1
|
Ouaret R, Minta AB, Albasi C, Choubert JM, Azaïs A. Sulfamethoxazole degradation pathways in wastewater treatment: Bayesian network-based approach for a meta-analysis of scientific papers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34982-4. [PMID: 39356433 DOI: 10.1007/s11356-024-34982-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 09/10/2024] [Indexed: 10/03/2024]
Abstract
Given the widespread presence of micropollutants in urban water systems, it is imperative to gain a comprehensive understanding of their degradation pathways. This paper focuses on sulfamethoxazole (SMX) as a model molecule due to its extensive study, aiming to elucidate its degradation pathways in biological (BIO) and oxidative (AOP) processes. Numerous reaction pathways are outlined in scientific papers. However, a significant deficiency in current methodologies has led to the development of a novel meta-analytical approach, seeking consensus among researchers by synthesizing data from studies characterized by their heterogeneity and contradictions. As an innovative alternative, probabilistic graphical models such as Bayesian networks (BNs) could illuminate the relationships and dependencies between various transformation products, providing a holistic view of the degradation process. Based on the analysis of an extensive bibliography gathering more than 45 articles for more than 140 molecules and 177 reaction pathways, this study proposes a meta-analysis methodology based on Bayesian networks.
Collapse
Affiliation(s)
- Rachid Ouaret
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, 31000, France
| | - Ali Badara Minta
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, 31000, France
- INRAE, UR REVERSAAL, 5 Rue de La Doua, CS, 20244, F-69625, Villeurbanne Cedex, France
| | - Claire Albasi
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, 31000, France
| | - Jean-Marc Choubert
- INRAE, UR REVERSAAL, 5 Rue de La Doua, CS, 20244, F-69625, Villeurbanne Cedex, France
| | - Antonin Azaïs
- INRAE, UR REVERSAAL, 5 Rue de La Doua, CS, 20244, F-69625, Villeurbanne Cedex, France.
| |
Collapse
|
2
|
Liu Y, Jiang Y, Zhang F, Yang Y. A Novel Multi-Scale Graph Neural Network for Metabolic Pathway Prediction. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:178-187. [PMID: 38127612 DOI: 10.1109/tcbb.2023.3345647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Predicting the metabolic pathway classes of compounds in the human body is an important problem in drug research and development. For this purpose, we propose a Multi-Scale Graph Neural Network framework, named MSGNN. The framework includes a subgraph encoder, a feature encoder and a global feature processor, and a graph augmentation strategy is adopted. The subgraph encoder is responsible for extracting the local structural features of the compound, the feature encoder learns the characteristics of the atoms, and the global feature processor processes the information from the pre-training model and the two molecular fingerprints, while the graph augmentation strategy is to expand the train set through a scientific and reasonable method. The experiment result illustrates that the accuracy, precision, recall and F1 metrics of MSGNN reach 98.17%, 94.18%, 94.43% and 94.30%, respectively, which is superior to the similar models we have known. In addition, the ablation experiment demonstrates the indispensability of MSGNN modules.
Collapse
|
3
|
Liu X, Yang H, Ai C, Ding Y, Guo F, Tang J. MVML-MPI: Multi-View Multi-Label Learning for Metabolic Pathway Inference. Brief Bioinform 2023; 24:bbad393. [PMID: 37930024 DOI: 10.1093/bib/bbad393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/20/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023] Open
Abstract
Development of robust and effective strategies for synthesizing new compounds, drug targeting and constructing GEnome-scale Metabolic models (GEMs) requires a deep understanding of the underlying biological processes. A critical step in achieving this goal is accurately identifying the categories of pathways in which a compound participated. However, current machine learning-based methods often overlook the multifaceted nature of compounds, resulting in inaccurate pathway predictions. Therefore, we present a novel framework on Multi-View Multi-Label Learning for Metabolic Pathway Inference, hereby named MVML-MPI. First, MVML-MPI learns the distinct compound representations in parallel with corresponding compound encoders to fully extract features. Subsequently, we propose an attention-based mechanism that offers a fusion module to complement these multi-view representations. As a result, MVML-MPI accurately represents and effectively captures the complex relationship between compounds and metabolic pathways and distinguishes itself from current machine learning-based methods. In experiments conducted on the Kyoto Encyclopedia of Genes and Genomes pathways dataset, MVML-MPI outperformed state-of-the-art methods, demonstrating the superiority of MVML-MPI and its potential to utilize the field of metabolic pathway design, which can aid in optimizing drug-like compounds and facilitating the development of GEMs. The code and data underlying this article are freely available at https://github.com/guofei-tju/MVML-MPI. Contact: jtang@cse.sc.edu, guofei@csu.edu.com or wuxi_dyj@csj.uestc.edu.cn.
