-3568. [PMID: 34003971 PMCID: PMC8545321 DOI: 10.1093/bioinformatics/btab368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/22/2021] [Accepted: 05/17/2021] [Indexed: 11/29/2022] Open
Abstract
Motivation Finding biosynthetic pathways is essential for metabolic engineering of organisms to produce chemicals, biodegradation prediction of pollutants and drugs, and for the elucidation of bioproduction pathways of secondary metabolites. A key step in biosynthetic pathway design is the extraction of novel metabolic pathways from big networks that integrate known biological, as well as novel, predicted biotransformations. However, the efficient analysis and the navigation of big biochemical networks remain a challenge. Results Here, we propose the construction of searchable graph representations of metabolic networks. Each reaction is decomposed into pairs of reactants and products, and each pair is assigned a weight, which is calculated from the number of conserved atoms between the reactant and the product molecule. We test our method on a biochemical network that spans 6546 known enzymatic reactions to show how our approach elegantly extracts biologically relevant metabolic pathways from biochemical networks, and how the proposed network structure enables the application of efficient graph search algorithms that improve navigation and pathway identification in big metabolic networks. The weighted reactant–product pairs of an example network and the corresponding graph search algorithm are available online. The proposed method extracts metabolic pathways fast and reliably from big biochemical networks, which is inherently important for all applications involving the engineering of metabolic networks. Availability and implementation https://github.com/EPFL-LCSB/nicepath. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jasmin Hafner
- Laboratory of Computational Systems Biotechnology (LCSB), Institute of Chemical Sciences and Engineering (ISIC), School of Basic Sciences (SB), Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
| | - Vassily Hatzimanikatis
- Laboratory of Computational Systems Biotechnology (LCSB), Institute of Chemical Sciences and Engineering (ISIC), School of Basic Sciences (SB), Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
- To whom correspondence should be addressed.
| |
Collapse
|
9
|
Fackler N, Heijstra BD, Rasor BJ, Brown H, Martin J, Ni Z, Shebek KM, Rosin RR, Simpson SD, Tyo KE, Giannone RJ, Hettich RL, Tschaplinski TJ, Leang C, Brown SD, Jewett MC, Köpke M. Stepping on the Gas to a Circular Economy: Accelerating Development of Carbon-Negative Chemical Production from Gas Fermentation. Annu Rev Chem Biomol Eng 2021; 12:439-470. [PMID: 33872517 DOI: 10.1146/annurev-chembioeng-120120-021122] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Owing to rising levels of greenhouse gases in our atmosphere and oceans, climate change poses significant environmental, economic, and social challenges globally. Technologies that enable carbon capture and conversion of greenhouse gases into useful products will help mitigate climate change by enabling a new circular carbon economy. Gas fermentation usingcarbon-fixing microorganisms offers an economically viable and scalable solution with unique feedstock and product flexibility that has been commercialized recently. We review the state of the art of gas fermentation and discuss opportunities to accelerate future development and rollout. We discuss the current commercial process for conversion of waste gases to ethanol, including the underlying biology, challenges in process scale-up, and progress on genetic tool development and metabolic engineering to expand the product spectrum. We emphasize key enabling technologies to accelerate strain development for acetogens and other nonmodel organisms.
Collapse
Affiliation(s)
- Nick Fackler
- LanzaTech Inc., Skokie, Illinois 60077, USA; , , , , , ,
| | | | - Blake J Rasor
- Department of Chemical and Biological Engineering, Chemistry of Life Processes Institute, and Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA; , , , , , ,
| | - Hunter Brown
- Department of Chemical and Biological Engineering, Chemistry of Life Processes Institute, and Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA; , , , , , ,
| | - Jacob Martin
- Department of Chemical and Biological Engineering, Chemistry of Life Processes Institute, and Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA; , , , , , ,
| | - Zhuofu Ni
- Department of Chemical and Biological Engineering, Chemistry of Life Processes Institute, and Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA; , , , , , ,
| | - Kevin M Shebek
- Department of Chemical and Biological Engineering, Chemistry of Life Processes Institute, and Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA; , , , , , ,
| | - Rick R Rosin
- LanzaTech Inc., Skokie, Illinois 60077, USA; , , , , , ,
| | - Séan D Simpson
- LanzaTech Inc., Skokie, Illinois 60077, USA; , , , , , ,
| | - Keith E Tyo
- Department of Chemical and Biological Engineering, Chemistry of Life Processes Institute, and Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA; , , , , , ,
| | - Richard J Giannone
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA; ,
| | - Robert L Hettich
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA; ,
| | | | - Ching Leang
- LanzaTech Inc., Skokie, Illinois 60077, USA; , , , , , ,
| | - Steven D Brown
- LanzaTech Inc., Skokie, Illinois 60077, USA; , , , , , ,
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Chemistry of Life Processes Institute, and Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA; , , , , , , .,Robert H. Lurie Comprehensive Cancer Center and Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, USA
| | - Michael Köpke
