1
|
Han Y, Jia Z, Xu K, Li Y, Lu S, Guan L. CRISPR-Cpf1 system and its applications in animal genome editing. Mol Genet Genomics 2024; 299:75. [PMID: 39085660 DOI: 10.1007/s00438-024-02166-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 07/11/2024] [Indexed: 08/02/2024]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR) and their associated protein (Cas) system is a gene editing technology guided by RNA endonuclease. The CRISPR-Cas12a (also known as CRISPR-Cpf1) system is extensively utilized in genome editing research due to its accuracy and high efficiency. In this paper, we primarily focus on the application of CRISPR-Cpf1 technology in the construction of disease models and gene therapy. Firstly, the structure and mechanism of the CRISPR-Cas system are introduced. Secondly, the similarities and differences between CRISPR-Cpf1 and CRISPR-Cas9 technologies are compared. Thirdly, the main focus is on the application of the CRISPR-Cpf1 system in cell and animal genome editing. Finally, the challenges faced by CRISPR-Cpf1 technology and corresponding strategies are analyzed. Although CRISPR-Cpf1 technology has certain off-target effects, it can effectively and accurately edit cell and animal genomes, and has significant advantages in the preclinical research.
Collapse
Affiliation(s)
- Yawei Han
- College of Tobacco Science and Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, Henan, China
| | - Zisen Jia
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Number 601, Jinsui Road, Xinxiang, 453003, Henan, China
| | - Keli Xu
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Number 601, Jinsui Road, Xinxiang, 453003, Henan, China
| | - Yangyang Li
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Number 601, Jinsui Road, Xinxiang, 453003, Henan, China
| | - Suxiang Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
| | - Lihong Guan
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Number 601, Jinsui Road, Xinxiang, 453003, Henan, China.
| |
Collapse
|
2
|
Vialetto E, Miele S, Goren MG, Yu J, Yu Y, Collias D, Beamud B, Osbelt L, Lourenço M, Strowig T, Brisse S, Barquist L, Qimron U, Bikard D, Beisel C. Systematic interrogation of CRISPR antimicrobials in Klebsiella pneumoniae reveals nuclease-, guide- and strain-dependent features influencing antimicrobial activity. Nucleic Acids Res 2024; 52:6079-6091. [PMID: 38661215 PMCID: PMC11162776 DOI: 10.1093/nar/gkae281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 03/24/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024] Open
Abstract
CRISPR-Cas systems can be utilized as programmable-spectrum antimicrobials to combat bacterial infections. However, how CRISPR nucleases perform as antimicrobials across target sites and strains remains poorly explored. Here, we address this knowledge gap by systematically interrogating the use of CRISPR antimicrobials using multidrug-resistant and hypervirulent strains of Klebsiella pneumoniae as models. Comparing different Cas nucleases, DNA-targeting nucleases outperformed RNA-targeting nucleases based on the tested targets. Focusing on AsCas12a that exhibited robust targeting across different strains, we found that the elucidated modes of escape varied widely, restraining opportunities to enhance killing. We also encountered individual guide RNAs yielding different extents of clearance across strains, which were linked to an interplay between improper gRNA folding and strain-specific DNA repair and survival. To explore features that could improve targeting across strains, we performed a genome-wide screen in different K. pneumoniae strains that yielded guide design rules and trained an algorithm for predicting guide efficiency. Finally, we showed that Cas12a antimicrobials can be exploited to eliminate K. pneumoniae when encoded in phagemids delivered by T7-like phages. Altogether, our results highlight the importance of evaluating antimicrobial activity of CRISPR antimicrobials across relevant strains and define critical parameters for efficient CRISPR-based targeting.
Collapse
Affiliation(s)
- Elena Vialetto
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | - Solange Miele
- Institut Pasteur, Université Paris Cité, Synthetic Biology, Paris, France
| | - Moran G Goren
- Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Jiaqi Yu
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | - Yanying Yu
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | - Daphne Collias
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | - Beatriz Beamud
- Institut Pasteur, Université Paris Cité, Synthetic Biology, Paris, France
| | - Lisa Osbelt
- Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany
- German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Marta Lourenço
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| | - Till Strowig
- Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany
- German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Sylvain Brisse
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
- University of Würzburg, Medical Faculty, 97080 Würzburg, Germany
| | - Udi Qimron
- Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - David Bikard
- Institut Pasteur, Université Paris Cité, Synthetic Biology, Paris, France
| | - Chase L Beisel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
- University of Würzburg, Medical Faculty, 97080 Würzburg, Germany
| |
Collapse
|
3
|
Xin Q, Jia H, Wang B, Pan L. CRISPR-dCpf1 mediated whole genome crRNA inhibition library for high-throughput screening of growth characteristic genes in Bacillus amyloliquefaciens LB1ba02. Int J Biol Macromol 2023; 253:127179. [PMID: 37802457 DOI: 10.1016/j.ijbiomac.2023.127179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/06/2023] [Accepted: 09/23/2023] [Indexed: 10/10/2023]
Abstract
Bacillus amyloliquefaciens LB1ba02 is generally recognized as food safe (GRAS) microbial host and important enzyme-producing strain in the industry. However, autolysis affects the growth of bacteria, further affecting the yield of target products. Besides, the restriction-modification system, existed in B. amyloliquefaciens LB1ba02, results in a low transformation efficiency, which further leads to a lack of high-throughput screening tools. Here, we constructed a genome-wide crRNA inhibition library based on the CRISPR/dCpf1 system and high-throughput screening of related genes affecting the cell growth and autolysis using flow cytometry in B. amyloliquefaciens LB1ba02. The whole genome crRNA library was first validated for resistance to the toxic chemical 5-fluorouracil, and then used for validation of essential genes. In addition, seven gene loci (oppD, flil, tuaA, prmA, sigO, hslU, and GE03231) that affect the growth characteristics of LB1ba02 were screened. Among them, the Opp system had the greatest impact on growth. When the expression of operon oppA-oppB-oppC-oppD-oppF was inhibited, the cell growth difference was most significant. Inhibition of other sites could also promote rapid growth of bacteria to varying degrees; however, inhibition of GE03231 site accelerated cell autolysis. Therefore, the whole genome crRNA inhibition library is well suited for B. amyloliquefaciens LB1ba02 and can be further applied to high-throughput mining of other functional genes.
Collapse
Affiliation(s)
- Qinglong Xin
- School of Biology and Biological Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Panyu District, Guangzhou 510006, Guangdong, PR China
| | - Hang Jia
- School of Biology and Biological Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Panyu District, Guangzhou 510006, Guangdong, PR China
| | - Bin Wang
- School of Biology and Biological Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Panyu District, Guangzhou 510006, Guangdong, PR China.
| | - Li Pan
- School of Biology and Biological Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Panyu District, Guangzhou 510006, Guangdong, PR China.
| |
Collapse
|
4
|
Zhang Y, Kubiak AM, Bailey TS, Claessen L, Hittmeyer P, Dubois L, Theys J, Lambin P. Development of a CRISPR-Cas12a system for efficient genome engineering in clostridia. Microbiol Spectr 2023; 11:e0245923. [PMID: 37947521 PMCID: PMC10715149 DOI: 10.1128/spectrum.02459-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/13/2023] [Indexed: 11/12/2023] Open
Abstract
IMPORTANCE Continued efforts in developing the CRISPR-Cas systems will further enhance our understanding and utilization of Clostridium species. This study demonstrates the development and application of a genome-engineering tool in two Clostridium strains, Clostridium butyricum and Clostridium sporogenes, which have promising potential as probiotics and oncolytic agents. Particular attention was given to the folding of precursor crRNA and the role of this process in off-target DNA cleavage by Cas12a. The results provide the guidelines necessary for efficient genome engineering using this system in clostridia. Our findings not only expand our fundamental understanding of genome-engineering tools in clostridia but also improve this technology to allow use of its full potential in a plethora of biotechnological applications.
Collapse
Affiliation(s)
- Yanchao Zhang
- M-Lab, Department of Precision Medicine, GROW - School of Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Aleksandra M. Kubiak
- M-Lab, Department of Precision Medicine, GROW - School of Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
- Exomnis Biotech BV, Maastricht, The Netherlands
| | - Tom S. Bailey
- M-Lab, Department of Precision Medicine, GROW - School of Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Luuk Claessen
- M-Lab, Department of Precision Medicine, GROW - School of Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
- LivingMed Biotech SRL, Liège, Belgium
| | - Philip Hittmeyer
- M-Lab, Department of Precision Medicine, GROW - School of Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
- LivingMed Biotech SRL, Liège, Belgium
| | - Ludwig Dubois
- M-Lab, Department of Precision Medicine, GROW - School of Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Jan Theys
- M-Lab, Department of Precision Medicine, GROW - School of Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Philippe Lambin
- M-Lab, Department of Precision Medicine, GROW - School of Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
5
|
Noshay J, Walker T, Alexander W, Klingeman D, Romero J, Walker A, Prates E, Eckert C, Irle S, Kainer D, Jacobson D. Quantum biological insights into CRISPR-Cas9 sgRNA efficiency from explainable-AI driven feature engineering. Nucleic Acids Res 2023; 51:10147-10161. [PMID: 37738140 PMCID: PMC10602897 DOI: 10.1093/nar/gkad736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/07/2023] [Accepted: 08/29/2023] [Indexed: 09/24/2023] Open
Abstract
CRISPR-Cas9 tools have transformed genetic manipulation capabilities in the laboratory. Empirical rules-of-thumb have been developed for only a narrow range of model organisms, and mechanistic underpinnings for sgRNA efficiency remain poorly understood. This work establishes a novel feature set and new public resource, produced with quantum chemical tensors, for interpreting and predicting sgRNA efficiency. Feature engineering for sgRNA efficiency is performed using an explainable-artificial intelligence model: iterative Random Forest (iRF). By encoding quantitative attributes of position-specific sequences for Escherichia coli sgRNAs, we identify important traits for sgRNA design in bacterial species. Additionally, we show that expanding positional encoding to quantum descriptors of base-pair, dimer, trimer, and tetramer sequences captures intricate interactions in local and neighboring nucleotides of the target DNA. These features highlight variation in CRISPR-Cas9 sgRNA dynamics between E. coli and H. sapiens genomes. These novel encodings of sgRNAs enhance our understanding of the elaborate quantum biological processes involved in CRISPR-Cas9 machinery.