Collapse
Affiliation(s)
- Xiaoyi Liu
- Computer Science and Engineering, University of South Carolina, Columbia 29208, USA
| | - Hongpeng Yang
- Computer Science and Engineering, University of South Carolina, Columbia 29208, USA
| | - Chengwei Ai
- Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Yijie Ding
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou 324000, China
| | - Fei Guo
- Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Jijun Tang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Nanshan 518055, China
| |
Collapse
|
4
|
Tan Z, Li J, Hou J, Gonzalez R. Designing artificial pathways for improving chemical production. Biotechnol Adv 2023; 64:108119. [PMID: 36764336 DOI: 10.1016/j.biotechadv.2023.108119] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Metabolic engineering exploits manipulation of catalytic and regulatory elements to improve a specific function of the host cell, often the synthesis of interesting chemicals. Although naturally occurring pathways are significant resources for metabolic engineering, these pathways are frequently inefficient and suffer from a series of inherent drawbacks. Designing artificial pathways in a rational manner provides a promising alternative for chemicals production. However, the entry barrier of designing artificial pathway is relatively high, which requires researchers a comprehensive and deep understanding of physical, chemical and biological principles. On the other hand, the designed artificial pathways frequently suffer from low efficiencies, which impair their further applications in host cells. Here, we illustrate the concept and basic workflow of retrobiosynthesis in designing artificial pathways, as well as the most currently used methods including the knowledge- and computer-based approaches. Then, we discuss how to obtain desired enzymes for novel biochemistries, and how to trim the initially designed artificial pathways for further improving their functionalities. Finally, we summarize the current applications of artificial pathways from feedstocks utilization to various products synthesis, as well as our future perspectives on designing artificial pathways.
Collapse
Affiliation(s)
- Zaigao Tan
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China; School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; Department of Bioengineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Jian Li
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China; School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; Department of Bioengineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jin Hou
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Ramon Gonzalez
- Department of Chemical, Biological, and Materials Engineering, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
5
|
Du BX, Zhao PC, Zhu B, Yiu SM, Nyamabo AK, Yu H, Shi JY. MLGL-MP: a Multi-Label Graph Learning framework enhanced by pathway interdependence for Metabolic Pathway prediction. Bioinformatics 2022; 38:i325-i332. [PMID: 35758801 PMCID: PMC9235472 DOI: 10.1093/bioinformatics/btac222] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Motivation During lead compound optimization, it is crucial to identify pathways where a drug-like compound is metabolized. Recently, machine learning-based methods have achieved inspiring progress to predict potential metabolic pathways for drug-like compounds. However, they neglect the knowledge that metabolic pathways are dependent on each other. Moreover, they are inadequate to elucidate why compounds participate in specific pathways. Results To address these issues, we propose a novel Multi-Label Graph Learning framework of Metabolic Pathway prediction boosted by pathway interdependence, called MLGL-MP, which contains a compound encoder, a pathway encoder and a multi-label predictor. The compound encoder learns compound embedding representations by graph neural networks. After constructing a pathway dependence graph by re-trained word embeddings and pathway co-occurrences, the pathway encoder learns pathway embeddings by graph convolutional networks. Moreover, after adapting the compound embedding space into the pathway embedding space, the multi-label predictor measures the proximity of two spaces to discriminate which pathways a compound participates in. The comparison with state-of-the-art methods on KEGG pathways demonstrates the superiority of our MLGL-MP. Also, the ablation studies reveal how its three components contribute to the model, including the pathway dependence, the adapter between compound embeddings and pathway embeddings, as well as the pre-training strategy. Furthermore, a case study illustrates the interpretability of MLGL-MP by indicating crucial substructures in a compound, which are significantly associated with the attending metabolic pathways. It is anticipated that this work can boost metabolic pathway predictions in drug discovery. Availability and implementation The code and data underlying this article are freely available at https://github.com/dubingxue/MLGL-MP.
