1
|
Ruan Z, Xu M, Xing Y, Yang K, Xu X, Jiang J, Qiu R. Enhanced growth of wheat in contaminated fields via synthetic microbiome as revealed by genome-scale metabolic modeling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176047. [PMID: 39241874 DOI: 10.1016/j.scitotenv.2024.176047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/08/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
The relationship between plants and soil microbial communities is complex and subtle, with microbes playing a crucial role in plant growth. Autochthonous bioaugmentation and nutrient biostimulation are promising bioremediation methods for herbicides in contaminated agricultural soils, but how microbes interact to promote biodegradation and plant growth on barren fields, especially in response to the treatment of the herbicide bromoxynil after wheat seedlings, remains poorly understood. In this study, we explored the microbial community reassembly process from the three-leaf stage to the tillering stage of wheat and put forward the idea of using the overlapping results of three methods (network Zi-Pi analysis, LEfSe analysis, and Random Forest analysis) as keystones for the simplification and optimization of key microbial species in the soil. Then we used genome-scale metabolic models (GSMMs) to design a targeted synthetic microbiome for promoting wheat seedling growing. The results showed that carbon source was more helpful in enriching soil microbial diversity and promoting the role of functional microbial communities, which facilitated the degradation of bromoxynil. Designed a multifunctional synthetic consortium consisting of seven non-degraders which unexpectedly assisted in the degradation of indigenous bacteria, which increased the degradation rate of bromoxynil by 2.05 times, and when adding nutritional supplementation, it increased the degradation rate by 3.65 times. In summary, this study provides important insights for rational fertilization and precise microbial consortium management to improve plant seedling growth in contaminated fields.
Collapse
Affiliation(s)
- Zhepu Ruan
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Mengjun Xu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Youwen Xing
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Kaiqing Yang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Xihui Xu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China.
| | - Jiandong Jiang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China.
| | - Rongliang Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
2
|
Ruan Z, Chen K, Cao W, Meng L, Yang B, Xu M, Xing Y, Li P, Freilich S, Chen C, Gao Y, Jiang J, Xu X. Engineering natural microbiomes toward enhanced bioremediation by microbiome modeling. Nat Commun 2024; 15:4694. [PMID: 38824157 PMCID: PMC11144243 DOI: 10.1038/s41467-024-49098-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/21/2024] [Indexed: 06/03/2024] Open
Abstract
Engineering natural microbiomes for biotechnological applications remains challenging, as metabolic interactions within microbiomes are largely unknown, and practical principles and tools for microbiome engineering are still lacking. Here, we present a combinatory top-down and bottom-up framework to engineer natural microbiomes for the construction of function-enhanced synthetic microbiomes. We show that application of herbicide and herbicide-degrader inoculation drives a convergent succession of different natural microbiomes toward functional microbiomes (e.g., enhanced bioremediation of herbicide-contaminated soils). We develop a metabolic modeling pipeline, SuperCC, that can be used to document metabolic interactions within microbiomes and to simulate the performances of different microbiomes. Using SuperCC, we construct bioremediation-enhanced synthetic microbiomes based on 18 keystone species identified from natural microbiomes. Our results highlight the importance of metabolic interactions in shaping microbiome functions and provide practical guidance for engineering natural microbiomes.
Collapse
Affiliation(s)
- Zhepu Ruan
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Kai Chen
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Weimiao Cao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Lei Meng
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Bingang Yang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Mengjun Xu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Youwen Xing
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Pengfa Li
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Shiri Freilich
- Newe Ya'ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay, 30095, Israel
| | - Chen Chen
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Yanzheng Gao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jiandong Jiang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China.
| | - Xihui Xu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China.
| |
Collapse
|
3
|
Jenior ML, Glass EM, Papin JA. Reconstructor: a COBRApy compatible tool for automated genome-scale metabolic network reconstruction with parsimonious flux-based gap-filling. Bioinformatics 2023; 39:btad367. [PMID: 37279743 PMCID: PMC10275916 DOI: 10.1093/bioinformatics/btad367] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 05/22/2023] [Accepted: 06/02/2023] [Indexed: 06/08/2023] Open
Abstract
MOTIVATION Genome-scale metabolic network reconstructions (GENREs) are valuable for understanding cellular metabolism in silico. Several tools exist for automatic GENRE generation. However, these tools frequently (i) do not readily integrate with some of the widely-used suites of packaged methods available for network analysis, (ii) lack effective network curation tools, (iii) are not sufficiently user-friendly, and (iv) often produce low-quality draft reconstructions. RESULTS Here, we present Reconstructor, a user-friendly, COBRApy-compatible tool that produces high-quality draft reconstructions with reaction and metabolite naming conventions that are consistent with the ModelSEED biochemistry database and includes a gap-filling technique based on the principles of parsimony. Reconstructor can generate SBML GENREs from three input types: annotated protein .fasta sequences (Type 1 input), a BLASTp output (Type 2), or an existing SBML GENRE that can be further gap-filled (Type 3). While Reconstructor can be used to create GENREs of any species, we demonstrate the utility of Reconstructor with bacterial reconstructions. We demonstrate how Reconstructor readily generates high-quality GENRES that capture strain, species, and higher taxonomic differences in functional metabolism of bacteria and are useful for further biological discovery. AVAILABILITY AND IMPLEMENTATION The Reconstructor Python package is freely available for download. Complete installation and usage instructions and benchmarking data are available at http://github.com/emmamglass/reconstructor.