Collapse
Affiliation(s)
- Jaclyn M Noshay
- Computational and Predictive Biology, Biosciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Tyler Walker
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee-Knoxville, Knoxville, TN, USA
| | - William G Alexander
- Synthetic Biology, Biosciences,Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Dawn M Klingeman
- Synthetic Biology, Biosciences,Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Jonathon Romero
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee-Knoxville, Knoxville, TN, USA
| | - Angelica M Walker
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee-Knoxville, Knoxville, TN, USA
| | - Erica Prates
- Computational and Predictive Biology, Biosciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Carrie Eckert
- Synthetic Biology, Biosciences,Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Stephan Irle
- Computational Sciences and Engineering, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - David Kainer
- Computational and Predictive Biology, Biosciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Daniel A Jacobson
- Computational and Predictive Biology, Biosciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| |
Collapse
|
6
|
O’Brien A, Bauer DC, Burgio G. Predicting CRISPR-Cas12a guide efficiency for targeting using machine learning. PLoS One 2023; 18:e0292924. [PMID: 37847697 PMCID: PMC10581463 DOI: 10.1371/journal.pone.0292924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/02/2023] [Indexed: 10/19/2023] Open
Abstract
Genome editing through the development of CRISPR (Clustered Regularly Interspaced Short Palindromic Repeat)-Cas technology has revolutionized many fields in biology. Beyond Cas9 nucleases, Cas12a (formerly Cpf1) has emerged as a promising alternative to Cas9 for editing AT-rich genomes. Despite the promises, guide RNA efficiency prediction through computational tools search still lacks accuracy. Through a computational meta-analysis, here we report that Cas12a target and off-target cleavage behavior are a factor of nucleotide bias combined with nucleotide mismatches relative to the protospacer adjacent motif (PAM) site. These features helped to train a Random Forest machine learning model to improve the accuracy by at least 15% over existing algorithms to predict guide RNA efficiency for the Cas12a enzyme. Despite the progresses, our report underscores the need for more representative datasets and further benchmarking to reliably and accurately predict guide RNA efficiency and off-target effects for Cas12a enzymes.
Collapse
Affiliation(s)
- Aidan O’Brien
- Division of Genome Science and Cancer and The Shine-Dalgarno Centre for RNA Innovation, The John Curtin School of Medical Research, College of Health and Medicine, The Australian National University, Canberra, ACT, Australia
- Commonwealth Scientific and Industrial Research (CSIRO) Health and Biosecurity, Adelaide, SA, Australia
| | - Denis C. Bauer
- Commonwealth Scientific and Industrial Research (CSIRO) Health and Biosecurity, Adelaide, SA, Australia
- Faculty of Medicine and Health Science, Department of Biomedical Sciences, Macquarie University, Macquarie Park, Australia
- Faculty of Science and Engineering, Applied BioSciences, Macquarie University, Macquarie Park, Australia
| | - Gaetan Burgio
- Division of Genome Science and Cancer and The Shine-Dalgarno Centre for RNA Innovation, The John Curtin School of Medical Research, College of Health and Medicine, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
7
|
Dang S, Sui H, Zhang S, Wu D, Chen Z, Zhai J, Bai M. CRISPR-Cas12a test strip (CRISPR/CAST) package: In-situ detection of Brucella from infected livestock. BMC Vet Res 2023; 19:202. [PMID: 37833763 PMCID: PMC10571365 DOI: 10.1186/s12917-023-03767-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Brucellosis is a common zoonotic disease caused by Brucella, which causes enormous economic losses and public burden to epidemic areas. Early and precise diagnosis and timely culling of infected animals are crucial to prevent the infection and spread of Brucella. In recent years, RNA-guided CRISPR/Cas12a(Clustered Regularly Interspaced Short Palindromic Repeats and its associated protein 12a) nucleases have shown great promise in nucleic acid detection. This research aims to develop a CRISPR/CAST (CRISPR/Cas12a Test strip) package that can rapidly detect Brucella nucleic acid during on-site screening, especially on remote family pastures. The CRISPR/Cas12a system combined with recombinase polymerase amplification (RPA), and lateral flow read-out. RESULTS We selected the conserved gene bp26, which commonly used in Brucella infection detection and compared on Genbank with other Brucella species. The genomes of Brucella abortus 2308, Brucella suis S2, Brucella melitansis 16 M, and Brucella suis 1330, et al. were aligned, and the sequences were found to be consistent. Therefore, the experiments were only performed on B. melitensis. With the CRISPR/CAST package, the assay of Brucella nucleic acid can be completed within 30 min under isothermal temperature conditions, with a sensitivity of 10 copies/μl. Additionally, no antigen cross-reaction was observed against Yersinia enterocolitica O:9, Escherichia coli O157, Salmonella enterica serovar Urbana O:30, and Francisella tularensis. The serum samples of 398 sheep and 100 cattle were tested by the CRISPR/CAST package, of which 31 sheep and 8 cattle were Brucella DNA positive. The detection rate was consistent with the qPCR results and higher than that of the Rose Bengal Test (RBT, 19 sheep and 5 cattle were serum positive). CONCLUSIONS The CRISPR/CAST package can accurately detect Brucella DNA in infected livestock within 30 min and exhibits several advantages, including simplicity, speed, high sensitivity, and strong specificity with no window period. In addition, no expensive equipment, standard laboratory, or professional operators are needed for the package. It is an effective tool for screening in the field and obtaining early, rapid diagnoses of Brucella infection. The package is an efficient tool for preventing and controlling epidemics.
Collapse
Affiliation(s)
- Sheng Dang
- Innovative Institute of Zoonoses, Inner Mongolia Minzu University, Tongliao, 028000, China
| | - Humujile Sui
- Innovative Institute of Zoonoses, Inner Mongolia Minzu University, Tongliao, 028000, China
| | - Shuai Zhang
- Innovative Institute of Zoonoses, Inner Mongolia Minzu University, Tongliao, 028000, China
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Tongliao, 028000, China
- Brucellosis Prevention and Treatment Engineering Research Center of Inner Mongolia Autonomous Region, Tongliao, 028000, China
| | - Dongxing Wu
- Innovative Institute of Zoonoses, Inner Mongolia Minzu University, Tongliao, 028000, China
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Tongliao, 028000, China
- Brucellosis Prevention and Treatment Engineering Research Center of Inner Mongolia Autonomous Region, Tongliao, 028000, China
- Mongolian Medical College, Inner Mongolia Minzu University, Tongliao, 028000, China
| | - Zeliang Chen
- Innovative Institute of Zoonoses, Inner Mongolia Minzu University, Tongliao, 028000, China
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Tongliao, 028000, China
- Brucellosis Prevention and Treatment Engineering Research Center of Inner Mongolia Autonomous Region, Tongliao, 028000, China
| | - Jingbo Zhai
- Innovative Institute of Zoonoses, Inner Mongolia Minzu University, Tongliao, 028000, China.
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Tongliao, 028000, China.
- Brucellosis Prevention and Treatment Engineering Research Center of Inner Mongolia Autonomous Region, Tongliao, 028000, China.
| | - Meirong Bai
- Mongolian Medical College, Inner Mongolia Minzu University, Tongliao, 028000, China.
- Key Laboratory of Mongolian Medicine Research and Development Engineering, Ministry of Education, Tongliao, 028000, China.
| |
Collapse
|
8
|
Deng W, Feng S, Stejskal V, Opit G, Li Z. An advanced approach for rapid visual identification of Liposcelis bostrychophila (Psocoptera: Liposcelididae) based on CRISPR/Cas12a combined with RPA. JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:1911-1921. [PMID: 37463293 DOI: 10.1093/jee/toad139] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/02/2023] [Accepted: 07/10/2023] [Indexed: 07/20/2023]
Abstract
Liposcelis bostrychophila Badonnel (Psocoptera: Liposcelididae) is a booklouse pest that is a threat to commodity storage security worldwide. Accurate and sensitive methods of L. bostrychophila on-site identification are essential prerequisites for its effective management. Evidence suggests that L. bostrychophila contains 3 intraspecific biotypes that are morphologically indistinguishable but can be discriminated at the level of mitochondrial genome organization and sequences. The traditional molecular identification methods, such as DNA barcoding and PCR-RFLP, are instrumentally demanding and time-consuming, limiting the application of the identification in the field. Therefore, this study developed a new CRISPR/Cas12a-based visual nucleic acid system based on the mitochondrial gene coding for NADH dehydrogenase subunit 2 (nad2), combined with recombinase polymerase amplification (RPA) to accurately identify L. bostrychophila from 4 other common stored-product booklice, and also differentiate 3 biotypes of this species at the same time. The entire identification process could be completed at 37 °C within 20 min with high sensitivity. The system could stably detect at least 1 ng/μl of DNA template. The green fluorescence signal produced by the trans-cleaving of the single-stranded DNA reporter could be observed by the naked eye under blue light. Additionally, the suggested system combined with the crude DNA extraction method to extract DNA rapidly, enabled identification of all developmental stages of L. bostrychophila. With crude DNA, this novel diagnostic system successfully identified an unknown booklouse by holding the reaction tubes in the hand, thus can be considered as an accurate, rapid, highly sensitive, and instrument-flexible method for on-site visual identification of L. bostrychophila.
Collapse
Affiliation(s)
- Wenxin Deng
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, Hainan, China
| | - Shiqian Feng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Vaclav Stejskal
- Crop Research Institute, Drnovská 507, 161 06 Prague 6, Czech Republic
- Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Kamycka 129, 165 00 Prague, Czech Republic
| | - George Opit
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Zhihong Li
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, Hainan, China
| |
Collapse
|
9
|
Zhang G, Luo Y, Dai X, Dai Z. Benchmarking deep learning methods for predicting CRISPR/Cas9 sgRNA on- and off-target activities. Brief Bioinform 2023; 24:bbad333. [PMID: 37775147 DOI: 10.1093/bib/bbad333] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 10/01/2023] Open
Abstract
In silico design of single guide RNA (sgRNA) plays a critical role in clustered regularly interspaced, short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system. Continuous efforts are aimed at improving sgRNA design with efficient on-target activity and reduced off-target mutations. In the last 5 years, an increasing number of deep learning-based methods have achieved breakthrough performance in predicting sgRNA on- and off-target activities. Nevertheless, it is worthwhile to systematically evaluate these methods for their predictive abilities. In this review, we conducted a systematic survey on the progress in prediction of on- and off-target editing. We investigated the performances of 10 mainstream deep learning-based on-target predictors using nine public datasets with different sample sizes. We found that in most scenarios, these methods showed superior predictive power on large- and medium-scale datasets than on small-scale datasets. In addition, we performed unbiased experiments to provide in-depth comparison of eight representative approaches for off-target prediction on 12 publicly available datasets with various imbalanced ratios of positive/negative samples. Most methods showed excellent performance on balanced datasets but have much room for improvement on moderate- and severe-imbalanced datasets. This study provides comprehensive perspectives on CRISPR/Cas9 sgRNA on- and off-target activity prediction and improvement for method development.
