1
|
Glunčić M, Barić D, Paar V. Efficient genome monomer higher-order structure annotation and identification using the GRMhor algorithm. BIOINFORMATICS ADVANCES 2024; 4:vbae191. [PMID: 39659587 PMCID: PMC11630843 DOI: 10.1093/bioadv/vbae191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/02/2024] [Accepted: 11/26/2024] [Indexed: 12/12/2024]
Abstract
Motivation Tandem monomeric units, integral components of eukaryotic genomes, form higher-order repeat (HOR) structures that play crucial roles in maintaining chromosome integrity and regulating gene expression and protein abundance. Given their significant influence on processes such as evolution, chromosome segregation, and disease, developing a sensitive and automated tool for identifying HORs across diverse genomic sequences is essential. Results In this study, we applied the GRMhor (Global Repeat Map hor) algorithm to analyse the centromeric region of chromosome 20 in three individual human genomes, as well as in the centromeric regions of three higher primates. In all three human genomes, we identified six distinct HOR arrays, which revealed significantly greater differences in the number of canonical and variant copies, as well as in their overall structure, than would be expected given the 99.9% genetic similarity among humans. Furthermore, our analysis of higher primate genomes, which revealed entirely different HOR sequences, indicates a much larger genomic divergence between humans and higher primates than previously recognized. These results underscore the suitability of the GRMhor algorithm for studying specificities in individual genomes, particularly those involving repetitive monomers in centromere structure, which is essential for proper chromosome segregation during cell division, while also highlighting its utility in exploring centromere evolution and other repetitive genomic regions. Availability and implementation Source code and example binaries freely available for download at github.com/gluncic/GRM2023.
Collapse
Affiliation(s)
- Matko Glunčić
- Faculty of Science, University of Zagreb, Zagreb 10000, Croatia
| | - Domjan Barić
- Faculty of Science, University of Zagreb, Zagreb 10000, Croatia
| | - Vladimir Paar
- Faculty of Science, University of Zagreb, Zagreb 10000, Croatia
- Department of Mathematical, Physical and Chemical Sciences, Croatian Academy of Sciences and Arts, Zagreb 10000, Croatia
| |
Collapse
|
2
|
Verbiest MA, Lundström O, Xia F, Baudis M, Bilgin Sonay T, Anisimova M. Short tandem repeat mutations regulate gene expression in colorectal cancer. Sci Rep 2024; 14:3331. [PMID: 38336885 PMCID: PMC10858039 DOI: 10.1038/s41598-024-53739-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/04/2024] [Indexed: 02/12/2024] Open
Abstract
Short tandem repeat (STR) mutations are prevalent in colorectal cancer (CRC), especially in tumours with the microsatellite instability (MSI) phenotype. While STR length variations are known to regulate gene expression under physiological conditions, the functional impact of STR mutations in CRC remains unclear. Here, we integrate STR mutation data with clinical information and gene expression data to study the gene regulatory effects of STR mutations in CRC. We confirm that STR mutability in CRC highly depends on the MSI status, repeat unit size, and repeat length. Furthermore, we present a set of 1244 putative expression STRs (eSTRs) for which the STR length is associated with gene expression levels in CRC tumours. The length of 73 eSTRs is associated with expression levels of cancer-related genes, nine of which are CRC-specific genes. We show that linear models describing eSTR-gene expression relationships allow for predictions of gene expression changes in response to eSTR mutations. Moreover, we found an increased mutability of eSTRs in MSI tumours. Our evidence of gene regulatory roles for eSTRs in CRC highlights a mostly overlooked way through which tumours may modulate their phenotypes. Future extensions of these findings could uncover new STR-based targets in the treatment of cancer.
Collapse
Affiliation(s)
- Max A Verbiest
- Institute of Computational Life Sciences, Zurich University of Applied Sciences, Wädenswil, Switzerland.
