1
|
Zhekova HR, Jiang J, Wang W, Tsirulnikov K, Kayık G, Khan HM, Azimov R, Abuladze N, Kao L, Newman D, Noskov SY, Tieleman DP, Hong Zhou Z, Pushkin A, Kurtz I. CryoEM structures of anion exchanger 1 capture multiple states of inward- and outward-facing conformations. Commun Biol 2022; 5:1372. [PMID: 36517642 PMCID: PMC9751308 DOI: 10.1038/s42003-022-04306-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Anion exchanger 1 (AE1, band 3) is a major membrane protein of red blood cells and plays a key role in acid-base homeostasis, urine acidification, red blood cell shape regulation, and removal of carbon dioxide during respiration. Though structures of the transmembrane domain (TMD) of three SLC4 transporters, including AE1, have been resolved previously in their outward-facing (OF) state, no mammalian SLC4 structure has been reported in the inward-facing (IF) conformation. Here we present the cryoEM structures of full-length bovine AE1 with its TMD captured in both IF and OF conformations. Remarkably, both IF-IF homodimers and IF-OF heterodimers were detected. The IF structures feature downward movement in the core domain with significant unexpected elongation of TM11. Molecular modeling and structure guided mutagenesis confirmed the functional significance of residues involved in TM11 elongation. Our data provide direct evidence for an elevator-like mechanism of ion transport by an SLC4 family member.
Collapse
Affiliation(s)
- Hristina R Zhekova
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Jiansen Jiang
- Department of Medicine, Division of Nephrology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA, USA
| | - Weiguang Wang
- Department of Medicine, Division of Nephrology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA, USA
| | - Kirill Tsirulnikov
- Department of Medicine, Division of Nephrology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Gülru Kayık
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Hanif Muhammad Khan
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Rustam Azimov
- Department of Medicine, Division of Nephrology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Natalia Abuladze
- Department of Medicine, Division of Nephrology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Liyo Kao
- Department of Medicine, Division of Nephrology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Debbie Newman
- Department of Medicine, Division of Nephrology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Sergei Yu Noskov
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - D Peter Tieleman
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Z Hong Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA, USA
| | - Alexander Pushkin
- Department of Medicine, Division of Nephrology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Ira Kurtz
- Department of Medicine, Division of Nephrology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
- Brain Research Institute, University of California, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Mhashal AR, Yoluk O, Orellana L. Exploring the Conformational Impact of Glycine Receptor TM1-2 Mutations Through Coarse-Grained Analysis and Atomistic Simulations. Front Mol Biosci 2022; 9:890851. [PMID: 35836931 PMCID: PMC9275627 DOI: 10.3389/fmolb.2022.890851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Pentameric ligand-gated ion channels (PLGICs) are a family of proteins that convert chemical signals into ion fluxes through cellular membranes. Their structures are highly conserved across all kingdoms from bacteria to eukaryotes. Beyond their classical roles in neurotransmission and neurological disorders, PLGICs have been recently related to cell proliferation and cancer. Here, we focus on the best characterized eukaryotic channel, the glycine receptor (GlyR), to investigate its mutational patterns in genomic-wide tumor screens and compare them with mutations linked to hyperekplexia (HPX), a Mendelian neuromotor disease that disrupts glycinergic currents. Our analysis highlights that cancer mutations significantly accumulate across TM1 and TM2, partially overlapping with HPX changes. Based on 3D-clustering, conservation, and phenotypic data, we select three mutations near the pore, expected to impact GlyR conformation, for further study by molecular dynamics (MD). Using principal components from experimental GlyR ensembles as framework, we explore the motions involved in transitions from the human closed and desensitized structures and how they are perturbed by mutations. Our MD simulations show that WT GlyR spontaneously explores opening and re-sensitization transitions that are significantly impaired by mutations, resulting in receptors with altered permeability and desensitization properties in agreement with HPX functional data.