Collapse
Affiliation(s)
- Guishan Zhang
- College of Engineering, Shantou University, Shantou 515063, China
| | - Ye Luo
- College of Engineering, Shantou University, Shantou 515063, China
| | - Xianhua Dai
- School of Cyber Science and Technology, Sun Yat-sen University, Shenzhen 518107, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519000, China
| | - Zhiming Dai
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Province Key Laboratory of Big Data Analysis and Processing, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
10
|
Wei H, Li J, Liu Y, Cheng W, Huang H, Liang X, Huang W, Lin L, Zheng Y, Chen W, Wang C, Chen W, Xu G, Wei W, Chen L, Zeng Y, Lu Z, Li S, Lin Z, Wang J, Lin M. Rapid and Ultrasensitive Detection of Plasmodium spp. Parasites via the RPA-CRISPR/Cas12a Platform. ACS Infect Dis 2023; 9:1534-1545. [PMID: 37493514 DOI: 10.1021/acsinfecdis.3c00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Microscopic examination of thick and thin blood smears stained with Giemsa dye is considered the primary diagnostic tool for the confirmation and management of suspected clinical malaria. However, detecting gametocytes is relatively insensitive, particularly in asymptomatic individuals with low-density Plasmodium infections. To complement existing diagnostic methods, a rapid and ultrasensitive point-of-care testing (POCT) platform for malaria detection is urgently needed and necessary. A platform based on recombinase polymerase amplification (RPA) followed by CRISPR/Cas12a (referred to as RPA-CRISPR/Cas12a) was developed and optimized for the determination of Plasmodium spp. parasites, particularly Plasmodium falciparum, using a fluorescence-based assay (FBDA), lateral flow test strips (LFTS), or naked eye observation (NEO). Then, the established platform was assessed with clinical malaria isolates. Under optimal conditions, the detection threshold was 1 copy/μL for the plasmid, and the limit of detection was 3.11-7.27 parasites/μL for dried blood spots. There was no cross-reactivity against blood-borne pathogens. For the accuracies of RPA-CRISPR/Cas12a, Plasmodium spp. and P. falciparum testing were 98.68 and 94.74%, respectively. The method was consistent with nested PCR results and superior to the qPCR results. RPA-CRISPR/Cas12a is a rapid, ultrasensitive, and reliable platform for malaria diagnosis. The platform requires no or minimal instrumentation for nucleic acid amplification reactions and can be read with the naked eye. Compared with similar diagnostic methods, this platform improves the reaction speed while reducing detection requirements. Therefore, this platform has the potential to become a true POCT for malaria parasites.
Collapse
Affiliation(s)
- Huagui Wei
- Department of Reproductive Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, People's Republic of China
| | - Jian Li
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, People's Republic of China
| | - Yaqun Liu
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou 521041, People's Republic of China
| | - Weijia Cheng
- Department of Clinical Laboratory, Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan 430081, People's Republic of China
| | - Huiying Huang
- Medical Laboratory of Shenzhen Luohu People's Hospital, Shenzhen 518005, People's Republic of China
| | - Xueyan Liang
- Laboratory Medical Center, Huizhou Municipal Central Hospital, Huizhou 516008, People's Republic of China
| | - Weiyi Huang
- Key Laboratory of Environmental Pollution and Health Risk Assessment, Youjiang Medical University for Nationalities, Baise 533000, People's Republic of China
| | - Liyun Lin
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou 521041, People's Republic of China
| | - Yuzhong Zheng
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou 521041, People's Republic of China
| | - Weizhong Chen
- Department of Medical Laboratory, Chaozhou People's Hospital Affiliated to Shantou University Medical College, Chaozhou 521011, People's Republic of China
| | - Chunfang Wang
- Department of Reproductive Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, People's Republic of China
| | - Wencheng Chen
- Guangxi Medical and Health Key Discipline Construction Project of the Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, People's Republic of China
| | - Guidan Xu
- Department of Reproductive Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, People's Republic of China
| | - Wujun Wei
- Department of Reproductive Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, People's Republic of China
| | - Liying Chen
- Industrial College of Biomedicine and Health Industry, Youjiang Medical University for Nationalities, Baise 533000, People's Republic of China
| | - Yongmei Zeng
- Department of Medical Laboratory, Chaozhou People's Hospital Affiliated to Shantou University Medical College, Chaozhou 521011, People's Republic of China
| | - Zefang Lu
- Department of Medical Laboratory, Chaozhou People's Hospital Affiliated to Shantou University Medical College, Chaozhou 521011, People's Republic of China
| | - Shujuan Li
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou 521041, People's Republic of China
| | - Zongyun Lin
- Department of Reproductive Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, People's Republic of China
| | - Junli Wang
- Department of Reproductive Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, People's Republic of China
- Key Laboratory of Environmental Pollution and Health Risk Assessment, Youjiang Medical University for Nationalities, Baise 533000, People's Republic of China
- Reproductive Medicine, Guangxi Medical and Health Key Discipline Construction Project, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, People's Republic of China
| | - Min Lin
- Department of Reproductive Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, People's Republic of China
| |
Collapse
|
11
|
Patinios C, de Vries ST, Diallo M, Lanza L, Verbrugge PLJVQ, López-Contreras AM, van der Oost J, Weusthuis RA, Kengen SWM. Multiplex genome engineering in Clostridium beijerinckii NCIMB 8052 using CRISPR-Cas12a. Sci Rep 2023; 13:10153. [PMID: 37349508 PMCID: PMC10287719 DOI: 10.1038/s41598-023-37220-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/18/2023] [Indexed: 06/24/2023] Open
Abstract
Clostridium species are re-emerging as biotechnological workhorses for industrial acetone-butanol-ethanol production. This re-emergence is largely due to advances in fermentation technologies but also due to advances in genome engineering and re-programming of the native metabolism. Several genome engineering techniques have been developed including the development of numerous CRISPR-Cas tools. Here, we expanded the CRISPR-Cas toolbox and developed a CRISPR-Cas12a genome engineering tool in Clostridium beijerinckii NCIMB 8052. By controlling the expression of FnCas12a with the xylose-inducible promoter, we achieved efficient (25-100%) single-gene knockout of five C. beijerinckii NCIMB 8052 genes (spo0A, upp, Cbei_1291, Cbei_3238, Cbei_3832). Moreover, we achieved multiplex genome engineering by simultaneously knocking out the spo0A and upp genes in a single step with an efficiency of 18%. Finally, we showed that the spacer sequence and position in the CRISPR array can affect the editing efficiency outcome.
Collapse
Affiliation(s)
- Constantinos Patinios
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
- Bioprocess Engineering, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Stijn T de Vries
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Mamou Diallo
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
- Bioconversion Group, Wageningen Food and Biobased Research, Wageningen University and Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Lucrezia Lanza
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Pepijn L J V Q Verbrugge
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Ana M López-Contreras
- Bioconversion Group, Wageningen Food and Biobased Research, Wageningen University and Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Ruud A Weusthuis
- Bioprocess Engineering, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Servé W M Kengen
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| |
Collapse
|
12
|
Morales-Moreno MD, Valdés-Galindo EG, Reza MM, Fiordelisio T, Peon J, Hernandez-Garcia A. Multiplex gRNAs Synergically Enhance Detection of SARS-CoV-2 by CRISPR-Cas12a. CRISPR J 2023; 6:116-126. [PMID: 36944123 DOI: 10.1089/crispr.2022.0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) diagnostic methods have a large potential to effectively detect SARS-CoV-2 with sensitivity and specificity nearing 100%, comparable to quantitative polymerase chain reaction. Yet, there is room for improvement. Commonly, one guide CRISPR RNA (gRNA) is used to detect the virus DNA and activate Cas collateral activity, which cleaves a reporter probe. In this study, we demonstrated that using 2-3 gRNAs in parallel can create a synergistic effect, resulting in a 4.5 × faster cleaving rate of the probe and increased sensitivity compared to using individual gRNAs. The synergy is due to the simultaneous activation of CRISPR-Cas12a and the improved performance of each gRNA. This approach was able to detect as few as 10 viral copies of the N-gene of SARS-CoV-2 RNA after a preamplification step using reverse transcription loop-mediated isothermal amplification. The method was able to accurately detect 100% of positive and negative clinical samples in ∼25 min using a fluorescence plate reader and ∼45 min with lateral flow strips.
Collapse
Affiliation(s)
- Melissa D Morales-Moreno
- Laboratory of Biomolecular Engineering and Bionanotechnology, Department of Chemistry of Biomacromolecules, Institute of Chemistry, National Autonomous University of Mexico, Ciudad Universitaria, Ciudad de Mexico, Mexico
| | - Erick G Valdés-Galindo
- Laboratory of Biomolecular Engineering and Bionanotechnology, Department of Chemistry of Biomacromolecules, Institute of Chemistry, National Autonomous University of Mexico, Ciudad Universitaria, Ciudad de Mexico, Mexico
| | - Mariana M Reza
- Department of Physical Chemistry, Institute of Chemistry, National Autonomous University of Mexico, Ciudad Universitaria, Ciudad de Mexico, Mexico
| | - Tatiana Fiordelisio
- Laboratorio de Neuroendocrinología Comparada, Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia LaNSBioDyT, Faculty of Sciences, National Autonomous University of Mexico, Ciudad Universitaria, Ciudad de Mexico, Mexico
| | - Jorge Peon
- Department of Physical Chemistry, Institute of Chemistry, National Autonomous University of Mexico, Ciudad Universitaria, Ciudad de Mexico, Mexico
| | - Armando Hernandez-Garcia
- Laboratory of Biomolecular Engineering and Bionanotechnology, Department of Chemistry of Biomacromolecules, Institute of Chemistry, National Autonomous University of Mexico, Ciudad Universitaria, Ciudad de Mexico, Mexico
| |
Collapse
|
13
|
Illa-Berenguer E, LaFayette PR, Parrott WA. Editing efficiencies with Cas9 orthologs, Cas12a endonucleases, and temperature in rice. Front Genome Ed 2023; 5:1074641. [PMID: 37032710 PMCID: PMC10080323 DOI: 10.3389/fgeed.2023.1074641] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/07/2023] [Indexed: 03/19/2023] Open
Abstract
The advent of CRISPR-Cas technology has made it the genome editing tool of choice in all kingdoms of life, including plants, which can have large, highly duplicated genomes. As a result, finding adequate target sequences that meet the specificities of a given Cas nuclease on any gene of interest remains challenging in many cases. To assess target site flexibility, we tested five different Cas9/Cas12a endonucleases (SpCas9, SaCas9, St1Cas9, Mb3Cas12a, and AsCas12a) in embryogenic rice calli from Taipei 309 at 37°C (optimal temperature for most Cas9/Cas12a proteins) and 27°C (optimal temperature for tissue culture) and measured their editing rates under regular tissue culture conditions using Illumina sequencing. StCas9 and AsCas12 were not functional as tested, regardless of the temperature used. SpCas9 was the most efficient endonuclease at either temperature, regardless of whether monoallelic or biallelic edits were considered. Mb3Cas12a at 37°C was the next most efficient endonuclease. Monoallelic edits prevailed for both SaCas9 and Mb3Cas12a at 27°C, but biallelic edits prevailed at 37°C. Overall, the use of other Cas9 orthologs, the use of Cas12a endonucleases, and the optimal temperature can expand the range of targetable sequences.
