1
|
Head A, Vaughn PL, Livingston EH, Colwell C, Muñoz MM, Gangloff EJ. Include the females: morphology-performance relationships vary between sexes in lizards. J Exp Biol 2024; 227:jeb248014. [PMID: 39155657 DOI: 10.1242/jeb.248014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/02/2024] [Indexed: 08/20/2024]
Abstract
An animal's morphology influences its ability to perform essential tasks, such as locomoting to obtain prey or escape predators. While morphology-performance relationships are well-studied in lizards, most conclusions have been based only on male study subjects, leaving unanswered questions about females. Sex-specific differences are important to understand because females carry the bulk of the physiological demands of reproduction. Consequently, their health and survival can determine the fate of the population as a whole. To address this knowledge gap, we sampled introduced populations of common wall lizards (Podarcis muralis) in Ohio, USA. We measured a complete suite of limb and body dimensions of both males and females, and we measured sprint speeds while following straight and curved paths on different substrates. Using a multivariate statistical approach, we identified that body dimensions relative to snout-to-vent length in males were much larger compared with females and that body dimensions of P. muralis have changed over time in both sexes. We found that sprint speed along curved paths increased with relative limb size in both males and females. When following straight paths, male speed similarly increased as body dimensions increased; conversely, female speed decreased as body dimensions increased. Female sprint speed was also found to have less variation than that of males and was less affected by changes in body size and hindfoot length compared with males. This study thus provides insights into how selective pressures might shape males and females differently and the functional implications of sexual dimorphism.
Collapse
Affiliation(s)
- Alyssa Head
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, OH 43015, USA
- Department of Evolutionary Biology, San Diego State University, San Diego, CA 92182, USA
| | - Princeton L Vaughn
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Ethan H Livingston
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, OH 43015, USA
| | - Cece Colwell
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, OH 43015, USA
| | - Martha M Muñoz
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Eric J Gangloff
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, OH 43015, USA
| |
Collapse
|
2
|
Amer A, Spears S, Vaughn PL, Colwell C, Livingston EH, McQueen W, Schill A, Reichard DG, Gangloff EJ, Brock KM. Physiological phenotypes differ among color morphs in introduced common wall lizards (Podarcis muralis). Integr Zool 2024; 19:505-523. [PMID: 37884464 DOI: 10.1111/1749-4877.12775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Many species exhibit color polymorphisms which have distinct physiological and behavioral characteristics. However, the consistency of morph trait covariation patterns across species, time, and ecological contexts remains unclear. This trait covariation is especially relevant in the context of invasion biology and urban adaptation. Specifically, physiological traits pertaining to energy maintenance are crucial to fitness, given their immediate ties to individual reproduction, growth, and population establishment. We investigated the physiological traits of Podarcis muralis, a versatile color polymorphic species that thrives in urban environments (including invasive populations in Ohio, USA). We measured five physiological traits (plasma corticosterone and triglycerides, hematocrit, body condition, and field body temperature), which compose an integrated multivariate phenotype. We then tested variation among co-occurring color morphs in the context of establishment in an urban environment. We found that the traits describing physiological status and strategy shifted across the active season in a morph-dependent manner-the white and yellow morphs exhibited clearly different multivariate physiological phenotypes, characterized primarily by differences in plasma corticosterone. This suggests that morphs have different strategies in physiological regulation, the flexibility of which is crucial to urban adaptation. The white-yellow morph exhibited an intermediate phenotype, suggesting an intermediary energy maintenance strategy. Orange morphs also exhibited distinct phenotypes, but the low prevalence of this morph in our study populations precludes clear interpretation. Our work provides insight into how differences among stable polymorphisms exist across axes of the phenotype and how this variation may aid in establishment within novel environments.
Collapse
Affiliation(s)
- Ali Amer
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, Ohio, USA
| | - Sierra Spears
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, Ohio, USA
| | - Princeton L Vaughn
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, Ohio, USA
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - Cece Colwell
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, Ohio, USA
| | - Ethan H Livingston
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, Ohio, USA
| | - Wyatt McQueen
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, Ohio, USA
| | - Anna Schill
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, Ohio, USA
- Department of Biology, Idaho State University, Pocatello, Idaho, USA
| | - Dustin G Reichard
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, Ohio, USA
| | - Eric J Gangloff
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, Ohio, USA
| | - Kinsey M Brock
- Department of Environmental Science, Policy, and Management, College of Natural Resources, University of California, Berkeley, USA
- Museum of Vertebrate Zoology, University of California, Berkeley, USA
| |
Collapse
|
3
|
Spears S, Pettit C, Berkowitz S, Collier S, Colwell C, Livingston EH, McQueen W, Vaughn PL, Bodensteiner BL, Leos-Barajas V, Gangloff EJ. Lizards in the wind: The impact of wind on the thermoregulation of the common wall lizard. J Therm Biol 2024; 121:103855. [PMID: 38648702 DOI: 10.1016/j.jtherbio.2024.103855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/25/2024]
Affiliation(s)
- Sierra Spears
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, OH, USA.