Collapse
Affiliation(s)
- Bing-Xue Du
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Peng-Cheng Zhao
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Bei Zhu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Siu-Ming Yiu
- Department of Computer Science, The University of Hong Kong, Hong Kong 999077, China
| | - Arnold K Nyamabo
- School of Computer Science, Northwestern Polytechnical University, Xi'an 710072, China
| | - Hui Yu
- School of Computer Science, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jian-Yu Shi
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
6
|
Hafner J, Hatzimanikatis V. Finding metabolic pathways in large networks through atom-conserving substrate-product pairs. Bioinformatics 2021; 37:3560-3568. [PMID: 34003971 PMCID: PMC8545321 DOI: 10.1093/bioinformatics/btab368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/22/2021] [Accepted: 05/17/2021] [Indexed: 11/29/2022] Open
Abstract
Motivation Finding biosynthetic pathways is essential for metabolic engineering of organisms to produce chemicals, biodegradation prediction of pollutants and drugs, and for the elucidation of bioproduction pathways of secondary metabolites. A key step in biosynthetic pathway design is the extraction of novel metabolic pathways from big networks that integrate known biological, as well as novel, predicted biotransformations. However, the efficient analysis and the navigation of big biochemical networks remain a challenge. Results Here, we propose the construction of searchable graph representations of metabolic networks. Each reaction is decomposed into pairs of reactants and products, and each pair is assigned a weight, which is calculated from the number of conserved atoms between the reactant and the product molecule. We test our method on a biochemical network that spans 6546 known enzymatic reactions to show how our approach elegantly extracts biologically relevant metabolic pathways from biochemical networks, and how the proposed network structure enables the application of efficient graph search algorithms that improve navigation and pathway identification in big metabolic networks. The weighted reactant–product pairs of an example network and the corresponding graph search algorithm are available online. The proposed method extracts metabolic pathways fast and reliably from big biochemical networks, which is inherently important for all applications involving the engineering of metabolic networks. Availability and implementation https://github.com/EPFL-LCSB/nicepath. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jasmin Hafner
- Laboratory of Computational Systems Biotechnology (LCSB), Institute of Chemical Sciences and Engineering (ISIC), School of Basic Sciences (SB), Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
| | - Vassily Hatzimanikatis
- Laboratory of Computational Systems Biotechnology (LCSB), Institute of Chemical Sciences and Engineering (ISIC), School of Basic Sciences (SB), Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
- To whom correspondence should be addressed.
| |
Collapse
|
7
|
Curating a comprehensive set of enzymatic reaction rules for efficient novel biosynthetic pathway design. Metab Eng 2021; 65:79-87. [PMID: 33662575 DOI: 10.1016/j.ymben.2021.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 02/05/2021] [Accepted: 02/23/2021] [Indexed: 01/29/2023]
Abstract
Enzyme substrate promiscuity has significant implications for metabolic engineering. The ability to predict the space of possible enzymatic side reactions is crucial for elucidating underground metabolic networks in microorganisms, as well as harnessing novel biosynthetic capabilities of enzymes to produce desired chemicals. Reaction rule-based cheminformatics platforms have been implemented to computationally enumerate possible promiscuous reactions, relying on existing knowledge of enzymatic transformations to inform novel reactions. However, past versions of curated reaction rules have been limited by a lack of comprehensiveness in representing all possible transformations, as well as the need to prune rules to enhance computational efficiency in pathway expansion. To this end, we curated a set of 1224 most generalized reaction rules, automatically abstracted from atom-mapped MetaCyc reactions and verified to uniquely cover all common enzymatic transformations. We developed a framework to systematically identify and correct redundancies and errors in the curation process, resulting in a minimal, yet comprehensive, rule set. These reaction rules were capable of reproducing more than 85% of all reactions in the KEGG and BRENDA databases, for which a large fraction of reactions is not present in MetaCyc. Our rules exceed all previously published rule sets for which reproduction was possible in this coverage analysis, which allows for the exploration of a larger space of known enzymatic transformations. By leveraging the entire knowledge of possible metabolic reactions through generalized enzymatic reaction rules, we are able to better utilize underground metabolic pathways and accelerate novel biosynthetic pathway design to enable bioproduction towards a wider range of new molecules.
Collapse
|
8
|
Otero-Muras I, Carbonell P. Automated engineering of synthetic metabolic pathways for efficient biomanufacturing. Metab Eng 2020; 63:61-80. [PMID: 33316374 DOI: 10.1016/j.ymben.2020.11.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/15/2020] [Accepted: 11/20/2020] [Indexed: 12/19/2022]
Abstract
Metabolic engineering involves the engineering and optimization of processes from single-cell to fermentation in order to increase production of valuable chemicals for health, food, energy, materials and others. A systems approach to metabolic engineering has gained traction in recent years thanks to advances in strain engineering, leading to an accelerated scaling from rapid prototyping to industrial production. Metabolic engineering is nowadays on track towards a truly manufacturing technology, with reduced times from conception to production enabled by automated protocols for DNA assembly of metabolic pathways in engineered producer strains. In this review, we discuss how the success of the metabolic engineering pipeline often relies on retrobiosynthetic protocols able to identify promising production routes and dynamic regulation strategies through automated biodesign algorithms, which are subsequently assembled as embedded integrated genetic circuits in the host strain. Those approaches are orchestrated by an experimental design strategy that provides optimal scheduling planning of the DNA assembly, rapid prototyping and, ultimately, brings forward an accelerated Design-Build-Test-Learn cycle and the overall optimization of the biomanufacturing process. Achieving such a vision will address the increasingly compelling demand in our society for delivering valuable biomolecules in an affordable, inclusive and sustainable bioeconomy.