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Oxana Lundström
- Institute of Computational Life Sciences, Zurich University of Applied Sciences, Wädenswil, Switzerland
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Feifei Xia
- Institute of Computational Life Sciences, Zurich University of Applied Sciences, Wädenswil, Switzerland
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Michael Baudis
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Tugce Bilgin Sonay
- Institute of Computational Life Sciences, Zurich University of Applied Sciences, Wädenswil, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Institute of Ecology, Evolution and Environmental Biology, Columbia University, New York, USA
| | - Maria Anisimova
- Institute of Computational Life Sciences, Zurich University of Applied Sciences, Wädenswil, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| |
Collapse
|
3
|
Lundström OS, Adriaan Verbiest M, Xia F, Jam HZ, Zlobec I, Anisimova M, Gymrek M. WebSTR: A Population-wide Database of Short Tandem Repeat Variation in Humans. J Mol Biol 2023; 435:168260. [PMID: 37678708 DOI: 10.1016/j.jmb.2023.168260] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Abstract
Short tandem repeats (STRs) are consecutive repetitions of one to six nucleotide motifs. They are hypervariable due to the high prevalence of repeat unit insertions or deletions primarily caused by polymerase slippage during replication. Genetic variation at STRs has been shown to influence a range of traits in humans, including gene expression, cancer risk, and autism. Until recently STRs have been poorly studied since they pose significant challenges to bioinformatics analyses. Moreover, genome-wide analysis of STR variation in population-scale cohorts requires large amounts of data and computational resources. However, the recent advent of genome-wide analysis tools has resulted in multiple large genome-wide datasets of STR variation spanning nearly two million genomic loci in thousands of individuals from diverse populations. Here we present WebSTR, a database of genetic variation and other characteristics of genome-wide STRs across human populations. WebSTR is based on reference panels of more than 1.7 million human STRs created with state of the art repeat annotation methods and can easily be extended to include additional cohorts or species. It currently contains data based on STR genotypes for individuals from the 1000 Genomes Project, H3Africa, the Genotype-Tissue Expression (GTEx) Project and colorectal cancer patients from the TCGA dataset. WebSTR is implemented as a relational database with programmatic access available through an API and a web portal for browsing data. The web portal is publicly available at https://webstr.ucsd.edu.
Collapse
Affiliation(s)
- Oxana Sachenkova Lundström
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden; Vildly AB, Kalmar, Sweden; Institute of Computational Life Sciences, School of Life Sciences and Facility Management, Zürich University of Applied Sciences (ZHAW), Waedenswil, Switzerland. https://twitter.com/merenlin
| | - Max Adriaan Verbiest
- Institute of Computational Life Sciences, School of Life Sciences and Facility Management, Zürich University of Applied Sciences (ZHAW), Waedenswil, Switzerland; Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland; Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Feifei Xia
- Institute of Computational Life Sciences, School of Life Sciences and Facility Management, Zürich University of Applied Sciences (ZHAW), Waedenswil, Switzerland; Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland; Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland. https://twitter.com/Feifeix97
| | - Helyaneh Ziaei Jam
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
| | - Inti Zlobec
- Institute of Tissue Medicine and Pathology, University of Bern, Switzerland
| | - Maria Anisimova
- Institute of Computational Life Sciences, School of Life Sciences and Facility Management, Zürich University of Applied Sciences (ZHAW), Waedenswil, Switzerland; Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.
| | - Melissa Gymrek
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA; Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
4
|
Szatkownik A, Zea DJ, Richard H, Laine E. Building alternative splicing and evolution-aware sequence-structure maps for protein repeats. J Struct Biol 2023; 215:107997. [PMID: 37453591 DOI: 10.1016/j.jsb.2023.107997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/15/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Alternative splicing of repeats in proteins provides a mechanism for rewiring and fine-tuning protein interaction networks. In this work, we developed a robust and versatile method, ASPRING, to identify alternatively spliced protein repeats from gene annotations. ASPRING leverages evolutionary meaningful alternative splicing-aware hierarchical graphs to provide maps between protein repeats sequences and 3D structures. We re-think the definition of repeats by explicitly accounting for transcript diversity across several genes/species. Using a stringent sequence-based similarity criterion, we detected over 5,000 evolutionary conserved repeats by screening virtually all human protein-coding genes and their orthologs across a dozen species. Through a joint analysis of their sequences and structures, we extracted specificity-determining sequence signatures and assessed their implication in experimentally resolved and modelled protein interactions. Our findings demonstrate the widespread alternative usage of protein repeats in modulating protein interactions and open avenues for targeting repeat-mediated interactions.
