1
|
Kousaka S, Ishikawa T. Quantum Chemistry-Based Protein-Protein Docking without Empirical Parameters. J Chem Theory Comput 2024; 20:5164-5175. [PMID: 38845143 DOI: 10.1021/acs.jctc.4c00531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
This study developed a novel protein-protein docking approach based on quantum chemistry. To judge the appropriateness of complex structures, we introduced two criterion values, EV1 and EV2, computed using the fragment molecular orbital method without any empirical parameters. These criterion values enable us to search complex structures in which patterns of the electrostatic potential of the two proteins are optimally aligned at their interface. The performance of our method was validated using 53 complexes in a benchmark set provided for protein-protein docking. When employing bound state structures, docking success rates reached 64% for EV1 and 76% for EV2. On the other hand, when employing unbound state structures, docking success rates reached 13% for EV1 and 17% for EV2.
Collapse
Affiliation(s)
- Sumire Kousaka
- Department of Chemistry, Biotechnology, and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| | - Takeshi Ishikawa
- Department of Chemistry, Biotechnology, and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| |
Collapse
|
2
|
Kuder KJ. Docking Foundations: From Rigid to Flexible Docking. Methods Mol Biol 2024; 2780:3-14. [PMID: 38987460 DOI: 10.1007/978-1-0716-3985-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Despite the development of methods for the experimental determination of protein structures, the dissonance between the number of known sequences and their solved structures is still enormous. This is particularly evident in protein-protein complexes. To fill this gap, diverse technologies have been developed to study protein-protein interactions (PPIs) in a cellular context including a range of biological and computational methods. The latter derive from techniques originally published and applied almost half a century ago and are based on interdisciplinary knowledge from the nexus of the fields of biology, chemistry, and physics about protein sequences, structures, and their folding. Protein-protein docking, the main protagonist of this chapter, is routinely treated as an integral part of protein research. Herein, we describe the basic foundations of the whole process in general terms, but step by step from protein representations through docking methods and evaluation of complexes to their final validation.
Collapse
Affiliation(s)
- Kamil J Kuder
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland.
| |
Collapse
|
3
|
Abstract
The biological significance of proteins attracted the scientific community in exploring their characteristics. The studies shed light on the interaction patterns and functions of proteins in a living body. Due to their practical difficulties, reliable experimental techniques pave the way for introducing computational methods in the interaction prediction. Automated methods reduced the difficulties but could not yet replace experimental studies as the field is still evolving. Interaction prediction problem being critical needs highly accurate results, but none of the existing methods could offer reliable performance that can parallel with experimental results yet. This article aims to assess the existing computational docking algorithms, their challenges, and future scope. Blind docking techniques are quite helpful when no information other than the individual structures are available. As more and more complex structures are being added to different databases, information-driven approaches can be a good alternative. Artificial intelligence, ruling over the major fields, is expected to take over this domain very shortly.
Collapse
|
4
|
Park T, Woo H, Yang J, Kwon S, Won J, Seok C. Protein oligomer structure prediction using GALAXY in CASP14. Proteins 2021; 89:1844-1851. [PMID: 34363243 DOI: 10.1002/prot.26203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/17/2021] [Accepted: 07/29/2021] [Indexed: 11/10/2022]
Abstract
Proteins perform their functions by interacting with other biomolecules. For these interactions, proteins often form homo- or hetero-oligomers as well. Thus, oligomer protein structures provide important clues regarding the biological roles of proteins. To this end, computational prediction of oligomer structures may be a useful tool in the absence of experimentally resolved structures. Here, we describe our server and human-expert methods used to predict oligomer structures in the CASP14 experiment. Examples are provided for cases in which manual domain-splitting led to improved oligomeric domain structures by ab initio docking, automated oligomer structure refinement led to improved subunit orientation and terminal structure, and manual oligomer modeling utilizing literature information generated a reasonable oligomer model. We also discussed the results of post-prediction docking calculations with AlphaFold2 monomers as input in comparison to our blind prediction results. Overall, ab initio docking of AlphaFold2 models did not lead to better oligomer structure prediction, which may be attributed to the interfacial structural difference between the AlphaFold2 monomer structures and the crystal oligomer structures. This result poses a next-stage challenge in oligomer structure prediction after the success of AlphaFold2. For successful protein assembly structure prediction, a different approach that exploits further evolutionary information on the interface and/or flexible docking taking the interfacial conformational flexibilities of subunit structures into account is needed.