- LanzaTech Inc., Skokie, Illinois 60077, USA; , , , , , ,
| |
Collapse
|
10
|
Repecka D, Jauniskis V, Karpus L, Rembeza E, Rokaitis I, Zrimec J, Poviloniene S, Laurynenas A, Viknander S, Abuajwa W, Savolainen O, Meskys R, Engqvist MKM, Zelezniak A. Expanding functional protein sequence spaces using generative adversarial networks. NAT MACH INTELL 2021. [DOI: 10.1038/s42256-021-00310-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
11
|
Curating a comprehensive set of enzymatic reaction rules for efficient novel biosynthetic pathway design. Metab Eng 2021; 65:79-87. [PMID: 33662575 DOI: 10.1016/j.ymben.2021.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 02/05/2021] [Accepted: 02/23/2021] [Indexed: 01/29/2023]
Abstract
Enzyme substrate promiscuity has significant implications for metabolic engineering. The ability to predict the space of possible enzymatic side reactions is crucial for elucidating underground metabolic networks in microorganisms, as well as harnessing novel biosynthetic capabilities of enzymes to produce desired chemicals. Reaction rule-based cheminformatics platforms have been implemented to computationally enumerate possible promiscuous reactions, relying on existing knowledge of enzymatic transformations to inform novel reactions. However, past versions of curated reaction rules have been limited by a lack of comprehensiveness in representing all possible transformations, as well as the need to prune rules to enhance computational efficiency in pathway expansion. To this end, we curated a set of 1224 most generalized reaction rules, automatically abstracted from atom-mapped MetaCyc reactions and verified to uniquely cover all common enzymatic transformations. We developed a framework to systematically identify and correct redundancies and errors in the curation process, resulting in a minimal, yet comprehensive, rule set. These reaction rules were capable of reproducing more than 85% of all reactions in the KEGG and BRENDA databases, for which a large fraction of reactions is not present in MetaCyc. Our rules exceed all previously published rule sets for which reproduction was possible in this coverage analysis, which allows for the exploration of a larger space of known enzymatic transformations. By leveraging the entire knowledge of possible metabolic reactions through generalized enzymatic reaction rules, we are able to better utilize underground metabolic pathways and accelerate novel biosynthetic pathway design to enable bioproduction towards a wider range of new molecules.
Collapse
|
12
|
Otero-Muras I, Carbonell P. Automated engineering of synthetic metabolic pathways for efficient biomanufacturing. Metab Eng 2020; 63:61-80. [PMID: 33316374 DOI: 10.1016/j.ymben.2020.11.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/15/2020] [Accepted: 11/20/2020] [Indexed: 12/19/2022]
Abstract
Metabolic engineering involves the engineering and optimization of processes from single-cell to fermentation in order to increase production of valuable chemicals for health, food, energy, materials and others. A systems approach to metabolic engineering has gained traction in recent years thanks to advances in strain engineering, leading to an accelerated scaling from rapid prototyping to industrial production. Metabolic engineering is nowadays on track towards a truly manufacturing technology, with reduced times from conception to production enabled by automated protocols for DNA assembly of metabolic pathways in engineered producer strains. In this review, we discuss how the success of the metabolic engineering pipeline often relies on retrobiosynthetic protocols able to identify promising production routes and dynamic regulation strategies through automated biodesign algorithms, which are subsequently assembled as embedded integrated genetic circuits in the host strain. Those approaches are orchestrated by an experimental design strategy that provides optimal scheduling planning of the DNA assembly, rapid prototyping and, ultimately, brings forward an accelerated Design-Build-Test-Learn cycle and the overall optimization of the biomanufacturing process. Achieving such a vision will address the increasingly compelling demand in our society for delivering valuable biomolecules in an affordable, inclusive and sustainable bioeconomy.
Collapse
Affiliation(s)
- Irene Otero-Muras
- BioProcess Engineering Group, IIM-CSIC, Spanish National Research Council, Vigo, 36208, Spain.
| | - Pablo Carbonell
- Institute of Industrial Control Systems and Computing (ai2), Universitat Politècnica de València, 46022, Spain.
| |
Collapse
|
13
|
Desmet S, Brouckaert M, Boerjan W, Morreel K. Seeing the forest for the trees: Retrieving plant secondary biochemical pathways from metabolome networks. Comput Struct Biotechnol J 2020; 19:72-85. [PMID: 33384856 PMCID: PMC7753198 DOI: 10.1016/j.csbj.2020.11.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/26/2020] [Accepted: 11/28/2020] [Indexed: 02/06/2023] Open
Abstract
Over the last decade, a giant leap forward has been made in resolving the main bottleneck in metabolomics, i.e., the structural characterization of the many unknowns. This has led to the next challenge in this research field: retrieving biochemical pathway information from the various types of networks that can be constructed from metabolome data. Searching putative biochemical pathways, referred to as biotransformation paths, is complicated because several flaws occur during the construction of metabolome networks. Multiple network analysis tools have been developed to deal with these flaws, while in silico retrosynthesis is appearing as an alternative approach. In this review, the different types of metabolome networks, their flaws, and the various tools to trace these biotransformation paths are discussed.