| | - Ciara Pettit
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, OH, USA
| | - Sophie Berkowitz
- School of the Environment, University of Toronto, Toronto, Ontario, Canada
| | - Simone Collier
- School of the Environment, University of Toronto, Toronto, Ontario, Canada
| | - Cece Colwell
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, OH, USA
| | - Ethan H Livingston
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, OH, USA
| | - Wyatt McQueen
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, OH, USA
| | - Princeton L Vaughn
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, OH, USA; Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | | | - Vianey Leos-Barajas
- School of the Environment, University of Toronto, Toronto, Ontario, Canada; Department of Statistical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Eric J Gangloff
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, OH, USA
| |
Collapse
|
4
|
Li Y, Hopkins AJM, Davis RA. Going, Going, Gone The Diminishing Capacity of Museum Specimen Collections to Address Global Change Research: A Case Study on Urban Reptiles. Animals (Basel) 2023; 13:ani13061078. [PMID: 36978619 PMCID: PMC10044672 DOI: 10.3390/ani13061078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023] Open
Abstract
It has been increasingly popular to use natural history specimens to examine environmental changes. As the current functionality of museum specimens has extended beyond their traditional taxonomic role, there has been a renewed focus on the completeness of biological collections to provide data for current and future research. We used the collections of the Western Australian Museum to answer questions about the change in occurrence of five common reptile species due to the rapid urbanization of Perth. We recorded a significant decline in collection effort from the year 2000 onwards (F = 7.65, p < 0.01) compared to the period 1990–1999. Spatial analysis revealed that only 0.5% of our study region was well sampled, 8.5% were moderately sampled and the majority of the regions (91%) were poorly sampled. By analysing the trend of specimen acquisition from 1950 to 2010, we discovered a significant inconsistency in specimen sampling effort for 13 common reptile species across time and space. A large proportion of past specimens lacked information including the place and time of collection. An increase in investment to museums and an increase in geographically and temporally systematic collecting is advocated to ensure that collections can answer questions about environmental change.
Collapse
Affiliation(s)
- Yanlin Li
- School of Science, Edith Cowan University, 100 Joondalup Drive, Joondalup, WA 6027, Australia
| | - Anna J. M. Hopkins
- School of Science, Edith Cowan University, 100 Joondalup Drive, Joondalup, WA 6027, Australia
| | - Robert A. Davis
- School of Science, Edith Cowan University, 100 Joondalup Drive, Joondalup, WA 6027, Australia
- Department of Terrestrial Zoology, Western Australia Museum, 49 Kew St, Welshpool, WA 6106, Australia
- Correspondence:
| |
Collapse
|
5
|
Christopoulos A, Pantagaki CF, Poulakakis N, Pafilis P. First record of Anatololacerta pelasgiana (Mertens, 1959) in mainland Greece: another new species in Athens. HERPETOZOA 2022. [DOI: 10.3897/herpetozoa.35.e97649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Urban habitats receive an increasing number of species due to anthropogenic activities, mainly transportations. Here, we report a new addition to the herpetofauna of Athens (Greece): a small population of the Pelasgian wall lizard (Anatololacerta pelasgiana) was found in a suburb of the Athenian metropolitan area. The species normally occurs in southwestern Anatolia and southeastern Aegean islands and this is the first record in the Greek mainland. Allochthonous species that successfully colonize cities raise new challenges to urban ecology.
Collapse
|
6
|
Rossigalli-Costa N, Kohlsdorf T. Native Lizards Living in Brazilian Cities: Effects of Developmental Environments on Thermal Sensitivity and Morpho-Functional Associations of Locomotion. Front Physiol 2022; 13:891545. [PMID: 35910576 PMCID: PMC9335278 DOI: 10.3389/fphys.2022.891545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/17/2022] [Indexed: 11/29/2022] Open
Abstract
Environmental conditions often affect developmental processes and consequently influence the range of phenotypic variation expressed at population level. Expansion of urban sites poses new challenges for native species, as urbanization usually affects the intensity of solar exposure and shade availability, determining the thermal regimes organisms are exposed to. In this study, we evaluate the effects of different developmental conditions in a Tropidurus lizard commonly found in Brazilian urban sites. After incubating embryos of Tropidurus catalanensis in two different thermal regimes (Developmental Environments [DE]: cold 24°C and warm 30°C), we measured morphological traits in the neonates and quantified locomotor performance in horizontal and vertical surfaces at three temperatures [Test Temperatures (TT) = 24°C, 30°C and 36°C]. Results indicate effects of developmental temperatures on morphological features, expressing functional implications that might be decisive for the viability of T. catalanensis in urbanized areas. Lizards ran similarly on horizontal and vertical surfaces, and isolated analyses did not identify significant effects of DE or TT on the sprint speeds measured. Absolute Vmax (i.e., the maximum sprint speed reached among all TTs) positively correlated with body size (SVL), and neonates from the warm DE (30°C) were larger than those from the cold DE (24°C). Morpho-functional associations of absolute Vmax also involved pelvic girdle width and forelimb, hindlimb, trunk, and tail lengths. Emerging discussions aim to understand how animals cope with abrupt environmental shifts, a likely common challenge in urbanized sites. Our findings add a new dimension to the topic, providing evidence that temperature, an environmental parameter often affected by urbanization, influences the thermal sensitivity of locomotion and the morphological profile of T. catalanensis neonates. Thermal sensitivity of specific developmental processes may influence the ability of these lizards to remain in habitats that change fast, as those suffering rapid urbanization due to city growth.
Collapse
|