Collapse
Affiliation(s)
- Antoine Szatkownik
- Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), 75005 Paris, France; Bioinformatics Unit, Genome Competence Center (MF1), Robert Koch Institute, 13353 Berlin, Germany
| | - Diego Javier Zea
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Hugues Richard
- Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), 75005 Paris, France; Bioinformatics Unit, Genome Competence Center (MF1), Robert Koch Institute, 13353 Berlin, Germany.
| | - Elodie Laine
- Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), 75005 Paris, France.
| |
Collapse
|
5
|
Deryusheva EI, Machulin AV, Galzitskaya OV. Structural, Functional, and Evolutionary Characteristics of Proteins with Repeats. Mol Biol 2021. [DOI: 10.1134/s0026893321040038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Delucchi M, Näf P, Bliven S, Anisimova M. TRAL 2.0: Tandem Repeat Detection With Circular Profile Hidden Markov Models and Evolutionary Aligner. FRONTIERS IN BIOINFORMATICS 2021; 1:691865. [PMID: 36303789 PMCID: PMC9581039 DOI: 10.3389/fbinf.2021.691865] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/11/2021] [Indexed: 11/13/2022] Open
Abstract
The Tandem Repeat Annotation Library (TRAL) focuses on analyzing tandem repeat units in genomic sequences. TRAL can integrate and harmonize tandem repeat annotations from a large number of external tools, and provides a statistical model for evaluating and filtering the detected repeats. TRAL version 2.0 includes new features such as a module for identifying repeats from circular profile hidden Markov models, a new repeat alignment method based on the progressive Poisson Indel Process, an improved installation procedure and a docker container. TRAL is an open-source Python 3 library and is available, together with documentation and tutorials viavital-it.ch/software/tral.
Collapse
Affiliation(s)
- Matteo Delucchi
- Institute of Applied Simulations, School of Life Sciences und Facility Management, Zurich University of Applied Sciences, Wädenswil, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Paulina Näf
- Institute of Applied Simulations, School of Life Sciences und Facility Management, Zurich University of Applied Sciences, Wädenswil, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Spencer Bliven
- Institute of Applied Simulations, School of Life Sciences und Facility Management, Zurich University of Applied Sciences, Wädenswil, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Laboratory for Scientific Computing and Modelling, Paul Scherrer Institute, Villigen PSI, Villigen, Switzerland
| | - Maria Anisimova
- Institute of Applied Simulations, School of Life Sciences und Facility Management, Zurich University of Applied Sciences, Wädenswil, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- *Correspondence: Maria Anisimova,
| |
Collapse
|
7
|
Verbiest MA, Delucchi M, Bilgin Sonay T, Anisimova M. Beyond Microsatellite Instability: Intrinsic Disorder as a Potential Link Between Protein Short Tandem Repeats and Cancer. FRONTIERS IN BIOINFORMATICS 2021; 1:685844. [DOI: 10.3389/fbinf.2021.685844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/21/2021] [Indexed: 12/28/2022] Open
Abstract
Short tandem repeats (STRs) are abundant in genomic sequences and are known for comparatively high mutation rates; STRs therefore are thought to be a potent source of genetic diversity. In protein-coding sequences STRs primarily encode disorder-promoting amino acids and are often located in intrinsically disordered regions (IDRs). STRs are frequently studied in the scope of microsatellite instability (MSI) in cancer, with little focus on the connection between protein STRs and IDRs. We believe, however, that this relationship should be explicitly included when ascertaining STR functionality in cancer. Here we explore this notion using all canonical human proteins from SwissProt, wherein we detected 3,699 STRs. Over 80% of these consisted completely of disorder promoting amino acids. 62.1% of amino acids in STR sequences were predicted to also be in an IDR, compared to 14.2% for non-repeat sequences. Over-representation analysis showed STR-containing proteins to be primarily located in the nucleus where they perform protein- and nucleotide-binding functions and regulate gene expression. They were also enriched in cancer-related signaling pathways. Furthermore, we found enrichments of STR-containing proteins among those correlated with patient survival for cancers derived from eight different anatomical sites. Intriguingly, several of these cancer types are not known to have a MSI-high (MSI-H) phenotype, suggesting that protein STRs play a role in cancer pathology in non MSI-H settings. Their intrinsic link with IDRs could therefore be an attractive topic of future research to further explore the role of STRs and IDRs in cancer. We speculate that our observations may be linked to the known dosage-sensitivity of disordered proteins, which could hint at a concentration-dependent gain-of-function mechanism in cancer for proteins containing STRs and IDRs.