Collapse
Affiliation(s)
| | | | - Laura Orellana
- Protein Dynamics and Cancer Lab, Department of Oncology-Pathology, Karolinska Institute, Solna, Sweden
| |
Collapse
|
3
|
Bergh C, Heusser SA, Howard R, Lindahl E. Markov state models of proton- and pore-dependent activation in a pentameric ligand-gated ion channel. eLife 2021; 10:68369. [PMID: 34652272 PMCID: PMC8635979 DOI: 10.7554/elife.68369] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 10/14/2021] [Indexed: 01/03/2023] Open
Abstract
Ligand-gated ion channels conduct currents in response to chemical stimuli, mediating electrochemical signaling in neurons and other excitable cells. For many channels, the details of gating remain unclear, partly due to limited structural data and simulation timescales. Here, we used enhanced sampling to simulate the pH-gated channel GLIC, and construct Markov state models (MSMs) of gating. Consistent with new functional recordings, we report in oocytes, our analysis revealed differential effects of protonation and mutation on free-energy wells. Clustering of closed- versus open-like states enabled estimation of open probabilities and transition rates, while higher-order clustering affirmed conformational trends in gating. Furthermore, our models uncovered state- and protonation-dependent symmetrization. This demonstrates the applicability of MSMs to map energetic and conformational transitions between ion-channel functional states, and how they reproduce shifts upon activation or mutation, with implications for modeling neuronal function and developing state-selective drugs.
Collapse
Affiliation(s)
- Cathrine Bergh
- Science for Life Laboratory and Swedish e-Science Research Center, Department of Applied Physics, KTH Royal Institute of Technology, Solna, Sweden
| | - Stephanie A Heusser
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Rebecca Howard
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Erik Lindahl
- Science for Life Laboratory and Swedish e-Science Research Center, Department of Applied Physics, KTH Royal Institute of Technology, Solna, Sweden.,Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| |
Collapse
|
4
|
Lycksell M, Rovšnik U, Bergh C, Johansen NT, Martel A, Porcar L, Arleth L, Howard RJ, Lindahl E. Probing solution structure of the pentameric ligand-gated ion channel GLIC by small-angle neutron scattering. Proc Natl Acad Sci U S A 2021; 118:e2108006118. [PMID: 34504004 PMCID: PMC8449418 DOI: 10.1073/pnas.2108006118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2021] [Indexed: 02/03/2023] Open
Abstract
Pentameric ligand-gated ion channels undergo subtle conformational cycling to control electrochemical signal transduction in many kingdoms of life. Several crystal structures have now been reported in this family, but the functional relevance of such models remains unclear. Here, we used small-angle neutron scattering (SANS) to probe ambient solution-phase properties of the pH-gated bacterial ion channel GLIC under resting and activating conditions. Data collection was optimized by inline paused-flow size-exclusion chromatography, and exchanging into deuterated detergent to hide the micelle contribution. Resting-state GLIC was the best-fit crystal structure to SANS curves, with no evidence for divergent mechanisms. Moreover, enhanced-sampling molecular-dynamics simulations enabled differential modeling in resting versus activating conditions, with the latter corresponding to an intermediate ensemble of both the extracellular and transmembrane domains. This work demonstrates state-dependent changes in a pentameric ion channel by SANS, an increasingly accessible method for macromolecular characterization with the coming generation of neutron sources.
Collapse
Affiliation(s)
- Marie Lycksell
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, 10691 Stockholm, Sweden
| | - Urška Rovšnik
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, 10691 Stockholm, Sweden
| | - Cathrine Bergh
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| | - Nicolai T Johansen
- Structural Biophysics, X-ray and Neutron Science, The Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Anne Martel
- Institut Laue-Langevin, 38042 Grenoble, France
| | | | - Lise Arleth
- Structural Biophysics, X-ray and Neutron Science, The Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Rebecca J Howard
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, 10691 Stockholm, Sweden
| | - Erik Lindahl
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, 10691 Stockholm, Sweden;
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| |
Collapse
|
5
|
Kaynak BT, Zhang S, Bahar I, Doruker P. ClustENMD: Efficient sampling of biomolecular conformational space at atomic resolution. Bioinformatics 2021; 37:3956-3958. [PMID: 34240100 PMCID: PMC8570821 DOI: 10.1093/bioinformatics/btab496] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/08/2021] [Accepted: 07/02/2021] [Indexed: 11/30/2022] Open
Abstract