Collapse
Affiliation(s)
- Matthew L Jenior
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States
| | - Emma M Glass
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States
| | - Jason A Papin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States
- Department of Medicine, Division of Infectious Diseases & International Health, University of Virginia, Charlottesville, Virginia, United States
- Department of Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, Virginia, United States
| |
Collapse
|
4
|
Ruan Z, Xu M, Xing Y, Jiang Q, Yang B, Jiang J, Xu X. Interspecies Metabolic Interactions in a Synergistic Consortium Drive Efficient Degradation of the Herbicide Bromoxynil Octanoate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11613-11622. [PMID: 36089742 DOI: 10.1021/acs.jafc.2c03057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Microbial communities play vital roles in biogeochemical cycles, allowing biodegradation of a wide range of pollutants. Although many studies have shown the importance of interspecies interactions on activities of communities, fully elucidating the complex interactions in microbial communities is still challenging. Here, we isolated a consortium containing two bacterial strains (Acinetobacter sp. AG3 and Bacillus sp. R45), which could mineralize bromoxynil octanoate (BO) with higher efficiency than either strain individually. The BO degradation pathway by the synergistic consortium was elucidated, and interspecies interactions in the consortium were explored using genome-scale metabolic models (GSMMs). Modeling showed that growth and degradation enhancements were driven by metabolic interactions, such as syntrophic exchanges of small metabolites in the consortium. Besides, nutritional enhancers were predicted to improve BO degradation, which were tested experimentally. Overall, our results will enhance our understanding of microbial mineralization of BO by consortia and promote the application of microbial communities for bioremediation.
Collapse
Affiliation(s)
- Zhepu Ruan
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Mengjun Xu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Youwen Xing
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Qi Jiang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Bingang Yang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Jiandong Jiang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Xihui Xu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| |
Collapse
|
5
|
Garza DR, von Meijenfeldt FAB, van Dijk B, Boleij A, Huynen MA, Dutilh BE. Nutrition or nature: using elementary flux modes to disentangle the complex forces shaping prokaryote pan-genomes. BMC Ecol Evol 2022; 22:101. [PMID: 35974327 PMCID: PMC9382767 DOI: 10.1186/s12862-022-02052-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 07/22/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Microbial pan-genomes are shaped by a complex combination of stochastic and deterministic forces. Even closely related genomes exhibit extensive variation in their gene content. Understanding what drives this variation requires exploring the interactions of gene products with each other and with the organism's external environment. However, to date, conceptual models of pan-genome dynamics often represent genes as independent units and provide limited information about their mechanistic interactions. RESULTS We simulated the stochastic process of gene-loss using the pooled genome-scale metabolic reaction networks of 46 taxonomically diverse bacterial and archaeal families as proxies for their pan-genomes. The frequency by which reactions are retained in functional networks when stochastic gene loss is simulated in diverse environments allowed us to disentangle the metabolic reactions whose presence depends on the metabolite composition of the external environment (constrained by "nutrition") from those that are independent of the environment (constrained by "nature"). By comparing the frequency of reactions from the first group with their observed frequencies in bacterial and archaeal families, we predicted the metabolic niches that shaped the genomic composition of these lineages. Moreover, we found that the lineages that were shaped by a more diverse metabolic niche also occur in more diverse biomes as assessed by global environmental sequencing datasets. CONCLUSION We introduce a computational framework for analyzing and interpreting pan-reactomes that provides novel insights into the ecological and evolutionary drivers of pan-genome dynamics.
Collapse
Affiliation(s)
- Daniel R Garza
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands.