Collapse
|
8
|
Ahmad SF, Singchat W, Jehangir M, Suntronpong A, Panthum T, Malaivijitnond S, Srikulnath K. Dark Matter of Primate Genomes: Satellite DNA Repeats and Their Evolutionary Dynamics. Cells 2020; 9:E2714. [PMID: 33352976 PMCID: PMC7767330 DOI: 10.3390/cells9122714] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
A substantial portion of the primate genome is composed of non-coding regions, so-called "dark matter", which includes an abundance of tandemly repeated sequences called satellite DNA. Collectively known as the satellitome, this genomic component offers exciting evolutionary insights into aspects of primate genome biology that raise new questions and challenge existing paradigms. A complete human reference genome was recently reported with telomere-to-telomere human X chromosome assembly that resolved hundreds of dark regions, encompassing a 3.1 Mb centromeric satellite array that had not been identified previously. With the recent exponential increase in the availability of primate genomes, and the development of modern genomic and bioinformatics tools, extensive growth in our knowledge concerning the structure, function, and evolution of satellite elements is expected. The current state of knowledge on this topic is summarized, highlighting various types of primate-specific satellite repeats to compare their proportions across diverse lineages. Inter- and intraspecific variation of satellite repeats in the primate genome are reviewed. The functional significance of these sequences is discussed by describing how the transcriptional activity of satellite repeats can affect gene expression during different cellular processes. Sex-linked satellites are outlined, together with their respective genomic organization. Mechanisms are proposed whereby satellite repeats might have emerged as novel sequences during different evolutionary phases. Finally, the main challenges that hinder the detection of satellite DNA are outlined and an overview of the latest methodologies to address technological limitations is presented.
Collapse
Affiliation(s)
- Syed Farhan Ahmad
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (A.S.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
| | - Worapong Singchat
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (A.S.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
| | - Maryam Jehangir
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (A.S.); (T.P.)
- Department of Structural and Functional Biology, Institute of Bioscience at Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo 18618-689, Brazil
| | - Aorarat Suntronpong
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (A.S.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
| | - Thitipong Panthum
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (A.S.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
| | - Suchinda Malaivijitnond
- National Primate Research Center of Thailand, Chulalongkorn University, Saraburi 18110, Thailand;
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kornsorn Srikulnath
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (A.S.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
- National Primate Research Center of Thailand, Chulalongkorn University, Saraburi 18110, Thailand;
- Center of Excellence on Agricultural Biotechnology (AG-BIO/PERDO-CHE), Bangkok 10900, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
| |
Collapse
|
9
|
A New Census of Protein Tandem Repeats and Their Relationship with Intrinsic Disorder. Genes (Basel) 2020; 11:genes11040407. [PMID: 32283633 PMCID: PMC7230257 DOI: 10.3390/genes11040407] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/29/2020] [Accepted: 04/01/2020] [Indexed: 12/31/2022] Open
Abstract
Protein tandem repeats (TRs) are often associated with immunity-related functions and diseases. Since that last census of protein TRs in 1999, the number of curated proteins increased more than seven-fold and new TR prediction methods were published. TRs appear to be enriched with intrinsic disorder and vice versa. The significance and the biological reasons for this association are unknown. Here, we characterize protein TRs across all kingdoms of life and their overlap with intrinsic disorder in unprecedented detail. Using state-of-the-art prediction methods, we estimate that 50.9% of proteins contain at least one TR, often located at the sequence flanks. Positive linear correlation between the proportion of TRs and the protein length was observed universally, with Eukaryotes in general having more TRs, but when the difference in length is taken into account the difference is quite small. TRs were enriched with disorder-promoting amino acids and were inside intrinsically disordered regions. Many such TRs were homorepeats. Our results support that TRs mostly originate by duplication and are involved in essential functions such as transcription processes, structural organization, electron transport and iron-binding. In viruses, TRs are found in proteins essential for virulence.