Summary Efficient sampling of conformational space is essential for elucidating functional/allosteric mechanisms of proteins and generating ensembles of conformers for docking applications. However, unbiased sampling is still a challenge especially for highly flexible and/or large systems. To address this challenge, we describe a new implementation of our computationally efficient algorithm ClustENMD that is integrated with ProDy and OpenMM softwares. This hybrid method performs iterative cycles of conformer generation using elastic network model for deformations along global modes, followed by clustering and short molecular dynamics simulations. ProDy framework enables full automation and analysis of generated conformers and visualization of their distributions in the essential subspace. Availability and implementation ClustENMD is open-source and freely available under MIT License from https://github.com/prody/ProDy. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Burak T Kaynak
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - She Zhang
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Pemra Doruker
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
6
|
Almeida BC, Kaczmarek JA, Figueiredo PR, Prather KLJ, Carvalho ATP. Transcription factor allosteric regulation through substrate coordination to zinc. NAR Genom Bioinform 2021; 3:lqab033. [PMID: 33987533 PMCID: PMC8092373 DOI: 10.1093/nargab/lqab033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/30/2021] [Accepted: 04/08/2021] [Indexed: 11/14/2022] Open
Abstract
The development of new synthetic biology circuits for biotechnology and medicine requires deeper mechanistic insight into allosteric transcription factors (aTFs). Here we studied the aTF UxuR, a homodimer of two domains connected by a highly flexible linker region. To explore how ligand binding to UxuR affects protein dynamics we performed molecular dynamics simulations in the free protein, the aTF bound to the inducer D-fructuronate or the structural isomer D-glucuronate. We then validated our results by constructing a sensor plasmid for D-fructuronate in Escherichia coli and performed site-directed mutagenesis. Our results show that zinc coordination is necessary for UxuR function since mutation to alanines prevents expression de-repression by D-fructuronate. Analyzing the different complexes, we found that the disordered linker regions allow the N-terminal domains to display fast and large movements. When the inducer is bound, UxuR can sample an open conformation with a more pronounced negative charge at the surface of the N-terminal DNA binding domains. In opposition, in the free and D-glucuronate bond forms the protein samples closed conformations, with a more positive character at the surface of the DNA binding regions. These molecular insights provide a new basis to harness these systems for biological systems engineering.
Collapse
Affiliation(s)
- Beatriz C Almeida
- CNC-Center for Neuroscience and Cell Biology, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Jennifer A Kaczmarek
- MIT-Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Pedro R Figueiredo
- CNC-Center for Neuroscience and Cell Biology, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Kristala L J Prather
- MIT-Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alexandra T P Carvalho
- CNC-Center for Neuroscience and Cell Biology, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
7
|
Laine E, Grudinin S. HOPMA: Boosting Protein Functional Dynamics with Colored Contact Maps. J Phys Chem B 2021; 125:2577-2588. [PMID: 33687221 DOI: 10.1021/acs.jpcb.0c11633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In light of the recent very rapid progress in protein structure prediction, accessing the multitude of functional protein states is becoming more central than ever before. Indeed, proteins are flexible macromolecules, and they often perform their function by switching between different conformations. However, high-resolution experimental techniques such as X-ray crystallography and cryogenic electron microscopy can catch relatively few protein functional states. Many others are only accessible under physiological conditions in solution. Therefore, there is a pressing need to fill this gap with computational approaches. We present HOPMA, a novel method to predict protein functional states and transitions by using a modified elastic network model. The method exploits patterns in a protein contact map, taking its 3D structure as input, and excludes some disconnected patches from the elastic network. Combined with nonlinear normal mode analysis, this strategy boosts the protein conformational space exploration, especially when the input structure is highly constrained, as we demonstrate on a set of more than 400 transitions. Our results let us envision the discovery of new functional conformations, which were unreachable previously, starting from the experimentally known protein structures. The method is computationally efficient and available at https://github.com/elolaine/HOPMA and https://team.inria.fr/nano-d/software/nolb-normal-modes.