Collapse
Affiliation(s)
- Eudald Illa-Berenguer
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, United States
- *Correspondence: Eudald Illa-Berenguer,
| | - Peter R. LaFayette
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, United States
| | - Wayne A. Parrott
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, United States
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, United States
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, United States
| |
Collapse
|
14
|
Alipanahi R, Safari L, Khanteymoori A. CRISPR genome editing using computational approaches: A survey. FRONTIERS IN BIOINFORMATICS 2023; 2:1001131. [PMID: 36710911 PMCID: PMC9875887 DOI: 10.3389/fbinf.2022.1001131] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-based gene editing has been widely used in various cell types and organisms. To make genome editing with Clustered regularly interspaced short palindromic repeats far more precise and practical, we must concentrate on the design of optimal gRNA and the selection of appropriate Cas enzymes. Numerous computational tools have been created in recent years to help researchers design the best gRNA for Clustered regularly interspaced short palindromic repeats researches. There are two approaches for designing an appropriate gRNA sequence (which targets our desired sites with high precision): experimental and predicting-based approaches. It is essential to reduce off-target sites when designing an optimal gRNA. Here we review both traditional and machine learning-based approaches for designing an appropriate gRNA sequence and predicting off-target sites. In this review, we summarize the key characteristics of all available tools (as far as possible) and compare them together. Machine learning-based tools and web servers are believed to become the most effective and reliable methods for predicting on-target and off-target activities of Clustered regularly interspaced short palindromic repeats in the future. However, these predictions are not so precise now and the performance of these algorithms -especially deep learning one's-depends on the amount of data used during training phase. So, as more features are discovered and incorporated into these models, predictions become more in line with experimental observations. We must concentrate on the creation of ideal gRNA and the choice of suitable Cas enzymes in order to make genome editing with Clustered regularly interspaced short palindromic repeats far more accurate and feasible.
Collapse
Affiliation(s)
| | - Leila Safari
- Department of Computer Engineering, University of Zanjan, Zanjan, Iran,*Correspondence: Leila Safari,
| | | |
Collapse
|
15
|
Patra P, B R D, Kundu P, Das M, Ghosh A. Recent advances in machine learning applications in metabolic engineering. Biotechnol Adv 2023; 62:108069. [PMID: 36442697 DOI: 10.1016/j.biotechadv.2022.108069] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/18/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
Metabolic engineering encompasses several widely-used strategies, which currently hold a high seat in the field of biotechnology when its potential is manifesting through a plethora of research and commercial products with a strong societal impact. The genomic revolution that occurred almost three decades ago has initiated the generation of large omics-datasets which has helped in gaining a better understanding of cellular behavior. The itinerary of metabolic engineering that has occurred based on these large datasets has allowed researchers to gain detailed insights and a reasonable understanding of the intricacies of biosystems. However, the existing trail-and-error approaches for metabolic engineering are laborious and time-intensive when it comes to the production of target compounds with high yields through genetic manipulations in host organisms. Machine learning (ML) coupled with the available metabolic engineering test instances and omics data brings a comprehensive and multidisciplinary approach that enables scientists to evaluate various parameters for effective strain design. This vast amount of biological data should be standardized through knowledge engineering to train different ML models for providing accurate predictions in gene circuits designing, modification of proteins, optimization of bioprocess parameters for scaling up, and screening of hyper-producing robust cell factories. This review briefs on the premise of ML, followed by mentioning various ML methods and algorithms alongside the numerous omics datasets available to train ML models for predicting metabolic outcomes with high-accuracy. The combinative interplay between the ML algorithms and biological datasets through knowledge engineering have guided the recent advancements in applications such as CRISPR/Cas systems, gene circuits, protein engineering, metabolic pathway reconstruction, and bioprocess engineering. Finally, this review addresses the probable challenges of applying ML in metabolic engineering which will guide the researchers toward novel techniques to overcome the limitations.
Collapse
Affiliation(s)
- Pradipta Patra
- School School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Disha B R
- B.M.S College of Engineering, Basavanagudi, Bengaluru, Karnataka 560019, India
| | - Pritam Kundu
- School School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Manali Das
- School of Bioscience, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Amit Ghosh
- School School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India; P.K. Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, West Bengal 721302, India.
| |
Collapse
|
16
|
Narushima J, Kimata S, Shiwa Y, Gondo T, Akimoto S, Soga K, Yoshiba S, Nakamura K, Shibata N, Kondo K. Unbiased prediction of off-target sites in genome-edited rice using SITE-Seq analysis on a web-based platform. Genes Cells 2022; 27:706-718. [PMID: 36181413 DOI: 10.1111/gtc.12985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 12/13/2022]
Abstract
Genome-editing using the CRISPR-Cas9 system has the potential to substantially accelerate crop breeding. Since off-target editing is one of problems, a reliable method for comprehensively detecting off-target sites is needed. A number of in silico methods based on homology to on-target sequence have been developed, however the prediction without false negative is still under discussion. In this study, we performed a SITE-Seq analysis to predict potential off-target sites. SITE-Seq analysis is a comprehensive method that can detect double-strand breaks in vitro. Furthermore, we developed a systematic method using SITE-Seq in combination with web-based Galaxy system (Galaxy for Cut Site Detection), which can perform reproducible analyses without command line operations. We conducted a SITE-Seq analysis of a rice genome targeted by OsFH15 gRNA-Cas9 as a model, and found 41 candidate off-target sites in the annotated regions. Detailed amplicon-sequencing revealed mutations at one off-target site in actual genome-edited rice. Since this off-target site has an uncommon protospacer adjacent motif, it is difficult to predict using in silico methods alone. Therefore, we propose a novel off-target assessment scheme for genome-edited crops that combines the prediction of off-target candidates by SITE-Seq and in silico programs and the validation of off-target sites by amplicon-sequencing.
Collapse
Affiliation(s)
- Jumpei Narushima
- Division of Biochemistry, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Shinya Kimata
- Division of Biochemistry, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Yuh Shiwa
- Department of Molecular Microbiology, Tokyo University of Agriculture, Tokyo, Tokyo, Japan
| | - Takahiro Gondo
- Frontier Science Research Center, University of Miyazaki, Miyazaki, Japan
| | - Satoshi Akimoto
- Division of Biochemistry, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Keisuke Soga
- Division of Biochemistry, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Satoko Yoshiba
- Division of Biochemistry, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Kosuke Nakamura
- Division of Biochemistry, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Norihito Shibata
- Division of Biochemistry, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Kazunari Kondo
- Division of Biochemistry, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| |
Collapse
|
17
|
Wang Y, Li R, Zhang Y, Zhang W, Hu S, Li Z. Visual and label-free ASFV and PCV2 detection by CRISPR-Cas12a combined with G-quadruplex. Front Vet Sci 2022; 9:1036744. [PMID: 36524221 PMCID: PMC9745048 DOI: 10.3389/fvets.2022.1036744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/07/2022] [Indexed: 09/29/2023] Open
Abstract
African swine fever (ASF) and postweaning multisystemic wasting syndrome (PMWS) are acute infectious diseases caused by the African swine fever virus (ASFV) and porcine circovirus type 2 (PCV2). At present, there are no effective vaccines for the prevention of ASFV. PMWS, which is harmful to the domestic and even the world pig industry, is difficult to cure and has a high mortality. So, developing simple, inexpensive, and accurate analytical methods to detect and effectively diagnose ASFV and PCV2 can be conducive to avoid ASFV and PCV2 infection. CRISPR has become a potentially rapid diagnostic tool due to recent discoveries of the trans-cleavage properties of CRISPR type V effectors. Herein, we report the visual detection based on CRISPR-Cas12a (cpf1), which is more convenient than fluorescence detection. Through in vitro cleavage target DNA activation, Cas12a can trans-cleavage ssDNA G-quadruplex. TMB/H2O2 and Hemin cannot be catalyzed by cleavaged G-DNA to produce green color products. This protocol is useful for the detection of ASFV and PCV2 with high sensitivity. This method can enable the development of visual and label-free ASFV and PCV2 detection and can be carried out in the field without relying on instruments or power. This method can complete nucleic acid detection at 37 °C without using other instruments or energy. Our research has expanded the application of Cas12a and laid the foundation for the field's rapid detection of viral nucleic acid in future.
Collapse
Affiliation(s)
- Ying Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Rong Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yang Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Weida Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Sishun Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
| | - Zili Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
| |
Collapse
|
18
|
Development of CRISPR-Mediated Nucleic Acid Detection Technologies and Their Applications in the Livestock Industry. Genes (Basel) 2022; 13:genes13112007. [PMID: 36360244 PMCID: PMC9690124 DOI: 10.3390/genes13112007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
The rapid rate of virus transmission and pathogen mutation and evolution highlight the necessity for innovative approaches to the diagnosis and prevention of infectious diseases. Traditional technologies for pathogen detection, mostly PCR-based, involve costly/advanced equipment and skilled personnel and are therefore not feasible in resource-limited areas. Over the years, many promising methods based on clustered regularly interspaced short palindromic repeats and the associated protein systems (CRISPR/Cas), i.e., orthologues of Cas9, Cas12, Cas13 and Cas14, have been reported for nucleic acid detection. CRISPR/Cas effectors can provide one-tube reaction systems, amplification-free strategies, simultaneous multiplex pathogen detection, visual colorimetric detection, and quantitative identification as alternatives to quantitative PCR (qPCR). This review summarizes the current development of CRISPR/Cas-mediated molecular diagnostics, as well as their design software and readout methods, highlighting technical improvements for integrating CRISPR/Cas technologies into on-site applications. It further highlights recent applications of CRISPR/Cas-based nucleic acid detection in livestock industry, including emerging infectious diseases, authenticity and composition of meat/milk products, as well as sex determination of early embryos.