Collapse
Affiliation(s)
- Irene Otero-Muras
- BioProcess Engineering Group, IIM-CSIC, Spanish National Research Council, Vigo, 36208, Spain.
| | - Pablo Carbonell
- Institute of Industrial Control Systems and Computing (ai2), Universitat Politècnica de València, 46022, Spain.
| |
Collapse
|
9
|
Baranwal M, Magner A, Elvati P, Saldinger J, Violi A, Hero AO. A deep learning architecture for metabolic pathway prediction. Bioinformatics 2020; 36:2547-2553. [PMID: 31879763 DOI: 10.1093/bioinformatics/btz954] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/02/2019] [Accepted: 12/22/2019] [Indexed: 01/14/2023] Open
Abstract
MOTIVATION Understanding the mechanisms and structural mappings between molecules and pathway classes are critical for design of reaction predictors for synthesizing new molecules. This article studies the problem of prediction of classes of metabolic pathways (series of chemical reactions occurring within a cell) in which a given biochemical compound participates. We apply a hybrid machine learning approach consisting of graph convolutional networks used to extract molecular shape features as input to a random forest classifier. In contrast to previously applied machine learning methods for this problem, our framework automatically extracts relevant shape features directly from input SMILES representations, which are atom-bond specifications of chemical structures composing the molecules. RESULTS Our method is capable of correctly predicting the respective metabolic pathway class of 95.16% of tested compounds, whereas competing methods only achieve an accuracy of 84.92% or less. Furthermore, our framework extends to the task of classification of compounds having mixed membership in multiple pathway classes. Our prediction accuracy for this multi-label task is 97.61%. We analyze the relative importance of various global physicochemical features to the pathway class prediction problem and show that simple linear/logistic regression models can predict the values of these global features from the shape features extracted using our framework. AVAILABILITY AND IMPLEMENTATION https://github.com/baranwa2/MetabolicPathwayPrediction. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Mayank Baranwal
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA
| | - Abram Magner
- Department of Computer Science, University at Albany, SUNY, Albany, NY 12222, USA
| | | | | | - Angela Violi
- Department of Mechanical Engineering.,Department of Chemical Engineering and Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alfred O Hero
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
10
|
Ding S, Tian Y, Cai P, Zhang D, Cheng X, Sun D, Yuan L, Chen J, Tu W, Wei DQ, Hu QN. novoPathFinder: a webserver of designing novel-pathway with integrating GEM-model. Nucleic Acids Res 2020; 48:W477-W487. [PMID: 32313937 PMCID: PMC7319456 DOI: 10.1093/nar/gkaa230] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/16/2020] [Accepted: 03/28/2020] [Indexed: 12/14/2022] Open
Abstract
To increase the number of value-added chemicals that can be produced by metabolic engineering and synthetic biology, constructing metabolic space with novel reactions/pathways is crucial. However, with the large number of reactions that existed in the metabolic space and complicated metabolisms within hosts, identifying novel pathways linking two molecules or heterologous pathways when engineering a host to produce a target molecule is an arduous task. Hence, we built a user-friendly web server, novoPathFinder, which has several features: (i) enumerate novel pathways between two specified molecules without considering hosts; (ii) construct heterologous pathways with known or putative reactions for producing target molecule within Escherichia coli or yeast without giving precursor; (iii) estimate novel pathways with considering several categories, including enzyme promiscuity, Synthetic Complex Score (SCScore) and LD50 of intermediates, overall stoichiometric conversions, pathway length, theoretical yields and thermodynamic feasibility. According to the results, novoPathFinder is more capable to recover experimentally validated pathways when comparing other rule-based web server tools. Besides, more efficient pathways with novel reactions could also be retrieved for further experimental exploration. novoPathFinder is available at http://design.rxnfinder.org/novopathfinder/.
Collapse
Affiliation(s)
- Shaozhen Ding
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | - Yu Tian
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, Hubei 430023, China
| | - Pengli Cai
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, People's Republic of China
| | - Dachuan Zhang
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | - Xingxiang Cheng
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | - Dandan Sun
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | - Le Yuan
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE412 96 Gothenburg, Sweden
| | - Junni Chen
- Wuhan LifeSynther Science and Technology Co. Limited, Wuhan 430070, People's Republic of China
| | - Weizhong Tu
- Wuhan LifeSynther Science and Technology Co. Limited, Wuhan 430070, People's Republic of China
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism (Shanghai Jiao Tong University), Shanghai 200240, China
| | - Qian-Nan Hu
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| |
Collapse
|
11
|
Fournier-Viger P, Cheng C, Lin JCW, Yun U, Kiran RU. TKG: Efficient Mining of Top-K Frequent Subgraphs. BIG DATA ANALYTICS 2019. [DOI: 10.1007/978-3-030-37188-3_13] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|