Collapse
Affiliation(s)
- Elodie Laine
- CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), Sorbonne Université, 75005 Paris, France
| | - Sergei Grudinin
- CNRS, Inria, Grenoble INP, LJK, Univ. Grenoble Alpes, 38000 Grenoble, France
| |
Collapse
|
8
|
Abdizadeh H, Jalalypour F, Atilgan AR, Atilgan C. A Coarse-Grained Methodology Identifies Intrinsic Mechanisms That Dissociate Interacting Protein Pairs. Front Mol Biosci 2020; 7:210. [PMID: 33195399 PMCID: PMC7477071 DOI: 10.3389/fmolb.2020.00210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/03/2020] [Indexed: 11/13/2022] Open
Abstract
We address the problem of triggering dissociation events between proteins that have formed a complex. We have collected a set of 25 non-redundant, functionally diverse protein complexes having high-resolution three-dimensional structures in both the unbound and bound forms. We unify elastic network models with perturbation response scanning (PRS) methodology as an efficient approach for predicting residues that have the propensity to trigger dissociation of an interacting protein pair, using the three-dimensional structures of the bound and unbound proteins as input. PRS reveals that while for a group of protein pairs, residues involved in the conformational shifts are confined to regions with large motions, there are others where they originate from parts of the protein unaffected structurally by binding. Strikingly, only a few of the complexes have interface residues responsible for dissociation. We find two main modes of response: In one mode, remote control of dissociation in which disruption of the electrostatic potential distribution along protein surfaces play the major role; in the alternative mode, mechanical control of dissociation by remote residues prevail. In the former, dissociation is triggered by changes in the local environment of the protein, e.g., pH or ionic strength, while in the latter, specific perturbations arriving at the controlling residues, e.g., via binding to a third interacting partner is required for decomplexation. We resolve the observations by relying on an electromechanical coupling model which reduces to the usual elastic network result in the limit of the lack of coupling. We validate the approach by illustrating the biological significance of top residues selected by PRS on select cases where we show that the residues whose perturbation leads to the observed conformational changes correspond to either functionally important or highly conserved residues in the complex.
Collapse
Affiliation(s)
- Haleh Abdizadeh
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Farzaneh Jalalypour
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Ali Rana Atilgan
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Canan Atilgan
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| |
Collapse
|
9
|
Krieger JM, Doruker P, Scott AL, Perahia D, Bahar I. Towards gaining sight of multiscale events: utilizing network models and normal modes in hybrid methods. Curr Opin Struct Biol 2020; 64:34-41. [PMID: 32622329 DOI: 10.1016/j.sbi.2020.05.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/13/2020] [Accepted: 05/20/2020] [Indexed: 11/28/2022]
Abstract
With the explosion of normal mode analyses (NMAs) based on elastic network models (ENMs) in the last decade, and the proven precision of MD simulations for visualizing interactions at atomic scale, many hybrid methods have been proposed in recent years. These aim at exploiting the best of both worlds: the atomic precision of MD that often fall short of exploring time and length scales of biological interest, and the capability of ENM-NMA to predict the cooperative and often functional rearrangements of large structures and assemblies, albeit at low resolution. We present an overview of recent progress in the field with examples of successful applications highlighting the utility of such hybrid methods and pointing to emerging future directions guided by advances in experimental characterization of biomolecular systems structure and dynamics.
Collapse
Affiliation(s)
- James M Krieger
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, 3501 Fifth Ave, Suite 3064 BST3, Pittsburgh, PA 15260, USA
| | - Pemra Doruker
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, 3501 Fifth Ave, Suite 3064 BST3, Pittsburgh, PA 15260, USA
| | - Ana Ligia Scott
- Laboratory of Bioinformatics and Computational Biology, Federal University of ABC, Santo André, SP, Brazil
| | - David Perahia
- Laboratoire de Biologie et de Pharmacologie Appliquée, Ecole Normale Superieure Paris-Saclay, UMR 8113, CNRS, 4 Avenue des Sciences, 91190 Gif-sur-Yvette, France
| | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, 3501 Fifth Ave, Suite 3064 BST3, Pittsburgh, PA 15260, USA.