Collapse
|
19
|
Xie J, Liu M, Zhou L. CRISPR-OTE: Prediction of CRISPR On-Target Efficiency Based on Multi-Dimensional Feature Fusion. Ing Rech Biomed 2022. [DOI: 10.1016/j.irbm.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Zhao X, Chen X, Xue Y, Wang X. Development of an efficient iterative genome editing method in Bacillus subtilis using the CRISPR-AsCpf1 system. J Basic Microbiol 2022; 62:824-832. [PMID: 35655368 DOI: 10.1002/jobm.202200134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/17/2022] [Accepted: 05/21/2022] [Indexed: 12/28/2022]
Abstract
Bacillus subtilis is a useful chassis in the fields of synthetic biology and metabolic engineering for chemical production. Here, we constructed CRISPR-AsCpf1-based expression plasmids with the temperature-sensitive replicon for iterative genome editing in B. subtilis. This method allowed gene insertion and large genomic deletion with an editing efficiency of up 80%-100% and rapid plasmid curing to facilitate the iterative genome editing in B. subtilis 168. Using the customized CRISPR-AsCpf1 system, we successfully and efficiently implemented the related gene editing in B. subtilis 168 for hyaluronic acid (HA) biosynthesis, HA synthase gene (hasA) insertion, UDP-glucose-dehydrogenase gene (tuaD) insertion, and eps gene cluster (epsA-O) deletion. The heterologous production of HA was realized by the engineered strain with a yield of 1.39 g/L. These results support the finding that the CRISPR-AsCpf1 system is highly efficient in bacteria genome editing and provide valuable guidance and essential references for genome engineering in B. subtilis using the CRISPR-AsCpf1 system.
Collapse
Affiliation(s)
- Xingcong Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xi Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yanbing Xue
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xuedong Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
21
|
Torriano S, Baulier E, Garcia Diaz A, Corneo B, Farber DB. CRISPR-AsCas12a Efficiently Corrects a GPR143 Intronic Mutation in Induced Pluripotent Stem Cells from an Ocular Albinism Patient. CRISPR J 2022; 5:457-471. [PMID: 35686978 PMCID: PMC9233509 DOI: 10.1089/crispr.2021.0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Mutations in the GPR143 gene cause X-linked ocular albinism type 1 (OA1), a disease that severely impairs vision. We recently generated induced pluripotent stem cells (iPSCs) from skin fibroblasts of an OA1 patient carrying a point mutation in intron 7 of GPR143. This mutation activates a new splice site causing the incorporation of a pseudoexon. In this study, we present a high-performance CRISPR-Cas ribonucleoprotein strategy to permanently correct the GPR143 mutation in these patient-derived iPSCs. Interestingly, the two single-guide RNAs available for SpCas9 did not allow the cleavage of the target region. In contrast, the cleavage achieved with the CRISPR-AsCas12a system promoted homology-directed repair at a high rate. The CRISPR-AsCas12a-mediated correction did not alter iPSC pluripotency or genetic stability, nor did it result in off-target events. Moreover, we highlight that the disruption of the pathological splice site caused by CRISPR-AsCas12a-mediated insertions/deletions also rescued the normal splicing of GPR143 and its expression level.
Collapse
Affiliation(s)
- Simona Torriano
- Department of Ophthalmology, UCLA School of Medicine, Jules Stein Eye Institute, Los Angeles, California, USA
| | - Edouard Baulier
- Department of Ophthalmology, UCLA School of Medicine, Jules Stein Eye Institute, Los Angeles, California, USA
| | - Alejandro Garcia Diaz
- Stem Cell Core, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, New York, USA
| | - Barbara Corneo
- Stem Cell Core, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, New York, USA
| | - Debora B Farber
- Department of Ophthalmology, UCLA School of Medicine, Jules Stein Eye Institute, Los Angeles, California, USA.,Molecular Biology Institute and UCLA, Los Angeles, California, USA.,Brain Research Institute, UCLA, Los Angeles, California, USA
| |
Collapse
|
22
|
Zhu X, Wu Y, Lv X, Liu Y, Du G, Li J, Liu L. Combining CRISPR-Cpf1 and Recombineering Facilitates Fast and Efficient Genome Editing in Escherichia coli. ACS Synth Biol 2022; 11:1897-1907. [PMID: 35471009 DOI: 10.1021/acssynbio.2c00041] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR)-based gene-editing technology has been widely used in various microorganisms due to its advantages of low cost, high efficiency, easy operation, and multiple functions. In this study, an efficient and fast double-plasmid gene-editing system pEcCpf1/pcrEG was constructed in Escherichia coli based on CRISPR/Cpf1. First, gene knockout and integration efficiency were verified in eight different kinds of protospacer adjacent motif (PAM) regions. Then, the transformation method was optimized, and the efficiency of gene knockout or gene integration of this system increased to nearly 100%, and the large-length fragments could be integrated into the genome in E. coli BL21 (DE3). The system was also optimized by replacing the homologous recombination system in plasmid pEcCpf1, resulting in pEcCpf1H, which could perform precise single-point mutation, terminator insertion, short-sequence insertion, or gene knockout with high efficiency using a 90 nt (nucleotide) single-stranded primer. Further, multiple genes could be edited simultaneously. Next, these two systems were demonstrated in other E. coli strains. Finally, as an application, the system was used to engineer the synthesis pathway of l-histidine in the engineered strain. The titer of l-histidine in a shake flask reached 7.16 g/L, a value increased by 84.1% compared to the starting strain. Thus, this study provided an effective tool for metabolic engineering of E. coli.
Collapse
Affiliation(s)
- Xuewen Zhu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yaokang Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
23
|
A systematic mapping study on machine learning techniques for the prediction of CRISPR/Cas9 sgRNA target cleavage. Comput Struct Biotechnol J 2022; 20:5813-5823. [PMID: 36382194 PMCID: PMC9630617 DOI: 10.1016/j.csbj.2022.10.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/21/2022] [Accepted: 10/08/2022] [Indexed: 11/30/2022] Open
Abstract
CRISPR/Cas9 technology has greatly accelerated genome engineering research. The CRISPR/Cas9 complex, a bacterial immune response system, is widely adopted for RNA-driven targeted genome editing. The systematic mapping study presented in this paper examines the literature on machine learning (ML) techniques employed in the prediction of CRISPR/Cas9 sgRNA on/off-target cleavage, focusing on improving support in sgRNA design activities and identifying areas currently being researched. This area of research has greatly expanded recently, and we found it appropriate to work on a Systematic Mapping Study (SMS), an investigation that has proven to be an effective secondary study method. Unlike a classic review, in an SMS, no comparison of methods or results is made, while this task can instead be the subject of a systematic literature review that chooses one theme among those highlighted in this SMS. The study is illustrated in this paper. To the best of the authors' knowledge, no other SMS studies have been published on this topic. Fifty-seven papers published in the period 2017–2022 (April, 30) were analyzed. This study reveals that the most widely used ML model is the convolutional neural network (CNN), followed by the feedforward neural network (FNN), while the use of other models is marginal. Other interesting information has emerged, such as the wide availability of both open code and platforms dedicated to supporting the activity of researchers or the fact that there is a clear prevalence of public funds that finance research on this topic.
Collapse
|
24
|
Katayama T, Maruyama JI. CRISPR/Cpf1-mediated mutagenesis and gene deletion in industrial filamentous fungi Aspergillus oryzae and Aspergillus sojae. J Biosci Bioeng 2022; 133:353-361. [DOI: 10.1016/j.jbiosc.2021.12.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/19/2021] [Accepted: 12/30/2021] [Indexed: 12/28/2022]
|
25
|
González B, Vazquez-Vilar M, Sánchez-Vicente J, Orzáez D. Optimization of Vectors and Targeting Strategies Including GoldenBraid and Genome Editing Tools: GoldenBraid Assembly of Multiplex CRISPR /Cas12a Guide RNAs for Gene Editing in Nicotiana benthamiana. Methods Mol Biol 2022; 2480:193-214. [PMID: 35616865 DOI: 10.1007/978-1-0716-2241-4_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
New breeding techniques, especially CRISPR/Cas, could facilitate the expansion and diversification of molecular farming crops by speeding up the introduction of new traits that improve their value as biofactories. One of the main advantages of CRISPR/Cas is its ability to target multiple loci simultaneously, a key feature known as multiplexing. This characteristic is especially relevant for polyploid species, as it is the case of Nicotiana benthamiana and other species of the same genus widely used in molecular farming. Here, we describe in detail the making of a multiplex DNA construct for genome editing in N. benthamiana using the GoldenBraid modular cloning platform. In this case, the procedure is adapted for the requirements of LbCas12a (Lachnospiraceae bacterium Cas12a), a nuclease whose cloning strategy differs from that of the more often used SpCas9 (Streptococcus pyogenes Cas9) enzyme. LbCas12a-mediated edition has several advantages, as its high editing efficiency, described for different plant species, and its T/A-rich PAM sequence, which expands the range of genomic loci that can be targeted by site-specific nucleases. The protocol also includes recommendations for the selection of protospacer sequences and indications for the analysis of editing results.
