1
|
Johnson AE, Welklin JF, Hoppe IR, Shizuka D. Ecogeography of group size suggests differences in drivers of sociality among cooperatively breeding fairywrens. Proc Biol Sci 2023; 290:20222397. [PMID: 36919434 PMCID: PMC10015324 DOI: 10.1098/rspb.2022.2397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/17/2023] [Indexed: 03/16/2023] Open
Abstract
Cooperatively breeding species exhibit a range of social behaviours associated with different costs and benefits to group living, often in association with different environmental conditions. For example, recent phylogenetic studies have collectively shown that the evolution and distribution of cooperative breeding behaviour is related to the environment. However, little is known about how environmental variation may drive differences in social systems across populations within species, and how the relationship between environmental conditions and sociality may differ across species. Here, we examine variation in social group size along a steep environmental gradient for two congeneric cooperatively breeding species of fairywrens (Maluridae) and show that they exhibit opposing ecogeographic patterns. Purple-backed fairywrens, a species in which helpers increase group productivity, have larger groups in hot, dry environments and smaller groups in cool, wet environments. By contrast, superb fairywrens, a species with helpers that do not increase group productivity despite the presence of alloparental care, exhibit the opposite trend. We suggest differences in the costs and benefits of sociality contribute to these opposing ecogeographical patterns and demonstrate that comparisons of intraspecific patterns of social variation across species can provide insight into how ecology shapes social systems.
Collapse
Affiliation(s)
- Allison E. Johnson
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Joseph F. Welklin
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14850, USA
- Cornell Laboratory of Ornithology, Ithaca, NY 14850, USA
| | - Ian R. Hoppe
- School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Daizaburo Shizuka
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
2
|
Perktaş U. Range shift and loss of genetic diversity under climate change in the red-backed fairywren ( Malurus melanocephalus), an Australian endemic bird species. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
Climatic variability is the most important force influencing the distribution dynamics of common and widespread species, with significant effects on their current biogeographical patterns. In this study, phylogeography was integrated with ecological niche modelling to understand the range dynamics of an Australian bird species, the red-backed fairywren (Malurus melanocephalus), under various climate change scenarios. Specifically, an ecological niche modelling approach with Bayesian-based phylogeographical analysis was used to develop robust inferences regarding the demographic history of the species. The predictions of the model were mostly consistent with the present distribution of the species. However, under the Last Interglacial bioclimatic conditions, the model predicted a significantly narrower distribution than today, indicating the existence of allopatric refugia. Predictions for the Last Glacial Maximum indicated that the species had a wider distribution, extending northwards. Additionally, predictions for the future (2050 and 2070) indicated that the species will probably have a narrower distribution than at present, which will be shifted eastwards. The extended Bayesian skyline plot analysis, which provides a robust analysis of fluctuations in the effective population size throughout the evolutionary history of a species, produced results highly consistent with the ecological niche modelling predictions for the red-backed fairywren. This is the first study to investigate the Late Quaternary history of an endemic avian taxon from Australia using ecological niche modelling and Bayesian-based demographic analysis.
Collapse
Affiliation(s)
- Utku Perktaş
- Department of Biology (Biogeography Research Laboratory), Faculty of Science, Hacettepe University , 06800 Beytepe, Ankara , Turkey
- Department of Ornithology, American Museum of Natural History , Central Park West at 79th Street, New York, NY 10024 , USA
- Biodiversity Institute, University of Kansas , Lawrence, KS 66045 , USA
| |
Collapse
|
3
|
Coman A, Potter S, Moritz C, Campbell CD, Joseph L. Biotic and abiotic drivers of evolution in some Australian thornbills (Passeriformes:
Acanthiza
) in allopatry, sympatry, and parapatry including a case of character displacement. J ZOOL SYST EVOL RES 2020. [DOI: 10.1111/jzs.12355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Amelia Coman
- Division of Ecology and Evolution Research School of Biology, and Centre for Biodiversity Analysis The Australian National University Acton ACT Australia
- Australian National Wildlife Collection CSIRO National Research Collections Australia Canberra ACT Australia
| | - Sally Potter
- Division of Ecology and Evolution Research School of Biology, and Centre for Biodiversity Analysis The Australian National University Acton ACT Australia
| | - Craig Moritz
- Division of Ecology and Evolution Research School of Biology, and Centre for Biodiversity Analysis The Australian National University Acton ACT Australia
| | - Catriona D. Campbell