Collapse
Affiliation(s)
- Sandrien Desmet
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Marlies Brouckaert
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Wout Boerjan
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Kris Morreel
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
14
|
Perez De Souza L, Alseekh S, Brotman Y, Fernie AR. Network-based strategies in metabolomics data analysis and interpretation: from molecular networking to biological interpretation. Expert Rev Proteomics 2020; 17:243-255. [PMID: 32380880 DOI: 10.1080/14789450.2020.1766975] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Metabolomics has become a crucial part of systems biology; however, data analysis is still often undertaken in a reductionist way focusing on changes in individual metabolites. Whilst such approaches indeed provide relevant insights into the metabolic phenotype of an organism, the intricate nature of metabolic relationships may be better explored when considering the whole system. AREAS COVERED This review highlights multiple network strategies that can be applied for metabolomics data analysis from different perspectives including: association networks based on quantitative information, mass spectra similarity networks to assist metabolite annotation and biochemical networks for systematic data interpretation. We also highlight some relevant insights into metabolic organization obtained through the exploration of such approaches. EXPERT OPINION Network based analysis is an established method that allows the identification of non-intuitive metabolic relationships as well as the identification of unknown compounds in mass spectrometry. Additionally, the representation of data from metabolomics within the context of metabolic networks is intuitive and allows for the use of statistical analysis that can better summarize relevant metabolic changes from a systematic perspective.
Collapse
Affiliation(s)
- Leonardo Perez De Souza
- Department of molecular physiology, Max-Planck-Institute of Molecular Plant Physiology , Potsdam-Golm, Germany
| | - Saleh Alseekh
- Department of molecular physiology, Max-Planck-Institute of Molecular Plant Physiology , Potsdam-Golm, Germany.,Department of plant metabolomics, Centre of Plant Systems Biology and Biotechnology , Plovdiv, Bulgaria
| | - Yariv Brotman
- Department of Life Sciences, Ben-Gurion University of the Negev , Beersheba, Israel
| | - Alisdair R Fernie
- Department of molecular physiology, Max-Planck-Institute of Molecular Plant Physiology , Potsdam-Golm, Germany.,Department of plant metabolomics, Centre of Plant Systems Biology and Biotechnology , Plovdiv, Bulgaria
| |
Collapse
|
15
|
Xue R, Liao J, Shao X, Han K, Long J, Shao L, Ai N, Fan X. Prediction of Adverse Drug Reactions by Combining Biomedical Tripartite Network and Graph Representation Model. Chem Res Toxicol 2019; 33:202-210. [PMID: 31777246 DOI: 10.1021/acs.chemrestox.9b00238] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
As one of the primary contributors to high clinical attrition rates of drugs, toxicity evaluation is of critical significance to new drug discovery. Unsurprisingly, a vast number of computational methods have been developed at various stages of development pipeline to evaluate potential adverse drug reactions (ADRs). Despite previous success of these methods on individual ADR or certain drug family, there are great challenges to toxicity evaluation. In this study, a novel strategy was developed to predict the drug-ADR associations by combining deep learning and the biomedical tripartite network. This heterogeneous network contains biomedical linked data of three entities, for example, drugs, targets, and ADRs. For the first time, GraRep, a deep learning method for distributed representations, is introduced to learn graph representations and identify hidden features from the tripartite network which are further used for ADR prediction. Through this approach, drug-ADR associations could possibly be discovered from a systemic perspective. The accuracy of our method is 0.95 based on internal resource validation and 0.88 based on external resource validation. Moreover, our results show the prediction accuracy using the tripartite network is better than the one with bipartite network, suggesting the model performance can be improved with further enrichment on information. According to the result of 10-fold cross validation, the deep learning model outperforms two traditional methods (topology-based measures and chemical structure-based measures). Additionally, predictive models are also constructed using other deep learning methods, and comparable results are achieved. In summary, the biomedical tripartite network-based deep learning model proposed here proves to offer a promising solution for prediction of ADRs.
Collapse
Affiliation(s)
- Rui Xue
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Jie Liao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Xin Shao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Ke Han
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Jingbo Long
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Li Shao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine , Zhejiang University , 79 Qingchun Road , Hangzhou , 310003 , China
| | - Ni Ai
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou 310058 , China
| |
Collapse
|
16
|
Systems biology based metabolic engineering for non-natural chemicals. Biotechnol Adv 2019; 37:107379. [DOI: 10.1016/j.biotechadv.2019.04.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/23/2019] [Accepted: 04/01/2019] [Indexed: 12/17/2022]
|
17
|
Ward VCA, Chatzivasileiou AO, Stephanopoulos G. Metabolic engineering of Escherichia coli for the production of isoprenoids. FEMS Microbiol Lett 2019; 365:4953741. [PMID: 29718190 DOI: 10.1093/femsle/fny079] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/25/2018] [Indexed: 12/22/2022] Open
Abstract
Metabolic engineering is the practice of using directed genetic manipulations to rewire cellular metabolism primarily with the aim to transform the organism into a single-celled chemical factory. Using biological processes, we can produce more complex chemicals in a more sustainable way. This is particularly important for chemicals which are hard to synthesize using traditional chemistry. However, cells have evolved for growth and must be engineered to produce a single chemical at commercially viable levels. This review focuses on the strategies used to rewire cellular metabolism to produce chemicals using isoprenoid production in Escherichia coli as an example that illustrates many of the challenges faced in metabolic engineering.
