1
|
da Rosa G, Grille L, Dans PD. Ramachandran-like Conformational Space for DNA. J Chem Inf Model 2024; 64:8339-8348. [PMID: 39422031 DOI: 10.1021/acs.jcim.4c01294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
DNA's ability to exist in a wide variety of structural forms, subforms, and secondary motifs is fundamental to numerous biological processes and has driven the development of biotechnological applications. Major determinants of DNA flexibility are the multiple torsional degrees of freedom around the phosphodiester backbone. This high complexity can be rationalized by using two pseudotorsional angles linking atoms P and C4', from which Ramachandran-like plots can be built. In this contribution, we explore the distribution of η (eta: C4'i-1-Pi-C4'i-Pi+1) and θ (theta: Pi-C4'i-Pi+1-C4'i+1) angles in known experimental structures retrieved from the Protein Data Bank (PDB), subdividing the conformational space into different datasets. After the removal of the canonical/helical conformations typical of the B-form, we find the existence of a conformational map with clearly permitted and forbidden regions. Some of these regions are populated with specific DNA forms, like Z- or A-DNA, or by specific secondary motifs, like G-quadruplexes and junctions. We evaluated the sequence dependency and energy relationship among the high-density regions identified in the η-θ space. Furthermore, we analyzed the effect produced by proteins and cations when bound to DNA, finding that specific proteins produce some nonhelical conformations, while other regions appear to be stabilized by divalent cations.
Collapse
Affiliation(s)
- Gabriela da Rosa
- Computational Biophysics Group, Department of Biological Sciences, CENUR Litoral Norte, University of the Republic, Salto 50000, Uruguay
| | - Leandro Grille
- Computational Biophysics Group, Department of Biological Sciences, CENUR Litoral Norte, University of the Republic, Salto 50000, Uruguay
| | - Pablo D Dans
- Computational Biophysics Group, Department of Biological Sciences, CENUR Litoral Norte, University of the Republic, Salto 50000, Uruguay
- Bioinformatics Unit, Institute Pasteur of Montevideo, Montevideo 11400, Uruguay
| |
Collapse
|
2
|
Grille L, Gallego D, Darré L, da Rosa G, Battistini F, Orozco M, Dans PD. The pseudotorsional space of RNA. RNA (NEW YORK, N.Y.) 2023; 29:1896-1909. [PMID: 37793790 PMCID: PMC10653382 DOI: 10.1261/rna.079821.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 10/06/2023]
Abstract
The characterization of the conformational landscape of the RNA backbone is rather complex due to the ability of RNA to assume a large variety of conformations. These backbone conformations can be depicted by pseudotorsional angles linking RNA backbone atoms, from which Ramachandran-like plots can be built. We explore here different definitions of these pseudotorsional angles, finding that the most accurate ones are the traditional η (eta) and θ (theta) angles, which represent the relative position of RNA backbone atoms P and C4'. We explore the distribution of η - θ in known experimental structures, comparing the pseudotorsional space generated with structures determined exclusively by one experimental technique. We found that the complete picture only appears when combining data from different sources. The maps provide a quite comprehensive representation of the RNA accessible space, which can be used in RNA-structural predictions. Finally, our results highlight that protein interactions lead to significant changes in the population of the η - θ space, pointing toward the role of induced-fit mechanisms in protein-RNA recognition.
Collapse
Affiliation(s)
- Leandro Grille
- Computational Biophysics Group, Department of Biological Sciences, CENUR Litoral Norte, Universidad de la República, 50000 Salto, Uruguay
- Bioinformatics Unit, Institute Pasteur of Montevideo, 11400 Montevideo, Uruguay
| | - Diego Gallego
- Molecular Modelling and Bioinformatics Group, Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Leonardo Darré
- Bioinformatics Unit, Institute Pasteur of Montevideo, 11400 Montevideo, Uruguay
- Molecular Modelling and Bioinformatics Group, Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Gabriela da Rosa
- Computational Biophysics Group, Department of Biological Sciences, CENUR Litoral Norte, Universidad de la República, 50000 Salto, Uruguay
- Bioinformatics Unit, Institute Pasteur of Montevideo, 11400 Montevideo, Uruguay
| | - Federica Battistini
- Molecular Modelling and Bioinformatics Group, Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Modesto Orozco
- Molecular Modelling and Bioinformatics Group, Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Pablo D Dans
- Computational Biophysics Group, Department of Biological Sciences, CENUR Litoral Norte, Universidad de la República, 50000 Salto, Uruguay
- Bioinformatics Unit, Institute Pasteur of Montevideo, 11400 Montevideo, Uruguay
- Molecular Modelling and Bioinformatics Group, Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| |
Collapse
|
3
|
Lu XJ. DSSR-enabled innovative schematics of 3D nucleic acid structures with PyMOL. Nucleic Acids Res 2020; 48:e74. [PMID: 32442277 PMCID: PMC7367123 DOI: 10.1093/nar/gkaa426] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/26/2020] [Accepted: 05/07/2020] [Indexed: 12/11/2022] Open
Abstract
Sophisticated analysis and simplified visualization are crucial for understanding complicated structures of biomacromolecules. DSSR (Dissecting the Spatial Structure of RNA) is an integrated computational tool that has streamlined the analysis and annotation of 3D nucleic acid structures. The program creates schematic block representations in diverse styles that can be seamlessly integrated into PyMOL and complement its other popular visualization options. In addition to portraying individual base blocks, DSSR can draw Watson-Crick pairs as long blocks and highlight the minor-groove edges. Notably, DSSR can dramatically simplify the depiction of G-quadruplexes by automatically detecting G-tetrads and treating them as large square blocks. The DSSR-enabled innovative schematics with PyMOL are aesthetically pleasing and highly informative: the base identity, pairing geometry, stacking interactions, double-helical stems, and G-quadruplexes are immediately obvious. These features can be accessed via four interfaces: the command-line interface, the DSSR plugin for PyMOL, the web application, and the web application programming interface. The supplemental PDF serves as a practical guide, with complete and reproducible examples. Thus, even beginners or occasional users can get started quickly, especially via the web application at http://skmatic.x3dna.org.
Collapse
Affiliation(s)
- Xiang-Jun Lu
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|