Collapse
|
26
|
Yang H, Qu J, Zou W, Shen W, Chen X. An overview and future prospects of recombinant protein production in Bacillus subtilis. Appl Microbiol Biotechnol 2021; 105:6607-6626. [PMID: 34468804 DOI: 10.1007/s00253-021-11533-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 12/27/2022]
Abstract
Bacillus subtilis is a well-characterized Gram-positive bacterium and a valuable host for recombinant protein production because of its efficient secretion ability, high yield, and non-toxicity. Here, we comprehensively review the recent studies on recombinant protein production in B. subtilis to update and supplement other previous reviews. We have focused on several aspects, including optimization of B. subtilis strains, enhancement and regulation of expression, improvement of secretion level, surface display of proteins, and fermentation optimization. Among them, optimization of B. subtilis strains mainly involves undirected chemical/physical mutagenesis and selection and genetic manipulation; enhancement and regulation of expression comprises autonomous plasmid and integrated expression, promoter regulation and engineering, and fine-tuning gene expression based on proteases and molecular chaperones; improvement of secretion level predominantly involves secretion pathway and signal peptide screening and optimization; surface display of proteins includes surface display of proteins on spores or vegetative cells; and fermentation optimization incorporates medium optimization, process condition optimization, and feeding strategy optimization. Furthermore, we propose some novel methods and future challenges for recombinant protein production in B. subtilis.Key points• A comprehensive review on recombinant protein production in Bacillus subtilis.• Novel techniques facilitate recombinant protein expression and secretion.• Surface display of proteins has significant potential for different applications.
Collapse
Affiliation(s)
- Haiquan Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Jinfeng Qu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Wei Zou
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin, 644000, Sichuan, China
| | - Wei Shen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xianzhong Chen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
27
|
Jordan WT, Currie S, Schmitz RJ. Multiplex genome editing in Arabidopsis thaliana using Mb3Cas12a. PLANT DIRECT 2021; 5:e344. [PMID: 34514290 PMCID: PMC8421513 DOI: 10.1002/pld3.344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 06/10/2021] [Accepted: 08/13/2021] [Indexed: 05/29/2023]
Abstract
The use of CRISPR-Cas proteins for the creation of multiplex genome engineering represents an important avenue for crop improvement, and further improvements for creation of knock-in plant lines via CRISPR-based technologies may enable the high-throughput creation of designer alleles. To circumvent limitations of the commonly used CRISPR-Cas9 system for multiplex genome engineering, we explored the use of Moraxella bovoculi 3 Cas12a (Mb3Cas12a) for multiplex genome editing in Arabidopsis thaliana. We identified optimized cis-regulatory sequences for driving expression of single-transcript multiplex crRNA arrays in A. thaliana, resulting in stable germline transmission of Mb3Cas12a-edited alleles at multiple target sites. By utilizing this system, we demonstrate single-transcript multiplexed genome engineering using of up to 13 crRNA targets. We further show high target specificity of Mb3Cas12a-based genome editing via whole-genome sequencing. Taken together, our method provides a simplified platform for efficient multiplex genome engineering in plant-based systems.
Collapse
Affiliation(s)
| | - Seth Currie
- Department of GeneticsUniversity of GeorgiaAthensGeorgiaUSA
| | | |
Collapse
|
28
|
Deng C, Lv X, Li J, Zhang H, Liu Y, Du G, Amaro RL, Liu L. Synergistic improvement of N-acetylglucosamine production by engineering transcription factors and balancing redox cofactors. Metab Eng 2021; 67:330-346. [PMID: 34329707 DOI: 10.1016/j.ymben.2021.07.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/29/2021] [Accepted: 07/26/2021] [Indexed: 12/17/2022]
Abstract
The regulation of single gene transcription level in the metabolic pathway is often failed to significantly improve the titer of the target product, and even leads to the imbalance of carbon/nitrogen metabolic network and cofactor network. Global transcription machinery engineering (gTME) can activate or inhibit the synergistic expression of multiple genes in specific metabolic pathways, so transcription factors with specific functions can be expressed according to different metabolic regulation requirements, thus effectively increasing the synthesis of target metabolites. In addition, maintaining intracellular redox balance through cofactor engineering can realize the self-balance of cofactors and promote the efficient synthesis of target products. In this study, we rebalanced the central carbon/nitrogen metabolism and redox metabolism of Corynebacterium glutamicum S9114 by gTME and redox cofactors engineering to promote the production of the nutraceutical N-acetylglucosamine (GlcNAc). Firstly, it was found that the overexpression of the transcription factor RamA can promote GlcNAc synthesis, and the titer was further improved to 16 g/L in shake flask by using a mutant RamA (RamAM). Secondly, a CRISPR interference (CRISPRi) system based on dCpf1 was developed and used to inhibit the expression of global negative transcriptional regulators of GlcNAc synthesis, which promoted the GlcNAc titer to 27.5 g/L. Thirdly, the cofactor specificity of the key enzymes in GlcNAc synthesis pathway was changed by rational protein engineering, and the titer of GlcNAc in shake flask was increased to 36.9 g/L. Finally, the production of GlcNAc was scaled up in a 50-L fermentor, and the titer reached 117.1 ± 1.9 g/L, which was 6.62 times that of the control group (17.7 ± 0.4 g/L), and the yield was increased from 0.19 g/g to 0.31 g/g glucose. The results obtained here highlight the importance of engineering the global regulation of central carbon/nitrogen metabolism and redox metabolism to improve the production performance of microbial cell factories.
Collapse
Affiliation(s)
- Chen Deng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jianghua Li
- Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Hongzhi Zhang
- Shandong Runde Biotechnology Co, Ltd, Tai'an, 271000, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Rodrigo Ledesma Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, SW72AZ, UK
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
29
|
Vazquez-Vilar M, Garcia-Carpintero V, Selma S, Bernabé-Orts JM, Sanchez-Vicente J, Salazar-Sarasua B, Ressa A, de Paola C, Ajenjo M, Quintela JC, Fernández-del-Carmen A, Granell A, Orzáez D. The GB4.0 Platform, an All-In-One Tool for CRISPR/Cas-Based Multiplex Genome Engineering in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:689937. [PMID: 34276739 PMCID: PMC8284049 DOI: 10.3389/fpls.2021.689937] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/31/2021] [Indexed: 05/22/2023]
Abstract
CRISPR/Cas ability to target several loci simultaneously (multiplexing) is a game-changer in plant breeding. Multiplexing not only accelerates trait pyramiding but also can unveil traits hidden by functional redundancy. Furthermore, multiplexing enhances dCas-based programmable gene expression and enables cascade-like gene regulation. However, the design and assembly of multiplex constructs comprising tandemly arrayed guide RNAs (gRNAs) requires scarless cloning and is still troublesome due to the presence of repetitive sequences, thus hampering a more widespread use. Here we present a comprehensive extension of the software-assisted cloning platform GoldenBraid (GB), in which, on top of its multigene cloning software, we integrate new tools for the Type IIS-based easy and rapid assembly of up to six tandemly-arrayed gRNAs with both Cas9 and Cas12a, using the gRNA-tRNA-spaced and the crRNA unspaced approaches, respectively. As stress tests for the new tools, we assembled and used for Agrobacterium-mediated stable transformation a 17 Cas9-gRNAs construct targeting a subset of the Squamosa-Promoter Binding Protein-Like (SPL) gene family in Nicotiana tabacum. The 14 selected genes are targets of miR156, thus potentially playing an important role in juvenile-to-adult and vegetative-to-reproductive phase transitions. With the 17 gRNAs construct we generated a collection of Cas9-free SPL edited T1 plants harboring up to 9 biallelic mutations and showing leaf juvenility and more branching. The functionality of GB-assembled dCas9 and dCas12a-based CRISPR/Cas activators and repressors using single and multiplexing gRNAs was validated using a Luciferase reporter with the Solanum lycopersicum Mtb promoter or the Agrobacterium tumefaciens nopaline synthase promoter in transient expression in Nicotiana benthamiana. With the incorporation of the new web-based tools and the accompanying collection of DNA parts, the GB4.0 genome edition turns an all-in-one open platform for plant genome engineering.
Collapse
Affiliation(s)
- Marta Vazquez-Vilar
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia, Spain
| | - Víctor Garcia-Carpintero
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia, Spain
| | - Sara Selma
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia, Spain
| | - Joan M. Bernabé-Orts
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia, Spain
| | - Javier Sanchez-Vicente
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia, Spain
| | - Blanca Salazar-Sarasua
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia, Spain
| | - Arianna Ressa
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia, Spain
| | - Carmine de Paola
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia, Spain
| | - María Ajenjo
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia, Spain
| | | | - Asun Fernández-del-Carmen
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia, Spain
| | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia, Spain
| | - Diego Orzáez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
30
|
Grobler L, Suleman E, Thimiri Govinda Raj DB. Patents and technology transfer in CRISPR technology. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 180:153-182. [PMID: 33934836 DOI: 10.1016/bs.pmbts.2021.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
CRISPR technology has revolutionized biological research in the last decade and many academic institutions and companies have patented CRISPR systems and applications. Several patents have been filed for various applications of CRISPR in different industries such as agriculture, synthetic biology, bio-nanotechnology and precision medicine. Despite tremendous pressure on the technology transfer teams, several startups and spin-out companies are already using CRISPR technologies for commercial applications. In this chapter, we discuss the different CRISPR nucleases and their applications. Secondly, we detail our current opinion and perspective on the CRISPR patent and technology landscape for non-mammalian systems. We present two case-studies on CRISPR diagnostics companies, SHERLOCK and Mammoth Biosciences, who are currently at the forefront of establishing diagnostics platforms for coronavirus (SARS-CoV-2) detection. Finally, our chapter identifies future advancements and possible challenges that CRISPR technology might face in non-mammalian systems.
Collapse
Affiliation(s)
- Lichelle Grobler
- Synthetic Nanobiotechnology and Biomachines Group, ERA Synthetic Biology, Centre for Synthetic Biology and Precision Medicine, CSIR, Pretoria, South Africa
| | - Essa Suleman
- Veterinary Molecular Diagnostics and Vaccines, Medical Devices and Diagnostics Impact Area, CSIR, Pretoria, South Africa
| | - Deepak B Thimiri Govinda Raj
- Synthetic Nanobiotechnology and Biomachines Group, ERA Synthetic Biology, Centre for Synthetic Biology and Precision Medicine, CSIR, Pretoria, South Africa.
| |
Collapse
|
31
|
O’Brien AR, Burgio G, Bauer DC. Domain-specific introduction to machine learning terminology, pitfalls and opportunities in CRISPR-based gene editing. Brief Bioinform 2021; 22:308-314. [PMID: 32008042 PMCID: PMC7820861 DOI: 10.1093/bib/bbz145] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 12/26/2022] Open
Abstract
The use of machine learning (ML) has become prevalent in the genome engineering space, with applications ranging from predicting target site efficiency to forecasting the outcome of repair events. However, jargon and ML-specific accuracy measures have made it hard to assess the validity of individual approaches, potentially leading to misinterpretation of ML results. This review aims to close the gap by discussing ML approaches and pitfalls in the context of CRISPR gene-editing applications. Specifically, we address common considerations, such as algorithm choice, as well as problems, such as overestimating accuracy and data interoperability, by providing tangible examples from the genome-engineering domain. Equipping researchers with the knowledge to effectively use ML to better design gene-editing experiments and predict experimental outcomes will help advance the field more rapidly.