Collapse
Affiliation(s)
- Valerie C A Ward
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Chemical Engineering, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L 3G1, Canada
| | | | - Gregory Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
18
|
Shanks BH, Broadbelt LJ. A Robust Strategy for Sustainable Organic Chemicals Utilizing Bioprivileged Molecules. CHEMSUSCHEM 2019; 12:2970-2975. [PMID: 30964228 DOI: 10.1002/cssc.201900323] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/28/2019] [Indexed: 06/09/2023]
Abstract
Biobased chemicals will inevitably be an important part of a sustainable organic chemical industry. Current efforts in biobased chemicals are largely driven by opportunistic chemical product targets requiring complete technology development from feedstock to final product for a specific molecule. To enhance the development of biobased chemicals, it is important to create strategies that can be more systematic and can leverage advancements across multiple final products. Discussed here is the concept of bioprivileged molecules, which are chemical intermediates that have the potential to be efficiently converted into a range of product molecules that can both directly replace existing petrochemicals and are novel molecules that impart enhanced performance properties in end-use applications.
Collapse
Affiliation(s)
- Brent H Shanks
- Center for Biorenewable Chemicals (CBiRC), Iowa State University, Ames, Iowa, 50011, USA
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, 50011, USA
| | - Linda J Broadbelt
- Center for Biorenewable Chemicals (CBiRC), Iowa State University, Ames, Iowa, 50011, USA
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| |
Collapse
|
19
|
Ash JR, Kuenemann MA, Rotroff D, Motsinger-Reif A, Fourches D. Cheminformatics approach to exploring and modeling trait-associated metabolite profiles. J Cheminform 2019; 11:43. [PMID: 31236709 PMCID: PMC6591908 DOI: 10.1186/s13321-019-0366-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 06/17/2019] [Indexed: 12/17/2022] Open
Abstract
Developing predictive and transparent approaches to the analysis of metabolite profiles across patient cohorts is of critical importance for understanding the events that trigger or modulate traits of interest (e.g., disease progression, drug metabolism, chemical risk assessment). However, metabolites’ chemical structures are still rarely used in the statistical modeling workflows that establish these trait-metabolite relationships. Herein, we present a novel cheminformatics-based approach capable of identifying predictive, interpretable, and reproducible trait-metabolite relationships. As a proof-of-concept, we utilize a previously published case study consisting of metabolite profiles from non-small-cell lung cancer (NSCLC) adenocarcinoma patients and healthy controls. By characterizing each structurally annotated metabolite using both computed molecular descriptors and patient metabolite concentration profiles, we show that these complementary features enhance the identification and understanding of key metabolites associated with cancer. Ultimately, we built multi-metabolite classification models for assessing patients’ cancer status using specific groups of metabolites identified based on high structural similarity through chemical clustering. We subsequently performed a metabolic pathway enrichment analysis to identify potential mechanistic relationships between metabolites and NSCLC adenocarcinoma. This cheminformatics-inspired approach relies on the metabolites’ structural features and chemical properties to provide critical information about metabolite-trait associations. This method could ultimately facilitate biological understanding and advance research based on metabolomics data, especially with respect to the identification of novel biomarkers. ![]()
Collapse
Affiliation(s)
- Jeremy R Ash
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA.,Department of Statistics, North Carolina State University, Raleigh, NC, USA.,Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - Melaine A Kuenemann
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA.,Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - Daniel Rotroff
- Department of Statistics, North Carolina State University, Raleigh, NC, USA.,Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - Alison Motsinger-Reif
- Department of Statistics, North Carolina State University, Raleigh, NC, USA.,Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - Denis Fourches
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA. .,Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
20
|
Barupal DK, Fan S, Fiehn O. Integrating bioinformatics approaches for a comprehensive interpretation of metabolomics datasets. Curr Opin Biotechnol 2018; 54:1-9. [PMID: 29413745 PMCID: PMC6358024 DOI: 10.1016/j.copbio.2018.01.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 12/28/2022]
Abstract
Access to high quality metabolomics data has become a routine component for biological studies. However, interpreting those datasets in biological contexts remains a challenge, especially because many identified metabolites are not found in biochemical pathway databases. Starting from statistical analyses, a range of new tools are available, including metabolite set enrichment analysis, pathway and network visualization, pathway prediction, biochemical databases and text mining. Integrating these approaches into comprehensive and unbiased interpretations must carefully consider both caveats of the metabolomics dataset itself as well as the structure and properties of the biological study design. Special considerations need to be taken when adopting approaches from genomics for use in metabolomics. R and Python programming language are enabling an easier exchange of diverse tools to deploy integrated workflows. This review summarizes the key ideas and latest developments in regards to these approaches.
Collapse
Affiliation(s)
- Dinesh Kumar Barupal
- NIH West Coast Metabolomics Center, University of California Davis, Davis, CA 95616, United States
| | - Sili Fan
- NIH West Coast Metabolomics Center, University of California Davis, Davis, CA 95616, United States
| | - Oliver Fiehn
- NIH West Coast Metabolomics Center, University of California Davis, Davis, CA 95616, United States; Biochemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
21
|
Jeffryes JG, Seaver SMD, Faria JP, Henry CS. A pathway for every product? Tools to discover and design plant metabolism. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 273:61-70. [PMID: 29907310 DOI: 10.1016/j.plantsci.2018.03.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/13/2018] [Accepted: 03/19/2018] [Indexed: 06/08/2023]
Abstract
The vast diversity of plant natural products is a powerful indication of the biosynthetic capacity of plant metabolism. Synthetic biology seeks to capitalize on this ability by understanding and reconfiguring the biosynthetic pathways that generate this diversity to produce novel products with improved efficiency. Here we review the algorithms and databases that presently support the design and manipulation of metabolic pathways in plants, starting from metabolic models of native biosynthetic pathways, progressing to novel combinations of known reactions, and finally proposing new reactions that may be carried out by existing enzymes. We show how these tools are useful for proposing new pathways as well as identifying side reactions that may affect engineering goals.