- Microbial Systems Biology, Laboratory of Molecular Bacteriology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Louvain, Belgium.
| | - F A Bastiaan von Meijenfeldt
- Department of Marine Microbiology and Biogeochemistry (MMB), NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, 1790 AB, Den Burg, The Netherlands
| | - Bram van Dijk
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany
| | - Annemarie Boleij
- Department of Pathology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein-Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Martijn A Huynen
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
| | - Bas E Dutilh
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
- Theoretical Biology and Bioinformatics, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- Institute of Biodiversity, Faculty of Biology, Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
6
|
Moutinho TJ, Neubert BC, Jenior ML, Papin JA. Quantifying cumulative phenotypic and genomic evidence for procedural generation of metabolic network reconstructions. PLoS Comput Biol 2022; 18:e1009341. [PMID: 35130271 PMCID: PMC8853471 DOI: 10.1371/journal.pcbi.1009341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 02/17/2022] [Accepted: 01/19/2022] [Indexed: 01/26/2023] Open
Abstract
Genome-scale metabolic network reconstructions (GENREs) are valuable tools for understanding microbial metabolism. The process of automatically generating GENREs includes identifying metabolic reactions supported by sufficient genomic evidence to generate a draft metabolic network. The draft GENRE is then gapfilled with additional reactions in order to recapitulate specific growth phenotypes as indicated with associated experimental data. Previous methods have implemented absolute mapping thresholds for the reactions automatically included in draft GENREs; however, there is growing evidence that integrating annotation evidence in a continuous form can improve model accuracy. There is a need for flexibility in the structure of GENREs to better account for uncertainty in biological data, unknown regulatory mechanisms, and context-specificity associated with data inputs. To address this issue, we present a novel method that provides a framework for quantifying combined genomic, biochemical, and phenotypic evidence for each biochemical reaction during automated GENRE construction. Our method, Constraint-based Analysis Yielding reaction Usage across metabolic Networks (CANYUNs), generates accurate GENREs with a quantitative metric for the cumulative evidence for each reaction included in the network. The structuring of CANYUNs allows for the simultaneous integration of three data inputs while maintaining all supporting evidence for biochemical reactions that may be active in an organism. CANYUNs is designed to maximize the utility of experimental and annotation datasets and to ultimately assist in the curation of the reference datasets used for the automatic construction of metabolic networks. We validated CANYUNs by generating an E. coli K-12 model and compared it to the manually curated reconstruction iML1515. Finally, we demonstrated the use of CANYUNs to build a model by generating an E. coli Nissle CANYUNs model using novel phenotypic data that we collected. This method may address key challenges for the procedural construction of metabolic networks by leveraging uncertainty and redundancy in biological data.
Collapse
Affiliation(s)
- Thomas J. Moutinho
- University of Virginia, Department of Biomedical Engineering, Charlottesville, Virginia, United States of America
| | - Benjamin C. Neubert
- University of Virginia, Department of Biomedical Engineering, Charlottesville, Virginia, United States of America
| | - Matthew L. Jenior
- University of Virginia, Department of Biomedical Engineering, Charlottesville, Virginia, United States of America
| | - Jason A. Papin
- University of Virginia, Department of Biomedical Engineering, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
7
|
Dillard LR, Payne DD, Papin JA. Mechanistic models of microbial community metabolism. Mol Omics 2021; 17:365-375. [PMID: 34125127 PMCID: PMC8202304 DOI: 10.1039/d0mo00154f] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/25/2021] [Indexed: 11/21/2022]
Abstract
Microbial communities affect many facets of human health and well-being. Naturally occurring bacteria, whether in nature or the human body, rarely exist in isolation. A deeper understanding of the metabolic functions of these communities is now possible with emerging computational models. In this review, we summarize frameworks for constructing mechanistic models of microbial community metabolism and discuss available algorithms for model analysis. We highlight essential decision points that greatly influence algorithm selection, as well as model analysis. Polymicrobial metabolic models can be utilized to gain insights into host-pathogen interactions, bacterial engineering, and many more translational applications.
Collapse
Affiliation(s)
- Lillian R. Dillard
- Department of Biochemistry and Molecular Genetics, University of VirginiaCharlottesvilleVA 22908USA
| | - Dawson D. Payne
- Department of Biomedical Engineering, University of VirginiaBox 800759, Health SystemCharlottesvilleVA 22908USA
| | - Jason A. Papin
- Department of Biochemistry and Molecular Genetics, University of VirginiaCharlottesvilleVA 22908USA
- Department of Biomedical Engineering, University of VirginiaBox 800759, Health SystemCharlottesvilleVA 22908USA
| |
Collapse
|
8
|
Blanco-Míguez A, Fdez-Riverola F, Sánchez B, Lourenço A. Resources and tools for the high-throughput, multi-omic study of intestinal microbiota. Brief Bioinform 2020; 20:1032-1056. [PMID: 29186315 DOI: 10.1093/bib/bbx156] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/23/2017] [Indexed: 12/18/2022] Open
Abstract
The human gut microbiome impacts several aspects of human health and disease, including digestion, drug metabolism and the propensity to develop various inflammatory, autoimmune and metabolic diseases. Many of the molecular processes that play a role in the activity and dynamics of the microbiota go beyond species and genic composition and thus, their understanding requires advanced bioinformatics support. This article aims to provide an up-to-date view of the resources and software tools that are being developed and used in human gut microbiome research, in particular data integration and systems-level analysis efforts. These efforts demonstrate the power of standardized and reproducible computational workflows for integrating and analysing varied omics data and gaining deeper insights into microbe community structure and function as well as host-microbe interactions.