| |
Collapse
|
10
|
Qureshi AA, Suades A, Matsuoka R, Brock J, McComas SE, Nji E, Orellana L, Claesson M, Delemotte L, Drew D. The molecular basis for sugar import in malaria parasites. Nature 2020; 578:321-325. [PMID: 31996846 DOI: 10.1038/s41586-020-1963-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 01/03/2020] [Indexed: 12/11/2022]
Abstract
Elucidating the mechanism of sugar import requires a molecular understanding of how transporters couple sugar binding and gating events. Whereas mammalian glucose transporters (GLUTs) are specialists1, the hexose transporter from the malaria parasite Plasmodium falciparum PfHT12,3 has acquired the ability to transport both glucose and fructose sugars as efficiently as the dedicated glucose (GLUT3) and fructose (GLUT5) transporters. Here, to establish the molecular basis of sugar promiscuity in malaria parasites, we determined the crystal structure of PfHT1 in complex with D-glucose at a resolution of 3.6 Å. We found that the sugar-binding site in PfHT1 is very similar to those of the distantly related GLUT3 and GLUT5 structures4,5. Nevertheless, engineered PfHT1 mutations made to match GLUT sugar-binding sites did not shift sugar preferences. The extracellular substrate-gating helix TM7b in PfHT1 was positioned in a fully occluded conformation, providing a unique glimpse into how sugar binding and gating are coupled. We determined that polar contacts between TM7b and TM1 (located about 15 Å from D-glucose) are just as critical for transport as the residues that directly coordinate D-glucose, which demonstrates a strong allosteric coupling between sugar binding and gating. We conclude that PfHT1 has achieved substrate promiscuity not by modifying its sugar-binding site, but instead by evolving substrate-gating dynamics.
Collapse
Affiliation(s)
- Abdul Aziz Qureshi
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Albert Suades
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Rei Matsuoka
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Joseph Brock
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Sarah E McComas
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.,Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Emmanuel Nji
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Laura Orellana
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Magnus Claesson
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Lucie Delemotte
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - David Drew
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
11
|
Orellana L. Large-Scale Conformational Changes and Protein Function: Breaking the in silico Barrier. Front Mol Biosci 2019; 6:117. [PMID: 31750315 PMCID: PMC6848229 DOI: 10.3389/fmolb.2019.00117] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 10/14/2019] [Indexed: 12/16/2022] Open
Abstract
Large-scale conformational changes are essential to link protein structures with their function at the cell and organism scale, but have been elusive both experimentally and computationally. Over the past few years developments in cryo-electron microscopy and crystallography techniques have started to reveal multiple snapshots of increasingly large and flexible systems, deemed impossible only short time ago. As structural information accumulates, theoretical methods become central to understand how different conformers interconvert to mediate biological function. Here we briefly survey current in silico methods to tackle large conformational changes, reviewing recent examples of cross-validation of experiments and computational predictions, which show how the integration of different scale simulations with biological information is already starting to break the barriers between the in silico, in vitro, and in vivo worlds, shedding new light onto complex biological problems inaccessible so far.
Collapse
Affiliation(s)
- Laura Orellana
- Institutionen för Biokemi och Biofysik, Stockholms Universitet, Stockholm, Sweden.,Science for Life Laboratory, Solna, Sweden
| |
Collapse
|
12
|
Oncogenic mutations at the EGFR ectodomain structurally converge to remove a steric hindrance on a kinase-coupled cryptic epitope. Proc Natl Acad Sci U S A 2019; 116:10009-10018. [PMID: 31028138 DOI: 10.1073/pnas.1821442116] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) signaling is initiated by a large ligand-favored conformational change of the extracellular domain (ECD) from a closed, self-inhibited tethered monomer, to an open untethered state, which exposes a loop required for strong dimerization and activation. In glioblastomas (GBMs), structurally heterogeneous missense and deletion mutations concentrate at the ECD for unclear reasons. We explore the conformational impact of GBM missense mutations, combining elastic network models (ENMs) with multiple molecular dynamics (MD) trajectories. Our simulations reveal that the main missense class, located at the I-II interface away from the self-inhibitory tether, can unexpectedly favor spontaneous untethering to a compact intermediate state, here validated by small-angle X-ray scattering (SAXS). Significantly, such intermediate is characterized by the rotation of a large ECD fragment (N-TR1), deleted in the most common GBM mutation, EGFRvIII, and that makes accessible a cryptic epitope characteristic of cancer cells. This observation suggested potential structural equivalence of missense and deletion ECD changes in GBMs. Corroborating this hypothesis, our FACS, in vitro, and in vivo data demonstrate that entirely different ECD variants all converge to remove N-TR1 steric hindrance from the 806-epitope, which we show is allosterically coupled to an intermediate kinase and hallmarks increased oncogenicity. Finally, the detected extraintracellular coupling allows for synergistic cotargeting of the intermediate with mAb806 and inhibitors, which is proved herein.
Collapse
|