Collapse
Affiliation(s)
- Taeyong Park
- Department of Chemistry, Seoul National University, Seoul, South Korea
| | - Hyeonuk Woo
- Department of Chemistry, Seoul National University, Seoul, South Korea
| | - Jinsol Yang
- Department of Chemistry, Seoul National University, Seoul, South Korea
| | - Sohee Kwon
- Department of Chemistry, Seoul National University, Seoul, South Korea
| | - Jonghun Won
- Department of Chemistry, Seoul National University, Seoul, South Korea.,Galux Inc., Seoul, South Korea
| | - Chaok Seok
- Department of Chemistry, Seoul National University, Seoul, South Korea.,Galux Inc., Seoul, South Korea
| |
Collapse
|
5
|
Quignot C, Postic G, Bret H, Rey J, Granger P, Murail S, Chacón P, Andreani J, Tufféry P, Guerois R. InterEvDock3: a combined template-based and free docking server with increased performance through explicit modeling of complex homologs and integration of covariation-based contact maps. Nucleic Acids Res 2021; 49:W277-W284. [PMID: 33978743 PMCID: PMC8265070 DOI: 10.1093/nar/gkab358] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/09/2021] [Accepted: 04/23/2021] [Indexed: 12/19/2022] Open
Abstract
The InterEvDock3 protein docking server exploits the constraints of evolution by multiple means to generate structural models of protein assemblies. The server takes as input either several sequences or 3D structures of proteins known to interact. It returns a set of 10 consensus candidate complexes, together with interface predictions to guide further experimental validation interactively. Three key novelties were implemented in InterEvDock3 to help obtain more reliable models: users can (i) generate template-based structural models of assemblies using close and remote homologs of known 3D structure, detected through an automated search protocol, (ii) select the assembly models most consistent with contact maps from external methods that implement covariation-based contact prediction with or without deep learning and (iii) exploit a novel coevolution-based scoring scheme at atomic level, which leads to significantly higher free docking success rates. The performance of the server was validated on two large free docking benchmark databases, containing respectively 230 unbound targets (Weng dataset) and 812 models of unbound targets (PPI4DOCK dataset). Its effectiveness has also been proven on a number of challenging examples. The InterEvDock3 web interface is available at http://bioserv.rpbs.univ-paris-diderot.fr/services/InterEvDock3/.
Collapse
Affiliation(s)
- Chloé Quignot
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Guillaume Postic
- Université de Paris, CNRS UMR 8251, INSERM U1133, RPBS, Paris 75205, France
| | - Hélène Bret
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Julien Rey
- Université de Paris, CNRS UMR 8251, INSERM U1133, RPBS, Paris 75205, France
| | - Pierre Granger
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Samuel Murail
- Université de Paris, CNRS UMR 8251, INSERM U1133, RPBS, Paris 75205, France
| | - Pablo Chacón
- Department of Biological Physical Chemistry, Rocasolano Institute of Physical Chemistry C.S.I.C, Madrid, Spain
| | - Jessica Andreani
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Pierre Tufféry
- Université de Paris, CNRS UMR 8251, INSERM U1133, RPBS, Paris 75205, France
| | - Raphaël Guerois
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
6
|
Kurcinski M, Kmiecik S, Zalewski M, Kolinski A. Protein-Protein Docking with Large-Scale Backbone Flexibility Using Coarse-Grained Monte-Carlo Simulations. Int J Mol Sci 2021; 22:ijms22147341. [PMID: 34298961 PMCID: PMC8306105 DOI: 10.3390/ijms22147341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/03/2021] [Accepted: 07/04/2021] [Indexed: 12/21/2022] Open
Abstract
Most of the protein–protein docking methods treat proteins as almost rigid objects. Only the side-chains flexibility is usually taken into account. The few approaches enabling docking with a flexible backbone typically work in two steps, in which the search for protein–protein orientations and structure flexibility are simulated separately. In this work, we propose a new straightforward approach for docking sampling. It consists of a single simulation step during which a protein undergoes large-scale backbone rearrangements, rotations, and translations. Simultaneously, the other protein exhibits small backbone fluctuations. Such extensive sampling was possible using the CABS coarse-grained protein model and Replica Exchange Monte Carlo dynamics at a reasonable computational cost. In our proof-of-concept simulations of 62 protein–protein complexes, we obtained acceptable quality models for a significant number of cases.
