1
|
Massing JC, Gross T. Generalized Structural Kinetic Modeling: A Survey and Guide. Front Mol Biosci 2022; 9:825052. [PMID: 35573734 PMCID: PMC9098827 DOI: 10.3389/fmolb.2022.825052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Many current challenges involve understanding the complex dynamical interplay between the constituents of systems. Typically, the number of such constituents is high, but only limited data sources on them are available. Conventional dynamical models of complex systems are rarely mathematically tractable and their numerical exploration suffers both from computational and data limitations. Here we review generalized modeling, an alternative approach for formulating dynamical models to gain insights into dynamics and bifurcations of uncertain systems. We argue that this approach deals elegantly with the uncertainties that exist in real world data and enables analytical insight or highly efficient numerical investigation. We provide a survey of recent successes of generalized modeling and a guide to the application of this modeling approach in future studies such as complex integrative ecological models.
Collapse
Affiliation(s)
- Jana C. Massing
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Oldenburg, Germany
- Helmholtz Centre for Marine and Polar Research, Alfred-Wegener-Institute, Bremerhaven, Germany
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University, Oldenburg, Germany
- *Correspondence: Jana C. Massing,
| | - Thilo Gross
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Oldenburg, Germany
- Helmholtz Centre for Marine and Polar Research, Alfred-Wegener-Institute, Bremerhaven, Germany
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University, Oldenburg, Germany
| |
Collapse
|
2
|
Uematsu S, Ohno S, Tanaka KY, Hatano A, Kokaji T, Ito Y, Kubota H, Hironaka KI, Suzuki Y, Matsumoto M, Nakayama KI, Hirayama A, Soga T, Kuroda S. Multi-omics-based label-free metabolic flux inference reveals obesity-associated dysregulatory mechanisms in liver glucose metabolism. iScience 2022; 25:103787. [PMID: 35243212 PMCID: PMC8859528 DOI: 10.1016/j.isci.2022.103787] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/01/2021] [Accepted: 01/13/2022] [Indexed: 02/07/2023] Open
Abstract
Glucose homeostasis is maintained by modulation of metabolic flux. Enzymes and metabolites regulate the involved metabolic pathways. Dysregulation of glucose homeostasis is a pathological event in obesity. Analyzing metabolic pathways and the mechanisms contributing to obesity-associated dysregulation in vivo is challenging. Here, we introduce OMELET: Omics-Based Metabolic Flux Estimation without Labeling for Extended Trans-omic Analysis. OMELET uses metabolomic, proteomic, and transcriptomic data to identify relative changes in metabolic flux, and to calculate contributions of metabolites, enzymes, and transcripts to the changes in metabolic flux. By evaluating the livers of fasting ob/ob mice, we found that increased metabolic flux through gluconeogenesis resulted primarily from increased transcripts, whereas that through the pyruvate cycle resulted from both increased transcripts and changes in substrates of metabolic enzymes. With OMELET, we identified mechanisms underlying the obesity-associated dysregulation of metabolic flux in the liver. We developed OMELET to infer metabolic flux from label-free multi-omic data Contributions of metabolites, enzymes, and transcripts for flux were inferred Gluconeogenic flux increased in fasting ob/ob mice by increased transcripts Increased pyruvate cycle fluxes were led by increased transcripts and substrates
Collapse
Affiliation(s)
- Saori Uematsu
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Satoshi Ohno
- Molecular Genetic Research Laboratory, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kaori Y Tanaka
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Atsushi Hatano
- Department of Omics and Systems Biology, Graduate School of Medical and Dental Sciences, Niigata University, 757 Ichibancho, Asahimachi-dori, Chuo-ku, Niigata City, Niigata 951-8510, Japan
| | - Toshiya Kokaji
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuki Ito
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan.,Division of Integrated Omics, Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hiroyuki Kubota
- Division of Integrated Omics, Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ken-Ichi Hironaka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Masaki Matsumoto
- Department of Omics and Systems Biology, Graduate School of Medical and Dental Sciences, Niigata University, 757 Ichibancho, Asahimachi-dori, Chuo-ku, Niigata City, Niigata 951-8510, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Akiyoshi Hirayama
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Shinya Kuroda
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan.,Molecular Genetic Research Laboratory, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
3
|
Integrating systemic and molecular levels to infer key drivers sustaining metabolic adaptations. PLoS Comput Biol 2021; 17:e1009234. [PMID: 34297714 PMCID: PMC8336858 DOI: 10.1371/journal.pcbi.1009234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 08/04/2021] [Accepted: 07/01/2021] [Indexed: 12/02/2022] Open
Abstract
Metabolic adaptations to complex perturbations, like the response to pharmacological treatments in multifactorial diseases such as cancer, can be described through measurements of part of the fluxes and concentrations at the systemic level and individual transporter and enzyme activities at the molecular level. In the framework of Metabolic Control Analysis (MCA), ensembles of linear constraints can be built integrating these measurements at both systemic and molecular levels, which are expressed as relative differences or changes produced in the metabolic adaptation. Here, combining MCA with Linear Programming, an efficient computational strategy is developed to infer additional non-measured changes at the molecular level that are required to satisfy these constraints. An application of this strategy is illustrated by using a set of fluxes, concentrations, and differentially expressed genes that characterize the response to cyclin-dependent kinases 4 and 6 inhibition in colon cancer cells. Decreases and increases in transporter and enzyme individual activities required to reprogram the measured changes in fluxes and concentrations are compared with down-regulated and up-regulated metabolic genes to unveil those that are key molecular drivers of the metabolic response. Deciphering the essential events in the reprogramming of metabolic networks subjected to complex perturbations, including the response to pharmacological treatments in multifactorial diseases like cancer, is crucial for the design of efficient therapies. Yet, tools to infer the molecular drivers sustaining such metabolic responses remain elusive for large metabolic networks. Here we develop an efficient computational strategy that integrates measured changes at systemic and molecular levels and combines metabolic control analysis with linear programming tools to infer key molecular drivers sustaining the metabolic adaptations to complex perturbations, such as an antitumoral drug therapy. The collective behavior is approximated using linear expressions where the adaptation of systemic concentrations and fluxes to a perturbation is described as a function of the molecular reprogramming of transport and enzyme activities. Starting from measured changes in fluxes and concentrations, we identify changes in the reprogramming of transporter and enzyme activities that are required to orchestrate the metabolic adaptation of colon cancer cells to a cell cycle inhibitor.
Collapse
|