Collapse
|
10
|
Tørresen OK, Star B, Mier P, Andrade-Navarro MA, Bateman A, Jarnot P, Gruca A, Grynberg M, Kajava AV, Promponas VJ, Anisimova M, Jakobsen KS, Linke D. Tandem repeats lead to sequence assembly errors and impose multi-level challenges for genome and protein databases. Nucleic Acids Res 2019; 47:10994-11006. [PMID: 31584084 PMCID: PMC6868369 DOI: 10.1093/nar/gkz841] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/03/2019] [Accepted: 10/01/2019] [Indexed: 12/13/2022] Open
Abstract
The widespread occurrence of repetitive stretches of DNA in genomes of organisms across the tree of life imposes fundamental challenges for sequencing, genome assembly, and automated annotation of genes and proteins. This multi-level problem can lead to errors in genome and protein databases that are often not recognized or acknowledged. As a consequence, end users working with sequences with repetitive regions are faced with 'ready-to-use' deposited data whose trustworthiness is difficult to determine, let alone to quantify. Here, we provide a review of the problems associated with tandem repeat sequences that originate from different stages during the sequencing-assembly-annotation-deposition workflow, and that may proliferate in public database repositories affecting all downstream analyses. As a case study, we provide examples of the Atlantic cod genome, whose sequencing and assembly were hindered by a particularly high prevalence of tandem repeats. We complement this case study with examples from other species, where mis-annotations and sequencing errors have propagated into protein databases. With this review, we aim to raise the awareness level within the community of database users, and alert scientists working in the underlying workflow of database creation that the data they omit or improperly assemble may well contain important biological information valuable to others.
Collapse
Affiliation(s)
- Ole K Tørresen
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, NO-0316 Oslo, Norway
| | - Bastiaan Star
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, NO-0316 Oslo, Norway
| | - Pablo Mier
- Faculty of Biology, Johannes Gutenberg University Mainz, Hans-Dieter-Husch-Weg 15, 55128 Mainz, Germany
| | - Miguel A Andrade-Navarro
- Faculty of Biology, Johannes Gutenberg University Mainz, Hans-Dieter-Husch-Weg 15, 55128 Mainz, Germany
| | - Alex Bateman
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton. CB10 1SD, UK
| | - Patryk Jarnot
- Institute of Informatics, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
| | - Aleksandra Gruca
- Institute of Informatics, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
| | - Marcin Grynberg
- Institute of Biochemistry and Biophysics PAS, Pawińskiego 5A, 02-106 Warsaw, Poland
| | - Andrey V Kajava
- Centre de Recherche en Biologie cellulaire de Montpellier, UMR 5237 CNRS, Universite Montpellier 1919 Route de Mende, CEDEX 5, 34293 Montpellier, France
- Institut de Biologie Computationnelle, 34095 Montpellier, France
| | - Vasilis J Promponas
- Bioinformatics Research Laboratory, Department of Biological Sciences, University of Cyprus, PO Box 20537, CY 1678 Nicosia, Cyprus
| | - Maria Anisimova
- Institute of Applied Simulations, School of Life Sciences and Facility Management, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Kjetill S Jakobsen
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, NO-0316 Oslo, Norway
| | - Dirk Linke
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, NO-0316 Oslo, Norway
| |
Collapse
|
11
|
Pellegrini M. Tandem Repeats in Proteins: Prediction Algorithms and Biological Role. Front Bioeng Biotechnol 2015; 3:143. [PMID: 26442257 PMCID: PMC4585158 DOI: 10.3389/fbioe.2015.00143] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/07/2015] [Indexed: 12/30/2022] Open
Abstract
Tandem repetitions in protein sequence and structure is a fascinating subject of research which has been a focus of study since the late 1990s. In this survey, we give an overview on the multi-faceted aspects of research on protein tandem repeats (PTR for short), including prediction algorithms, databases, early classification efforts, mechanisms of PTR formation and evolution, and synthetic PTR design. We also touch on the rather open issue of the relationship between PTR and flexibility (or disorder) in proteins. Detection of PTR either from protein sequence or structure data is challenging due to inherent high (biological) signal-to-noise ratio that is a key feature of this problem. As early in silico analytic tools have been key enablers for starting this field of study, we expect that current and future algorithmic and statistical breakthroughs will have a high impact on the investigations of the biological role of PTR.
Collapse
Affiliation(s)
- Marco Pellegrini
- Laboratory for Integrative Systems Medicine (LISM), Istituto di Informatica e Telematica, and Istituto di Fisiologia Clinica, Consiglio Nazionale delle Ricerche , Pisa , Italy
| |
Collapse
|