Collapse
|
7
|
Wen Z, He J, Huang SY. Topology-independent and global protein structure alignment through an FFT-based algorithm. Bioinformatics 2020; 36:478-486. [PMID: 31384919 DOI: 10.1093/bioinformatics/btz609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 07/22/2019] [Accepted: 08/02/2019] [Indexed: 12/12/2022] Open
Abstract
MOTIVATION Protein structure alignment is one of the fundamental problems in computational structure biology. A variety of algorithms have been developed to address this important issue in the past decade. However, due to their heuristic nature, current structure alignment methods may suffer from suboptimal alignment and/or over-fragmentation and thus lead to a biologically wrong alignment in some cases. To overcome these limitations, we have developed an accurate topology-independent and global structure alignment method through an FFT-based exhaustive search algorithm, which is referred to as FTAlign. RESULTS Our FTAlign algorithm was extensively tested on six commonly used datasets and compared with seven state-of-the-art structure alignment approaches, TMalign, DeepAlign, Kpax, 3DCOMB, MICAN, SPalignNS and CLICK. It was shown that FTAlign outperformed the other methods in reproducing manually curated alignments and obtained a high success rate of 96.7 and 90.0% on two gold-standard benchmarks, MALIDUP and MALISAM, respectively. Moreover, FTAlign also achieved the overall best performance in terms of biologically meaningful structure overlap (SO) and TMscore on both the sequential alignment test sets including MALIDUP, MALISAM and 64 difficult cases from HOMSTRAD, and the non-sequential sets including MALIDUP-NS, MALISAM-NS, 199 topology-different cases, where FTAlign especially showed more advantage for non-sequential alignment. Despite its global search feature, FTAlign is also computationally efficient and can normally complete a pairwise alignment within one second. AVAILABILITY AND IMPLEMENTATION http://huanglab.phys.hust.edu.cn/ftalign/.
Collapse
Affiliation(s)
- Zeyu Wen
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Jiahua He
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Sheng-You Huang
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| |
Collapse
|
8
|
Singh A, Dauzhenka T, Kundrotas PJ, Sternberg MJE, Vakser IA. Application of docking methodologies to modeled proteins. Proteins 2020; 88:1180-1188. [PMID: 32170770 DOI: 10.1002/prot.25889] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 02/15/2020] [Accepted: 03/07/2020] [Indexed: 12/12/2022]
Abstract
Protein docking is essential for structural characterization of protein interactions. Besides providing the structure of protein complexes, modeling of proteins and their complexes is important for understanding the fundamental principles and specific aspects of protein interactions. The accuracy of protein modeling, in general, is still less than that of the experimental approaches. Thus, it is important to investigate the applicability of docking techniques to modeled proteins. We present new comprehensive benchmark sets of protein models for the development and validation of protein docking, as well as a systematic assessment of free and template-based docking techniques on these sets. As opposed to previous studies, the benchmark sets reflect the real case modeling/docking scenario where the accuracy of the models is assessed by the modeling procedure, without reference to the native structure (which would be unknown in practical applications). We also expanded the analysis to include docking of protein pairs where proteins have different structural accuracy. The results show that, in general, the template-based docking is less sensitive to the structural inaccuracies of the models than the free docking. The near-native docking poses generated by the template-based approach, typically, also have higher ranks than those produces by the free docking (although the free docking is indispensable in modeling the multiplicity of protein interactions in a crowded cellular environment). The results show that docking techniques are applicable to protein models in a broad range of modeling accuracy. The study provides clear guidelines for practical applications of docking to protein models.