Collapse
Affiliation(s)
- James G Jeffryes
- Argonne National Laboratory, Mathematics and Computer Science Division, Argonne, IL, United States
| | - Samuel M D Seaver
- Argonne National Laboratory, Mathematics and Computer Science Division, Argonne, IL, United States
| | - José P Faria
- Argonne National Laboratory, Mathematics and Computer Science Division, Argonne, IL, United States
| | - Christopher S Henry
- Argonne National Laboratory, Mathematics and Computer Science Division, Argonne, IL, United States.
| |
Collapse
|
22
|
Zhang J, Kwong S, Liu G, Lin Q, Wong KC. PathEmb: Random Walk Based Document Embedding for Global Pathway Similarity Search. IEEE J Biomed Health Inform 2018; 23:1329-1335. [PMID: 29993756 DOI: 10.1109/jbhi.2018.2830806] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Pathway analysis is a cornerstone of system biology. In particular, pathway similarity search plays a key role in establishing structural, functional, and evolutionary relationships between different biological entities. Given a query pathway as well as a database, a pathway similarity search aims to identify novel pathways that are homologous to the query pathway. Unfortunately, the pathway similarity search is computationally inefficient due to the NP-complete graph isomorphism problem. In this study, we introduce a novel algorithmic framework for pathway similarity search, named PathEmb (Pathway Embedding), which is analogous to the Skip-gram model where each pathway is represented as a "document." PathEmb exploits a second order random walk strategy to explore diverse pathway patterns. All signaling paths traversed from random walks are regarded as "sentences," which are constituted as a "document" afterwards. Then, the "document" pattern for the individual pathway is mapped into a low-dimensional feature space for downstream tasks. Furthermore, PathEmb is a topology-free pathway similarity search algorithm, which is feasible to handle any pathway with arbitrary structure. We have extensively evaluated PathEmb and other cutting-edge methods on three pathway datasets. The experimental results demonstrate that PathEmb outperforms the existing methods in terms of computational efficiency and search accuracy. The source code of PathEmb are freely available online https://github.com/zhangjiaobxy/PathEmb.
Collapse
|
23
|
Sivakumar TV, Bhaduri A, Duvvuru Muni RR, Park JH, Kim TY. SimCAL: a flexible tool to compute biochemical reaction similarity. BMC Bioinformatics 2018; 19:254. [PMID: 29969981 PMCID: PMC6029250 DOI: 10.1186/s12859-018-2248-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 06/14/2018] [Indexed: 11/29/2022] Open
Abstract
Background Computation of reaction similarity is a pre-requisite for several bioinformatics applications including enzyme identification for specific biochemical reactions, enzyme classification and mining for specific inhibitors. Reaction similarity is often assessed at either two levels: (i) comparison across all the constituent substrates and products of a reaction, reaction level similarity, (ii) comparison at the transformation center with various degrees of neighborhood, transformation level similarity. Existing reaction similarity computation tools are designed for specific applications and use different features and similarity measures. A single system integrating these diverse features enables comparison of the impact of different molecular properties on similarity score computation. Results To address these requirements, we present SimCAL, an integrated system to calculate reaction similarity with novel features and capability to perform comparative assessment. SimCAL provides reaction similarity computation at both whole reaction level and transformation level. Novel physicochemical features such as stereochemistry, mass, volume and charge are included in computing reaction fingerprint. Users can choose from four different fingerprint types and nine molecular similarity measures. Further, a comparative assessment of these features is also enabled. The performance of SimCAL is assessed on 3,688,122 reaction pairs with Enzyme Commission (EC) number from MetaCyc and achieved an area under the curve (AUC) of > 0.9. In addition, SimCAL results showed strong correlation with state-of-the-art EC-BLAST and molecular signature based reaction similarity methods. Conclusions SimCAL is developed in java and is available as a standalone tool, with intuitive, user-friendly graphical interface and also as a console application. With its customizable feature selection and similarity calculations, it is expected to cater a wide audience interested in studying and analyzing biochemical reactions and metabolic networks. Electronic supplementary material The online version of this article (10.1186/s12859-018-2248-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Anirban Bhaduri
- Bioinformatics Lab, Samsung Advanced Institute of Technology, Bangalore, 560037, India
| | | | - Jin Hwan Park
- Biomaterials Lab, Materials Center, Samsung Advanced Institute of Technology, Gyeonggi-do, 443803, South Korea
| | - Tae Yong Kim
- Biomaterials Lab, Materials Center, Samsung Advanced Institute of Technology, Gyeonggi-do, 443803, South Korea.