Collapse
Affiliation(s)
- Aidan R O’Brien
- Health and Biosecurity, CSIRO, Sydney, NSW, Australia
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Gaetan Burgio
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Denis C Bauer
- Health and Biosecurity, CSIRO, Sydney, NSW, Australia
- Department of Biomedical Sciences in the Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
32
|
Bhat MA, Bhat MA, Kumar V, Wani IA, Bashir H, Shah AA, Rahman S, Jan AT. The era of editing plant genomes using CRISPR/Cas: A critical appraisal. J Biotechnol 2020; 324:34-60. [DOI: 10.1016/j.jbiotec.2020.09.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/08/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022]
|
33
|
Zhang Y, Zhao G, Ahmed FYH, Yi T, Hu S, Cai T, Liao Q. In silico Method in CRISPR/Cas System: An Expedite and Powerful Booster. Front Oncol 2020; 10:584404. [PMID: 33123486 PMCID: PMC7567020 DOI: 10.3389/fonc.2020.584404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022] Open
Abstract
The CRISPR/Cas system has stood in the center of attention in the last few years as a revolutionary gene editing tool with a wide application to investigate gene functions. However, the labor-intensive workflow requires a sophisticated pre-experimental and post-experimental analysis, thus becoming one of the hindrances for the further popularization of practical applications. Recently, the increasing emergence and advancement of the in silico methods play a formidable role to support and boost experimental work. However, various tools based on distinctive design principles and frameworks harbor unique characteristics that are likely to confuse users about how to choose the most appropriate one for their purpose. In this review, we will present a comprehensive overview and comparisons on the in silico methods from the aspects of CRISPR/Cas system identification, guide RNA design, and post-experimental assistance. Furthermore, we establish the hypotheses in light of the new trends around the technical optimization and hope to provide significant clues for future tools development.
Collapse
Affiliation(s)
- Yuwei Zhang
- Hwa Mei Hospital, University of Chinese Academy of Science, Ningbo, China.,Zhejiang Key Laboratory of Pathophysiology, Department of Preventative Medicine, Medical School of Ningbo University, Ningbo, China.,Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| | - Guofang Zhao
- Hwa Mei Hospital, University of Chinese Academy of Science, Ningbo, China.,Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| | - Fatma Yislam Hadi Ahmed
- Zhejiang Key Laboratory of Pathophysiology, Department of Preventative Medicine, Medical School of Ningbo University, Ningbo, China
| | - Tianfei Yi
- Zhejiang Key Laboratory of Pathophysiology, Department of Preventative Medicine, Medical School of Ningbo University, Ningbo, China
| | - Shiyun Hu
- Zhejiang Key Laboratory of Pathophysiology, Department of Preventative Medicine, Medical School of Ningbo University, Ningbo, China
| | - Ting Cai
- Hwa Mei Hospital, University of Chinese Academy of Science, Ningbo, China.,Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| | - Qi Liao
- Hwa Mei Hospital, University of Chinese Academy of Science, Ningbo, China.,Zhejiang Key Laboratory of Pathophysiology, Department of Preventative Medicine, Medical School of Ningbo University, Ningbo, China.,Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| |
Collapse
|
34
|
Su Y, Liu C, Fang H, Zhang D. Bacillus subtilis: a universal cell factory for industry, agriculture, biomaterials and medicine. Microb Cell Fact 2020; 19:173. [PMID: 32883293 PMCID: PMC7650271 DOI: 10.1186/s12934-020-01436-8] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 08/27/2020] [Indexed: 12/18/2022] Open
Abstract
Due to its clear inherited backgrounds as well as simple and diverse genetic manipulation systems, Bacillus subtilis is the key Gram-positive model bacterium for studies on physiology and metabolism. Furthermore, due to its highly efficient protein secretion system and adaptable metabolism, it has been widely used as a cell factory for microbial production of chemicals, enzymes, and antimicrobial materials for industry, agriculture, and medicine. In this mini-review, we first summarize the basic genetic manipulation tools and expression systems for this bacterium, including traditional methods and novel engineering systems. Secondly, we briefly introduce its applications in the production of chemicals and enzymes, and summarize its advantages, mainly focusing on some noteworthy products and recent progress in the engineering of B. subtilis. Finally, this review also covers applications such as microbial additives and antimicrobials, as well as biofilm systems and spore formation. We hope to provide an overview for novice researchers in this area, offering them a better understanding of B. subtilis and its applications.
Collapse
Affiliation(s)
- Yuan Su
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Chuan Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Huan Fang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China. .,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
35
|
Menon AV, Sohn JI, Nam JW. CGD: Comprehensive guide designer for CRISPR-Cas systems. Comput Struct Biotechnol J 2020; 18:814-820. [PMID: 32308928 PMCID: PMC7152703 DOI: 10.1016/j.csbj.2020.03.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 03/02/2020] [Accepted: 03/22/2020] [Indexed: 12/26/2022] Open
Abstract
The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas systems, including dead Cas9 (dCas9), Cas9, and Cas12a, have revolutionized genome engineering in mammalian somatic cells. Although computational tools that assess the target sites of CRISPR-Cas systems are inevitably important for designing efficient guide RNAs (gRNAs), they exhibit generalization issues in selecting features and do not provide optimal results in a comprehensive manner. Here, we introduce a Comprehensive Guide Designer (CGD) for four different CRISPR systems, which utilizes the machine learning algorithm, Elastic Net Logistic Regression (ENLOR), to autonomously generalize the models. CGD contains specific models trained with public datasets generated by CRISPRi, CRISPRa, CRISPR-Cas9, and CRISPR-Cas12a (designated as CGDi, CGDa, CGD9, and CGD12a, respectively) in an unbiased manner. The trained CGD models were benchmarked to other regression-based machine learning models, such as ElasticNet Linear Regression (ENLR), Random Forest and Boruta (RFB), and Extreme Gradient Boosting (Xgboost) with inbuilt feature selection. Evaluation with independent test datasets showed that CGD models outperformed the pre-existing methods in predicting the efficacy of gRNAs. All CGD source codes and datasets are available at GitHub (https://github.com/vipinmenon1989/CGD), and the CGD webserver can be accessed at http://big.hanyang.ac.kr:2195/CGD.
Collapse
Affiliation(s)
- A Vipin Menon
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Jang-Il Sohn
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea.,Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Jin-Wu Nam
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea.,Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, Republic of Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
36
|
Wu Y, Liu Y, Lv X, Li J, Du G, Liu L. CAMERS‐B: CRISPR/Cpf1 assisted multiple‐genes editing and regulation system for
Bacillus subtilis. Biotechnol Bioeng 2020; 117:1817-1825. [DOI: 10.1002/bit.27322] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 02/20/2020] [Accepted: 03/02/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Yaokang Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of EducationJiangnan University Wuxi Jiangsu China
- Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University Wuxi Jiangsu China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of EducationJiangnan University Wuxi Jiangsu China
- Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University Wuxi Jiangsu China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of EducationJiangnan University Wuxi Jiangsu China
- Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University Wuxi Jiangsu China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of EducationJiangnan University Wuxi Jiangsu China
- Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University Wuxi Jiangsu China
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University Wuxi Jiangsu China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of EducationJiangnan University Wuxi Jiangsu China
- Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University Wuxi Jiangsu China
| |
Collapse
|
37
|
Gerashchenkov GA, Rozhnova NA, Kuluev BR, Kiryanova OY, Gumerova GR, Knyazev AV, Vershinina ZR, Mikhailova EV, Chemeris DA, Matniyazov RT, Baimiev AK, Gubaidullin IM, Baimiev AK, Chemeris AV. Design of Guide RNA for CRISPR/Cas Plant Genome Editing. Mol Biol 2020. [DOI: 10.1134/s0026893320010069] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
38
|
Chen CL, Rodiger J, Chung V, Viswanatha R, Mohr SE, Hu Y, Perrimon N. SNP-CRISPR: A Web Tool for SNP-Specific Genome Editing. G3 (BETHESDA, MD.) 2020; 10:489-494. [PMID: 31822517 PMCID: PMC7003079 DOI: 10.1534/g3.119.400904] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 12/04/2019] [Indexed: 02/01/2023]
Abstract
CRISPR-Cas9 is a powerful genome editing technology in which a single guide RNA (sgRNA) confers target site specificity to achieve Cas9-mediated genome editing. Numerous sgRNA design tools have been developed based on reference genomes for humans and model organisms. However, existing resources are not optimal as genetic mutations or single nucleotide polymorphisms (SNPs) within the targeting region affect the efficiency of CRISPR-based approaches by interfering with guide-target complementarity. To facilitate identification of sgRNAs (1) in non-reference genomes, (2) across varying genetic backgrounds, or (3) for specific targeting of SNP-containing alleles, for example, disease relevant mutations, we developed a web tool, SNP-CRISPR (https://www.flyrnai.org/tools/snp_crispr/). SNP-CRISPR can be used to design sgRNAs based on public variant data sets or user-identified variants. In addition, the tool computes efficiency and specificity scores for sgRNA designs targeting both the variant and the reference. Moreover, SNP-CRISPR provides the option to upload multiple SNPs and target single or multiple nearby base changes simultaneously with a single sgRNA design. Given these capabilities, SNP-CRISPR has a wide range of potential research applications in model systems and for design of sgRNAs for disease-associated variant correction.
Collapse
Affiliation(s)
| | - Jonathan Rodiger
- Department of Genetics
- Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, and
| | - Verena Chung
- Department of Genetics
- Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, and
| | | | - Stephanie E Mohr
- Department of Genetics
- Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, and
| | - Yanhui Hu
- Department of Genetics
- Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, and
| | - Norbert Perrimon
- Department of Genetics,
- Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, and
- Howard Hughes Medical Institute, 77 Avenue Louis Pasteur, Boston, MA 02115
| |
Collapse
|
39
|
Computational approaches for effective CRISPR guide RNA design and evaluation. Comput Struct Biotechnol J 2019; 18:35-44. [PMID: 31890142 PMCID: PMC6921152 DOI: 10.1016/j.csbj.2019.11.006] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/09/2019] [Accepted: 11/15/2019] [Indexed: 02/08/2023] Open
Abstract
The Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)/ CRISPR-associated (Cas) system has emerged as the main technology for gene editing. Successful editing by CRISPR requires an appropriate Cas protein and guide RNA. However, low cleavage efficiency and off-target effects hamper the development and application of CRISPR/Cas systems. To predict cleavage efficiency and specificity, numerous computational approaches have been developed for scoring guide RNAs. Most scores are empirical or trained by experimental datasets, and scores are implemented using various computational methods. Herein, we discuss these approaches, focusing mainly on the features or computational methods they utilise. Furthermore, we summarise these tools and give some suggestions for their usage. We also recommend three versatile web-based tools with user-friendly interfaces and preferable functions. The review provides a comprehensive and up-to-date overview of computational approaches for guide RNA design that could help users to select the optimal tools for their research.