Collapse
Affiliation(s)
- Amar Singh
- Computational Biology Program, The University of Kansas, Lawrence, Kansas, USA
| | - Taras Dauzhenka
- Computational Biology Program, The University of Kansas, Lawrence, Kansas, USA
| | - Petras J Kundrotas
- Computational Biology Program, The University of Kansas, Lawrence, Kansas, USA
| | - Michael J E Sternberg
- Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Imperial College London, South Kensington, London, UK
| | - Ilya A Vakser
- Computational Biology Program, The University of Kansas, Lawrence, Kansas, USA.,Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
9
|
Guo F, Zou Q, Yang G, Wang D, Tang J, Xu J. Identifying protein-protein interface via a novel multi-scale local sequence and structural representation. BMC Bioinformatics 2019; 20:483. [PMID: 31874604 PMCID: PMC6929278 DOI: 10.1186/s12859-019-3048-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 08/21/2019] [Indexed: 12/23/2022] Open
Abstract
Background Protein-protein interaction plays a key role in a multitude of biological processes, such as signal transduction, de novo drug design, immune responses, and enzymatic activities. Gaining insights of various binding abilities can deepen our understanding of the interaction. It is of great interest to understand how proteins in a complex interact with each other. Many efficient methods have been developed for identifying protein-protein interface. Results In this paper, we obtain the local information on protein-protein interface, through multi-scale local average block and hexagon structure construction. Given a pair of proteins, we use a trained support vector regression (SVR) model to select best configurations. On Benchmark v4.0, our method achieves average Irmsd value of 3.28Å and overall Fnat value of 63%, which improves upon Irmsd of 3.89Å and Fnat of 49% for ZRANK, and Irmsd of 3.99Å and Fnat of 46% for ClusPro. On CAPRI targets, our method achieves average Irmsd value of 3.45Å and overall Fnat value of 46%, which improves upon Irmsd of 4.18Å and Fnat of 40% for ZRANK, and Irmsd of 5.12Å and Fnat of 32% for ClusPro. The success rates by our method, FRODOCK 2.0, InterEvDock and SnapDock on Benchmark v4.0 are 41.5%, 29.0%, 29.4% and 37.0%, respectively. Conclusion Experiments show that our method performs better than some state-of-the-art methods, based on the prediction quality improved in terms of CAPRI evaluation criteria. All these results demonstrate that our method is a valuable technological tool for identifying protein-protein interface.
Collapse
Affiliation(s)
- Fei Guo
- College of Intelligence and Computing, Tianjin University, Tianjin, People's Republic of China.