| |
Collapse
|
24
|
Hüdig M, Schmitz J, Engqvist MKM, Maurino VG. Biochemical control systems for small molecule damage in plants. PLANT SIGNALING & BEHAVIOR 2018; 13:e1477906. [PMID: 29944438 PMCID: PMC6103286 DOI: 10.1080/15592324.2018.1477906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 05/11/2018] [Indexed: 05/29/2023]
Abstract
As a system, plant metabolism is far from perfect: small molecules (metabolites, cofactors, coenzymes, and inorganic molecules) are frequently damaged by unwanted enzymatic or spontaneous reactions. Here, we discuss the emerging principles in small molecule damage biology. We propose that plants evolved at least three distinct systems to control small molecule damage: (i) repair, which returns a damaged molecule to its original state; (ii) scavenging, which converts reactive molecules to harmless products; and (iii) steering, in which the possible formation of a damaged molecule is suppressed. We illustrate the concept of small molecule damage control in plants by describing specific examples for each of these three categories. We highlight interesting insights that we expect future research will provide on those systems, and we discuss promising strategies to discover new small molecule damage-control systems in plants.
Collapse
Affiliation(s)
- M. Hüdig
- Plant Molecular Physiology and Biotechnology Group, Institute of Developmental and Molecular Biology of Plants, Heinrich Heine University, and Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - J. Schmitz
- Plant Molecular Physiology and Biotechnology Group, Institute of Developmental and Molecular Biology of Plants, Heinrich Heine University, and Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - M. K. M. Engqvist
- Department of Biology and Biological engineering, Division of Systems and Synthetic Biology, Chalmers University of Technology, Gothenburg, Sweden
| | - V. G. Maurino
- Plant Molecular Physiology and Biotechnology Group, Institute of Developmental and Molecular Biology of Plants, Heinrich Heine University, and Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| |
Collapse
|
25
|
Asplund-Samuelsson J, Janasch M, Hudson EP. Thermodynamic analysis of computed pathways integrated into the metabolic networks of E. coli and Synechocystis reveals contrasting expansion potential. Metab Eng 2017; 45:223-236. [PMID: 29278749 DOI: 10.1016/j.ymben.2017.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 12/04/2017] [Accepted: 12/20/2017] [Indexed: 01/09/2023]
Abstract
Introducing biosynthetic pathways into an organism is both reliant on and challenged by endogenous biochemistry. Here we compared the expansion potential of the metabolic network in the photoautotroph Synechocystis with that of the heterotroph E. coli using the novel workflow POPPY (Prospecting Optimal Pathways with PYthon). First, E. coli and Synechocystis metabolomic and fluxomic data were combined with metabolic models to identify thermodynamic constraints on metabolite concentrations (NET analysis). Then, thousands of automatically constructed pathways were placed within each network and subjected to a network-embedded variant of the max-min driving force analysis (NEM). We found that the networks had different capabilities for imparting thermodynamic driving forces toward certain compounds. Key metabolites were constrained differently in Synechocystis due to opposing flux directions in glycolysis and carbon fixation, the forked tri-carboxylic acid cycle, and photorespiration. Furthermore, the lysine biosynthesis pathway in Synechocystis was identified as thermodynamically constrained, impacting both endogenous and heterologous reactions through low 2-oxoglutarate levels. Our study also identified important yet poorly covered areas in existing metabolomics data and provides a reference for future thermodynamics-based engineering in Synechocystis and beyond. The POPPY methodology represents a step in making optimal pathway-host matches, which is likely to become important as the practical range of host organisms is diversified.
Collapse
Affiliation(s)
- Johannes Asplund-Samuelsson
- Science for Life Laboratory, School of Biotechnology, KTH Royal Institute of Technology, P-Box 1031, 171 21 Solna, Sweden.
| | - Markus Janasch
- Science for Life Laboratory, School of Biotechnology, KTH Royal Institute of Technology, P-Box 1031, 171 21 Solna, Sweden.
| | - Elton P Hudson
- Science for Life Laboratory, School of Biotechnology, KTH Royal Institute of Technology, P-Box 1031, 171 21 Solna, Sweden.
| |
Collapse
|
26
|
Wang L, Dash S, Ng CY, Maranas CD. A review of computational tools for design and reconstruction of metabolic pathways. Synth Syst Biotechnol 2017; 2:243-252. [PMID: 29552648 PMCID: PMC5851934 DOI: 10.1016/j.synbio.2017.11.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/06/2017] [Accepted: 11/06/2017] [Indexed: 11/28/2022] Open
Abstract
Metabolic pathways reflect an organism's chemical repertoire and hence their elucidation and design have been a primary goal in metabolic engineering. Various computational methods have been developed to design novel metabolic pathways while taking into account several prerequisites such as pathway stoichiometry, thermodynamics, host compatibility, and enzyme availability. The choice of the method is often determined by the nature of the metabolites of interest and preferred host organism, along with computational complexity and availability of software tools. In this paper, we review different computational approaches used to design metabolic pathways based on the reaction network representation of the database (i.e., graph or stoichiometric matrix) and the search algorithm (i.e., graph search, flux balance analysis, or retrosynthetic search). We also put forth a systematic workflow that can be implemented in projects requiring pathway design and highlight current limitations and obstacles in computational pathway design.