Collapse
|
40
|
Hajiahmadi Z, Movahedi A, Wei H, Li D, Orooji Y, Ruan H, Zhuge Q. Strategies to Increase On-Target and Reduce Off-Target Effects of the CRISPR/Cas9 System in Plants. Int J Mol Sci 2019; 20:E3719. [PMID: 31366028 PMCID: PMC6696359 DOI: 10.3390/ijms20153719] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/21/2019] [Accepted: 07/27/2019] [Indexed: 12/20/2022] Open
Abstract
The CRISPR/Cas9 system (clustered regularly interspaced short palindromic repeat-associated protein 9) is a powerful genome-editing tool in animals, plants, and humans. This system has some advantages, such as a high on-target mutation rate (targeting efficiency), less cost, simplicity, and high-efficiency multiplex loci editing, over conventional genome editing tools, including meganucleases, transcription activator-like effector nucleases (TALENs), and zinc finger nucleases (ZFNs). One of the crucial shortcomings of this system is unwanted mutations at off-target sites. We summarize and discuss different approaches, such as dCas9 and Cas9 paired nickase, to decrease the off-target effects in plants. According to studies, the most effective method to reduce unintended mutations is the use of ligand-dependent ribozymes called aptazymes. The single guide RNA (sgRNA)/ligand-dependent aptazyme strategy has helped researchers avoid unwanted mutations in human cells and can be used in plants as an alternative method to dramatically decrease the frequency of off-target mutations. We hope our concept provides a new, simple, and fast gene transformation and genome-editing approach, with advantages including reduced time and energy consumption, the avoidance of unwanted mutations, increased frequency of on-target changes, and no need for external forces or expensive equipment.
Collapse
Affiliation(s)
- Zahra Hajiahmadi
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
- Department of Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht 4199613776, Iran
| | - Ali Movahedi
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing 210037, China.
| | - Hui Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Dawei Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Yasin Orooji
- College of Materials Science and Engineering, Nanjing Forestry University, No. 159, Longpan Road, Nanjing 210037, China
| | - Honghua Ruan
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Qiang Zhuge
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
41
|
Safari F, Zare K, Negahdaripour M, Barekati-Mowahed M, Ghasemi Y. CRISPR Cpf1 proteins: structure, function and implications for genome editing. Cell Biosci 2019; 9:36. [PMID: 31086658 PMCID: PMC6507119 DOI: 10.1186/s13578-019-0298-7] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/20/2019] [Indexed: 12/19/2022] Open
Abstract
CRISPR and CRISPR-associated (Cas) protein, as components of microbial adaptive immune system, allows biologists to edit genomic DNA in a precise and specific way. CRISPR-Cas systems are classified into two main classes and six types. Cpf1 is a putative type V (class II) CRISPR effector, which can be programmed with a CRISPR RNA to bind and cleave complementary DNA targets. Cpf1 has recently emerged as an alternative for Cas9, due to its distinct features such as the ability to target T-rich motifs, no need for trans-activating crRNA, inducing a staggered double-strand break and potential for both RNA processing and DNA nuclease activity. In this review, we attempt to discuss the evolutionary origins, basic architectures, and molecular mechanisms of Cpf1 family proteins, as well as crRNA designing and delivery strategies. We will also describe the novel Cpf1 variants, which have broadened the versatility and feasibility of this system in genome editing, transcription regulation, epigenetic modulation, and base editing. Finally, we will be reviewing the recent studies on utilization of Cpf1as a molecular tool for genome editing.
Collapse
Affiliation(s)
- Fatemeh Safari
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Khadijeh Zare
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Manica Negahdaripour
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mazyar Barekati-Mowahed
- Department of Physiology & Biophysics, School of Medicine, Case Western Reserve University, Ohio, USA
| | - Younes Ghasemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
42
|
Liao C, Slotkowski RA, Achmedov T, Beisel CL. The Francisella novicida Cas12a is sensitive to the structure downstream of the terminal repeat in CRISPR arrays. RNA Biol 2019; 16:404-412. [PMID: 30252595 PMCID: PMC6546362 DOI: 10.1080/15476286.2018.1526537] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 09/07/2018] [Accepted: 09/11/2018] [Indexed: 10/28/2022] Open
Abstract
The Class 2 Type V-A CRISPR effector protein Cas12a/Cpf1 has gained widespread attention in part because of the ease in achieving multiplexed genome editing, gene regulation, and DNA detection. Multiplexing derives from the ability of Cas12a alone to generate multiple guide RNAs from a transcribed CRISPR array encoding alternating conserved repeats and targeting spacers. While array design has focused on how to optimize guide-RNA sequences, little attention has been paid to sequences outside of the CRISPR array. Here, we show that a structured hairpin located immediately downstream of the 3' repeat interferes with utilization of the adjacent encoded guide RNA by Francisella novicida (Fn)Cas12a. We first observed that a synthetic Rho-independent terminator immediately downstream of an array impaired DNA cleavage based on plasmid clearance in E. coli and DNA cleavage in a cell-free transcription-translation (TXTL) system. TXTL-based cleavage assays further revealed that inhibition was associated with incomplete processing of the transcribed CRISPR array and could be attributed to the stable hairpin formed by the terminator. We also found that the inhibitory effect partially extended to upstream spacers in a multi-spacer array. Finally, we found that removing the terminal repeat from the array increased the inhibitory effect, while replacing this repeat with an unprocessable terminal repeat from a native FnCas12a array restored cleavage activity directed by the adjacent encoded guide RNA. Our study thus revealed that sequences surrounding a CRISPR array can interfere with the function of a CRISPR nuclease, with implications for the design and evolution of CRISPR arrays.
Collapse
Affiliation(s)
- Chunyu Liao
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC USA
- Helmholtz Institute for RNA-based Infection Research, Würzburg, Germany
| | - Rebecca A. Slotkowski
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC USA
| | - Tatjana Achmedov
- Helmholtz Institute for RNA-based Infection Research, Würzburg, Germany
| | - Chase L. Beisel
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC USA
- Helmholtz Institute for RNA-based Infection Research, Würzburg, Germany
- Faculty of Medicine, University of Würzburg, Würzburg, Germany
| |
Collapse
|
43
|
Malzahn AA, Tang X, Lee K, Ren Q, Sretenovic S, Zhang Y, Chen H, Kang M, Bao Y, Zheng X, Deng K, Zhang T, Salcedo V, Wang K, Zhang Y, Qi Y. Application of CRISPR-Cas12a temperature sensitivity for improved genome editing in rice, maize, and Arabidopsis. BMC Biol 2019; 17:9. [PMID: 30704461 PMCID: PMC6357469 DOI: 10.1186/s12915-019-0629-5] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/14/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND CRISPR-Cas12a (formerly Cpf1) is an RNA-guided endonuclease with distinct features that have expanded genome editing capabilities. Cas12a-mediated genome editing is temperature sensitive in plants, but a lack of a comprehensive understanding on Cas12a temperature sensitivity in plant cells has hampered effective application of Cas12a nucleases in plant genome editing. RESULTS We compared AsCas12a, FnCas12a, and LbCas12a for their editing efficiencies and non-homologous end joining (NHEJ) repair profiles at four different temperatures in rice. We found that AsCas12a is more sensitive to temperature and that it requires a temperature of over 28 °C for high activity. Each Cas12a nuclease exhibited distinct indel mutation profiles which were not affected by temperatures. For the first time, we successfully applied AsCas12a for generating rice mutants with high frequencies up to 93% among T0 lines. We next pursued editing in the dicot model plant Arabidopsis, for which Cas12a-based genome editing has not been previously demonstrated. While LbCas12a barely showed any editing activity at 22 °C, its editing activity was rescued by growing the transgenic plants at 29 °C. With an early high-temperature treatment regime, we successfully achieved germline editing at the two target genes, GL2 and TT4, in Arabidopsis transgenic lines. We then used high-temperature treatment to improve Cas12a-mediated genome editing in maize. By growing LbCas12a T0 maize lines at 28 °C, we obtained Cas12a-edited mutants at frequencies up to 100% in the T1 generation. Finally, we demonstrated DNA binding of Cas12a was not abolished at lower temperatures by using a dCas12a-SRDX-based transcriptional repression system in Arabidopsis. CONCLUSION Our study demonstrates the use of high-temperature regimes to achieve high editing efficiencies with Cas12a systems in rice, Arabidopsis, and maize and sheds light on the mechanism of temperature sensitivity for Cas12a in plants.
Collapse
Affiliation(s)
- Aimee A Malzahn
- Department of Biotechnology, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA
| | - Xu Tang
- Department of Biotechnology, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Keunsub Lee
- Crop Bioengineering Center, Iowa State University, Ames, Iowa, 50011, USA
- Department of Agronomy, Iowa State University, Ames, Iowa, 50011, USA
| | - Qiurong Ren
- Department of Biotechnology, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Simon Sretenovic
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA
| | - Yingxiao Zhang
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA
| | - Hongqiao Chen
- Department of Biotechnology, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Minjeong Kang
- Crop Bioengineering Center, Iowa State University, Ames, Iowa, 50011, USA
- Department of Agronomy, Iowa State University, Ames, Iowa, 50011, USA
- Interdepartmental Plant Biology Major, Iowa State University, Ames, Iowa, 50011, USA
| | - Yu Bao
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Xuelian Zheng
- Department of Biotechnology, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Kejun Deng
- Department of Biotechnology, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Tao Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Valeria Salcedo
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA
| | - Kan Wang
- Crop Bioengineering Center, Iowa State University, Ames, Iowa, 50011, USA
- Department of Agronomy, Iowa State University, Ames, Iowa, 50011, USA
| | - Yong Zhang
- Department of Biotechnology, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA.
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, 20850, USA.
| |
Collapse
|