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Guang Yang
- School of Economics, Nankai University, Tianjin, People's Republic of China
| | - Dan Wang
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Jijun Tang
- College of Intelligence and Computing, Tianjin University, Tianjin, People's Republic of China.,Department of Computer Science and Engineering, University of South Carolina, Columbia, USA
| | - Junhai Xu
- College of Intelligence and Computing, Tianjin University, Tianjin, People's Republic of China
| |
Collapse
|
10
|
Abstract
Background Protein-protein docking is a valuable computational approach for investigating protein-protein interactions. Shape complementarity is the most basic component of a scoring function and plays an important role in protein-protein docking. Despite significant progresses, shape representation remains an open question in the development of protein-protein docking algorithms, especially for grid-based docking approaches. Results We have proposed a new pairwise shape-based scoring function (LSC) for protein-protein docking which adopts an exponential form to take into account long-range interactions between protein atoms. The LSC scoring function was incorporated into our FFT-based docking program and evaluated for both bound and unbound docking on the protein docking benchmark 4.0. It was shown that our LSC achieved a significantly better performance than four other similar docking methods, ZDOCK 2.1, MolFit/G, GRAMM, and FTDock/G, in both success rate and number of hits. When considering the top 10 predictions, LSC obtained a success rate of 51.71% and 6.82% for bound and unbound docking, respectively, compared to 42.61% and 4.55% for the second-best program ZDOCK 2.1. LSC also yielded an average of 8.38 and 3.94 hits per complex in the top 1000 predictions for bound and unbound docking, respectively, followed by 6.38 and 2.96 hits for the second-best ZDOCK 2.1. Conclusions The present LSC method will not only provide an initial-stage docking approach for post-docking processes but also have a general implementation for accurate representation of other energy terms on grids in protein-protein docking. The software has been implemented in our HDOCK web server at http://hdock.phys.hust.edu.cn/.
Collapse
|
11
|
Quignot C, Rey J, Yu J, Tufféry P, Guerois R, Andreani J. InterEvDock2: an expanded server for protein docking using evolutionary and biological information from homology models and multimeric inputs. Nucleic Acids Res 2019; 46:W408-W416. [PMID: 29741647 PMCID: PMC6030979 DOI: 10.1093/nar/gky377] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/02/2018] [Indexed: 12/15/2022] Open
Abstract
Computational protein docking is a powerful strategy to predict structures of protein-protein interactions and provides crucial insights for the functional characterization of macromolecular cross-talks. We previously developed InterEvDock, a server for ab initio protein docking based on rigid-body sampling followed by consensus scoring using physics-based and statistical potentials, including the InterEvScore function specifically developed to incorporate co-evolutionary information in docking. InterEvDock2 is a major evolution of InterEvDock which allows users to submit input sequences – not only structures – and multimeric inputs and to specify constraints for the pairwise docking process based on previous knowledge about the interaction. For this purpose, we added modules in InterEvDock2 for automatic template search and comparative modeling of the input proteins. The InterEvDock2 pipeline was benchmarked on 812 complexes for which unbound homology models of the two partners and co-evolutionary information are available in the PPI4DOCK database. InterEvDock2 identified a correct model among the top 10 consensus in 29% of these cases (compared to 15–24% for individual scoring functions) and at least one correct interface residue among 10 predicted in 91% of these cases. InterEvDock2 is thus a unique protein docking server, designed to be useful for the experimental biology community. The InterEvDock2 web interface is available at http://bioserv.rpbs.univ-paris-diderot.fr/services/InterEvDock2/.
Collapse
Affiliation(s)
- Chloé Quignot
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Julien Rey
- INSERM UMR-S 973, Université Paris Diderot, Sorbonne Paris Cité, RPBS, Paris 75205, France
| | - Jinchao Yu
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Pierre Tufféry
- INSERM UMR-S 973, Université Paris Diderot, Sorbonne Paris Cité, RPBS, Paris 75205, France
| | - Raphaël Guerois
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Jessica Andreani
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| |
Collapse
|
12
|
Computational approaches to macromolecular interactions in the cell. Curr Opin Struct Biol 2019; 55:59-65. [PMID: 30999240 DOI: 10.1016/j.sbi.2019.03.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 03/08/2019] [Indexed: 12/15/2022]
Abstract
Structural modeling of a cell is an evolving strategic direction in computational structural biology. It takes advantage of new powerful modeling techniques, deeper understanding of fundamental principles of molecular structure and assembly, and rapid growth of the amount of structural data generated by experimental techniques. Key modeling approaches to principal types of macromolecular assemblies in a cell already exist. The main challenge, along with the further development of these modeling approaches, is putting them together in a consistent, unified whole cell model. This opinion piece addresses the fundamental aspects of modeling macromolecular assemblies in a cell, and the state-of-the-art in modeling of the principal types of such assemblies.
Collapse
|