- Australian National Wildlife Collection CSIRO National Research Collections Australia Canberra ACT Australia
| | - Leo Joseph
- Australian National Wildlife Collection CSIRO National Research Collections Australia Canberra ACT Australia
| |
Collapse
|
4
|
Gardner JL, Amano T, Peters A, Sutherland WJ, Mackey B, Joseph L, Stein J, Ikin K, Little R, Smith J, Symonds MRE. Australian songbird body size tracks climate variation: 82 species over 50 years. Proc Biol Sci 2019; 286:20192258. [PMID: 31771472 DOI: 10.1098/rspb.2019.2258] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The observed variation in the body size responses of endotherms to climate change may be explained by two hypotheses: the size increases with climate variability (the starvation resistance hypothesis) and the size shrinks as mean temperatures rise (the heat exchange hypothesis). Across 82 Australian passerine species over 50 years, shrinking was associated with annual mean temperature rise exceeding 0.012°C driven by rising winter temperatures for arid and temperate zone species. We propose the warming winters hypothesis to explain this response. However, where average summer temperatures exceeded 34°C, species experiencing annual rise over 0.0116°C tended towards increasing size. Results suggest a broad-scale physiological response to changing climate, with size trends probably reflecting the relative strength of selection pressures across a climatic regime. Critically, a given amount of temperature change will have varying effects on phenotype depending on the season in which it occurs, masking the generality of size patterns associated with temperature change. Rather than phenotypic plasticity, and assuming body size is heritable, results suggest selective loss or gain of particular phenotypes could generate evolutionary change but may be difficult to detect with current warming rates.
Collapse
Affiliation(s)
- Janet L Gardner
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 0200, Australia.,School of Biological Sciences, Monash University, Clayton, Victoria 3168, Australia
| | - Tatsuya Amano
- School of Biological Sciences, University of Queensland, Brisbane, 4072 Queensland, Australia
| | - Anne Peters
- School of Biological Sciences, Monash University, Clayton, Victoria 3168, Australia
| | - William J Sutherland
- Department of Zoology, University of Cambridge, The David Attenborough Building, Pembroke Street, Cambridge CB2 3QZ, UK
| | - Brendan Mackey
- Griffith Climate Change Response Program, Griffith University, Gold Coast Campus, Queensland 4222, Australia
| | - Leo Joseph
- Australian National Wildlife Collection, CSIRO National Research Collections Australia, GPO Box 1700, Canberra, Australian Capital Territory 2601, Australia
| | - John Stein
- The Fenner School of Environment and Society, The Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - Karen Ikin
- The Fenner School of Environment and Society, The Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - Roellen Little
- School of Biological Sciences, Monash University, Clayton, Victoria 3168, Australia
| | - Jesse Smith
- School of Biological Sciences, Monash University, Clayton, Victoria 3168, Australia
| | - Matthew R E Symonds
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia
| |
Collapse
|
6
|
Dissection by genomic and plumage variation of a geographically complex hybrid zone between two Australian non-sister parrot species, Platycercus adscitus and Platycercus eximius. Heredity (Edinb) 2018; 122:402-416. [PMID: 30082918 PMCID: PMC6460760 DOI: 10.1038/s41437-018-0127-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 06/23/2018] [Accepted: 06/27/2018] [Indexed: 01/27/2023] Open
Abstract
The study of hybrid zones advances understanding of the speciation process, and approaches incorporating genomic data are increasingly used to draw significant conclusions about the impact of hybridisation. Despite the progress made, the complex interplay of factors that can lead to substantially variable hybridisation outcomes are still not well understood, and many systems and/or groups remain comparatively poorly studied. Our study aims to broaden the literature on avian hybrid zones, investigating a potentially geographically and temporally complex putative hybrid zone between two native Australian non-sister parrot species, the pale-headed and eastern rosellas (Platycercus adscitus and Platycercus eximius, respectively). We analysed six plumage traits and >1400 RADseq loci and detected hybrid individuals and an unexpectedly complex geographic structure. The hybrid zone is larger than previously described due to either observer bias or its movement over recent decades. It comprises different subregions where genetic and plumage signals of admixture vary markedly in their concordance. Evidence of contemporary hybridisation (later generation and backcrossed individuals) both within and beyond the previously defined zone, when coupled with a lack of F1 hybrids and differential patterns of introgression among potentially diagnostic loci, indicates a lack of post-zygotic barriers to gene flow between species. Despite ongoing gene flow, species boundaries are likely maintained largely by strong pre-mating barriers. These findings are discussed in detail and future avenues for research into this system are proposed, which would be of benefit to the speciation and hybrid zone literature.
Collapse
|