Collapse
Affiliation(s)
- Lin Wang
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Satyakam Dash
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Chiam Yu Ng
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Costas D Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
27
|
Pertusi DA, Moura ME, Jeffryes JG, Prabhu S, Walters Biggs B, Tyo KEJ. Predicting novel substrates for enzymes with minimal experimental effort with active learning. Metab Eng 2017; 44:171-181. [PMID: 29030274 DOI: 10.1016/j.ymben.2017.09.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 08/20/2017] [Accepted: 09/18/2017] [Indexed: 01/26/2023]
Abstract
Enzymatic substrate promiscuity is more ubiquitous than previously thought, with significant consequences for understanding metabolism and its application to biocatalysis. This realization has given rise to the need for efficient characterization of enzyme promiscuity. Enzyme promiscuity is currently characterized with a limited number of human-selected compounds that may not be representative of the enzyme's versatility. While testing large numbers of compounds may be impractical, computational approaches can exploit existing data to determine the most informative substrates to test next, thereby more thoroughly exploring an enzyme's versatility. To demonstrate this, we used existing studies and tested compounds for four different enzymes, developed support vector machine (SVM) models using these datasets, and selected additional compounds for experiments using an active learning approach. SVMs trained on a chemically diverse set of compounds were discovered to achieve maximum accuracies of ~80% using ~33% fewer compounds than datasets based on all compounds tested in existing studies. Active learning-selected compounds for testing resolved apparent conflicts in the existing training data, while adding diversity to the dataset. The application of these algorithms to wide arrays of metabolic enzymes would result in a library of SVMs that can predict high-probability promiscuous enzymatic reactions and could prove a valuable resource for the design of novel metabolic pathways.
Collapse
Affiliation(s)
- Dante A Pertusi
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, United States
| | - Matthew E Moura
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, United States
| | - James G Jeffryes
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, United States; Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, United States
| | - Siddhant Prabhu
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, United States
| | - Bradley Walters Biggs
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, United States
| | - Keith E J Tyo
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, United States.
| |
Collapse
|
28
|
Purdy HM, Reed JL. Evaluating the capabilities of microbial chemical production using genome-scale metabolic models. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.coisb.2017.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
29
|
Huang Y, Zhong C, Lin HX, Wang J. A Method for Finding Metabolic Pathways Using Atomic Group Tracking. PLoS One 2017; 12:e0168725. [PMID: 28068354 PMCID: PMC5221824 DOI: 10.1371/journal.pone.0168725] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 12/05/2016] [Indexed: 12/13/2022] Open
Abstract
A fundamental computational problem in metabolic engineering is to find pathways between compounds. Pathfinding methods using atom tracking have been widely used to find biochemically relevant pathways. However, these methods require the user to define the atoms to be tracked. This may lead to failing to predict the pathways that do not conserve the user-defined atoms. In this work, we propose a pathfinding method called AGPathFinder to find biochemically relevant metabolic pathways between two given compounds. In AGPathFinder, we find alternative pathways by tracking the movement of atomic groups through metabolic networks and use combined information of reaction thermodynamics and compound similarity to guide the search towards more feasible pathways and better performance. The experimental results show that atomic group tracking enables our method to find pathways without the need of defining the atoms to be tracked, avoid hub metabolites, and obtain biochemically meaningful pathways. Our results also demonstrate that atomic group tracking, when incorporated with combined information of reaction thermodynamics and compound similarity, improves the quality of the found pathways. In most cases, the average compound inclusion accuracy and reaction inclusion accuracy for the top resulting pathways of our method are around 0.90 and 0.70, respectively, which are better than those of the existing methods. Additionally, AGPathFinder provides the information of thermodynamic feasibility and compound similarity for the resulting pathways.
Collapse
Affiliation(s)
- Yiran Huang
- School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
- School of Computer, Electronics and Information, Guangxi University, Nanning, China
- * E-mail: (YH); (CZ)
| | - Cheng Zhong
- School of Computer, Electronics and Information, Guangxi University, Nanning, China
- * E-mail: (YH); (CZ)
| | - Hai Xiang Lin
- Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands
| | - Jianyi Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
| |
Collapse
|
30
|
Genome-Scale Metabolic Modeling of Archaea Lends Insight into Diversity of Metabolic Function. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2017; 2017:9763848. [PMID: 28133437 PMCID: PMC5241448 DOI: 10.1155/2017/9763848] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/17/2016] [Accepted: 11/01/2016] [Indexed: 02/07/2023]
Abstract
Decades of biochemical, bioinformatic, and sequencing data are currently being systematically compiled into genome-scale metabolic reconstructions (GEMs). Such reconstructions are knowledge-bases useful for engineering, modeling, and comparative analysis. Here we review the fifteen GEMs of archaeal species that have been constructed to date. They represent primarily members of the Euryarchaeota with three-quarters comprising representative of methanogens. Unlike other reviews on GEMs, we specially focus on archaea. We briefly review the GEM construction process and the genealogy of the archaeal models. The major insights gained during the construction of these models are then reviewed with specific focus on novel metabolic pathway predictions and growth characteristics. Metabolic pathway usage is discussed in the context of the composition of each organism's biomass and their specific energy and growth requirements. We show how the metabolic models can be used to study the evolution of metabolism in archaea. Conservation of particular metabolic pathways can be studied by comparing reactions using the genes associated with their enzymes. This demonstrates the utility of GEMs to evolutionary studies, far beyond their original purpose of metabolic modeling; however, much needs to be done before archaeal models are as extensively complete as those for bacteria.