Collapse
Affiliation(s)
| | | | | | - Anália Lourenço
- Dpto. de Informática - Universidade de Vigo, ESEI - Escuela Superior de Ingeniería Informática, Edificio politécnico, Campus Universitario As Lagoas s/n, 32004 Ourense, Spain
| |
Collapse
|
9
|
Medlock GL, Papin JA. Guiding the Refinement of Biochemical Knowledgebases with Ensembles of Metabolic Networks and Machine Learning. Cell Syst 2020; 10:109-119.e3. [PMID: 31926940 PMCID: PMC6975163 DOI: 10.1016/j.cels.2019.11.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/27/2019] [Accepted: 11/14/2019] [Indexed: 11/16/2022]
Abstract
Mechanistic models explicitly represent hypothesized biological knowledge. As such, they offer more generalizability than data-driven models. However, identifying model curation efforts that improve performance for mechanistic models is nontrivial. Here, we develop a solution to this problem for genome-scale metabolic models. We generate an ensemble of models, each equally consistent with experimental data, then perform simulations with them. We apply machine learning to the simulation output to identify model structure variation that maximally influences simulations. These variants are high-priority candidates for curation through removal, addition, or reannotation in the model. We apply this approach, automated metabolic model ensemble-driven elimination of uncertainty with statistical learning (AMMEDEUS), to 29 bacterial species to improve gene essentiality predictions. We explore targets for individual species and compile pan-species targets to improve the database used during model construction. AMMEDEUS is an automated and performance-driven recommendation system that complements intuition during curation of biochemical knowledgebases.
Collapse
Affiliation(s)
- Gregory L Medlock
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Jason A Papin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA; Department of Medicine, Division of Infectious Diseases & International Health, University of Virginia, Charlottesville, VA, USA; Department of Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
10
|
Whitmore LS, Nguyen B, Pinar A, George A, Hudson CM. RetSynth: determining all optimal and sub-optimal synthetic pathways that facilitate synthesis of target compounds in chassis organisms. BMC Bioinformatics 2019; 20:461. [PMID: 31500573 PMCID: PMC6734243 DOI: 10.1186/s12859-019-3025-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/12/2019] [Indexed: 11/24/2022] Open
Abstract
Background The efficient biological production of industrially and economically important compounds is a challenging problem. Brute-force determination of the optimal pathways to efficient production of a target chemical in a chassis organism is computationally intractable. Many current methods provide a single solution to this problem, but fail to provide all optimal pathways, optional sub-optimal solutions or hybrid biological/non-biological solutions. Results Here we present RetSynth, software with a novel algorithm for determining all optimal biological pathways given a starting biological chassis and target chemical. By dynamically selecting constraints, the number of potential pathways scales by the number of fully independent pathways and not by the number of overall reactions or size of the metabolic network. This feature allows all optimal pathways to be determined for a large number of chemicals and for a large corpus of potential chassis organisms. Additionally, this software contains other features including the ability to collect data from metabolic repositories, perform flux balance analysis, and to view optimal pathways identified by our algorithm using a built-in visualization module. This software also identifies sub-optimal pathways and allows incorporation of non-biological chemical reactions, which may be performed after metabolic production of precursor molecules. Conclusions The novel algorithm designed for RetSynth streamlines an arduous and complex process in metabolic engineering. Our stand-alone software allows the identification of candidate optimal and additional sub-optimal pathways, and provides the user with necessary ranking criteria such as target yield to decide which route to select for target production. Furthermore, the ability to incorporate non-biological reactions into the final steps allows determination of pathways to production for targets that cannot be solely produced biologically. With this comprehensive suite of features RetSynth exceeds any open-source software or webservice currently available for identifying optimal pathways for target production. Electronic supplementary material The online version of this article (10.1186/s12859-019-3025-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Bernard Nguyen
- Sandia National Laboratories, East Avenue, Livermore, 94550, USA
| | - Ali Pinar
- Sandia National Laboratories, East Avenue, Livermore, 94550, USA
| | - Anthe George
- Sandia National Laboratories, East Avenue, Livermore, 94550, USA
| | - Corey M Hudson
- Sandia National Laboratories, East Avenue, Livermore, 94550, USA.
| |
Collapse
|