Collapse
|
31
|
Frainay C, Jourdan F. Computational methods to identify metabolic sub-networks based on metabolomic profiles. Brief Bioinform 2016; 18:43-56. [PMID: 26822099 DOI: 10.1093/bib/bbv115] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/16/2015] [Indexed: 11/13/2022] Open
Abstract
Untargeted metabolomics makes it possible to identify compounds that undergo significant changes in concentration in different experimental conditions. The resulting metabolomic profile characterizes the perturbation concerned, but does not explain the underlying biochemical mechanisms. Bioinformatics methods make it possible to interpret results in light of the whole metabolism. This knowledge is modelled into a network, which can be mined using algorithms that originate in graph theory. These algorithms can extract sub-networks related to the compounds identified. Several attempts have been made to adapt them to obtain more biologically meaningful results. However, there is still no consensus on this kind of analysis of metabolic networks. This review presents the main graph approaches used to interpret metabolomic data using metabolic networks. Their advantages and drawbacks are discussed, and the impacts of their parameters are emphasized. We also provide some guidelines for relevant sub-network extraction and also suggest a range of applications for most methods.
Collapse
|
32
|
Moura M, Finkle J, Stainbrook S, Greene J, Broadbelt LJ, Tyo KE. Evaluating enzymatic synthesis of small molecule drugs. Metab Eng 2016; 33:138-147. [DOI: 10.1016/j.ymben.2015.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 11/02/2015] [Accepted: 11/25/2015] [Indexed: 10/22/2022]
|
33
|
Misra BB, van der Hooft JJJ. Updates in metabolomics tools and resources: 2014-2015. Electrophoresis 2015; 37:86-110. [DOI: 10.1002/elps.201500417] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 10/04/2015] [Accepted: 10/05/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Biswapriya B. Misra
- Department of Biology, Genetics Institute; University of Florida; Gainesville FL USA
| | | |
Collapse
|
34
|
Designing overall stoichiometric conversions and intervening metabolic reactions. Sci Rep 2015; 5:16009. [PMID: 26530953 PMCID: PMC4632160 DOI: 10.1038/srep16009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 10/07/2015] [Indexed: 02/07/2023] Open
Abstract
Existing computational tools for de novo metabolic pathway assembly, either based on mixed integer linear programming techniques or graph-search applications, generally only find linear pathways connecting the source to the target metabolite. The overall stoichiometry of conversion along with alternate co-reactant (or co-product) combinations is not part of the pathway design. Therefore, global carbon and energy efficiency is in essence fixed with no opportunities to identify more efficient routes for recycling carbon flux closer to the thermodynamic limit. Here, we introduce a two-stage computational procedure that both identifies the optimum overall stoichiometry (i.e., optStoic) and selects for (non-)native reactions (i.e., minRxn/minFlux) that maximize carbon, energy or price efficiency while satisfying thermodynamic feasibility requirements. Implementation for recent pathway design studies identified non-intuitive designs with improved efficiencies. Specifically, multiple alternatives for non-oxidative glycolysis are generated and non-intuitive ways of co-utilizing carbon dioxide with methanol are revealed for the production of C2+ metabolites with higher carbon efficiency.
Collapse
|
35
|
Hadadi N, Hatzimanikatis V. Design of computational retrobiosynthesis tools for the design of de novo synthetic pathways. Curr Opin Chem Biol 2015; 28:99-104. [DOI: 10.1016/j.cbpa.2015.06.025] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/16/2015] [Accepted: 06/21/2015] [Indexed: 12/28/2022]
|
36
|
Ataman M, Hatzimanikatis V. Heading in the right direction: thermodynamics-based network analysis and pathway engineering. Curr Opin Biotechnol 2015; 36:176-82. [PMID: 26360871 DOI: 10.1016/j.copbio.2015.08.021] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 08/11/2015] [Accepted: 08/18/2015] [Indexed: 11/28/2022]
Abstract
Thermodynamics-based network analysis through the introduction of thermodynamic constraints in metabolic models allows a deeper analysis of metabolism and guides pathway engineering. The number and the areas of applications of thermodynamics-based network analysis methods have been increasing in the last ten years. We review recent applications of these methods and we identify the areas that such analysis can contribute significantly, and the needs for future developments. We find that organisms with multiple compartments and extremophiles present challenges for modeling and thermodynamics-based flux analysis. The evolution of current and new methods must also address the issues of the multiple alternatives in flux directionalities and the uncertainties and partial information from analytical methods.
Collapse
Affiliation(s)
- Meric Ataman
- Laboratory of Computational Systems Biotechnology (LCSB), Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics (SIB), CH-1015 Lausanne, Switzerland
| | - Vassily Hatzimanikatis
- Laboratory of Computational Systems Biotechnology (LCSB), Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics (SIB), CH-1015 Lausanne, Switzerland.
| |
Collapse
|