1
|
Li B, Otto G. Forced Traveling Waves in a Reaction-Diffusion Equation with Strong Allee Effect and Shifting Habitat. Bull Math Biol 2023; 85:121. [PMID: 37922015 DOI: 10.1007/s11538-023-01221-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/01/2023] [Indexed: 11/05/2023]
Abstract
We study a reaction-diffusion equation that describes the growth of a population with a strong Allee effect in a bounded habitat which shifts at a speed [Formula: see text]. We demonstrate that the existence of forced positive traveling waves depends on habitat size L, and [Formula: see text], the speed of traveling wave for the corresponding reaction-diffusion equation with the same growth function all over the entire unbounded spatial domain. It is shown that for [Formula: see text] there exists a positive number [Formula: see text] such that for [Formula: see text] there are two positive traveling waves and for [Formula: see text] there is no positive traveling wave. It is also shown if [Formula: see text] for any [Formula: see text] there is no positive traveling wave. The dynamics of the equation are further explored through numerical simulations.
Collapse
Affiliation(s)
- Bingtuan Li
- Department of Mathematics, University of Louisville, Louisville, KY, 40292, USA
| | - Garrett Otto
- Department of Mathematics, SUNY Cortland, Cortland, NY, 13045, USA.
| |
Collapse
|
2
|
Wellenreuther M, Dudaniec RY, Neu A, Lessard JP, Bridle J, Carbonell JA, Diamond SE, Marshall KE, Parmesan C, Singer MC, Swaegers J, Thomas CD, Lancaster LT. The importance of eco-evolutionary dynamics for predicting and managing insect range shifts. CURRENT OPINION IN INSECT SCIENCE 2022; 52:100939. [PMID: 35644339 DOI: 10.1016/j.cois.2022.100939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Evolutionary change impacts the rate at which insect pests, pollinators, or disease vectors expand or contract their geographic ranges. Although evolutionary changes, and their ecological feedbacks, strongly affect these risks and associated ecological and economic consequences, they are often underappreciated in management efforts. Greater rigor and scope in study design, coupled with innovative technologies and approaches, facilitates our understanding of the causes and consequences of eco-evolutionary dynamics in insect range shifts. Future efforts need to ensure that forecasts allow for demographic and evolutionary change and that management strategies will maximize (or minimize) the adaptive potential of range-shifting insects, with benefits for biodiversity and ecosystem services.
Collapse
Affiliation(s)
- Maren Wellenreuther
- The New Zealand Institute for Plant & Food Research Ltd, Nelson, New Zealand; School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Rachael Y Dudaniec
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Anika Neu
- Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
| | | | - Jon Bridle
- Department of Genetics, Evolution and Environment, University College London, UK
| | - José A Carbonell
- Department of Zoology, Faculty of Biology, University of Seville, Seville, Spain; Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, Leuven B-3000, Belgium
| | - Sarah E Diamond
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Katie E Marshall
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Camille Parmesan
- Station d'Écologie Théorique et Expérimentale (SETE), CNRS, 2 route du CNRS, 09200 Moulis, France; Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK; Dept of Geological Sciences, University of Texas at Austin, Austin, Texas 78712
| | - Michael C Singer
- Station d'Écologie Théorique et Expérimentale (SETE), CNRS, 2 route du CNRS, 09200 Moulis, France; Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Janne Swaegers
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, Leuven B-3000, Belgium
| | - Chris D Thomas
- Leverhulme Centre for Anthropocene Biodiversity, University of York, Wentworth Way, York YO10 5DD, UK
| | - Lesley T Lancaster
- School of Biological Sciences, University of Aberdeen, Aberdeen UK AB24 2TZ.
| |
Collapse
|
3
|
Dudaniec RY, Carey AR, Svensson EI, Hansson B, Yong CJ, Lancaster LT. Latitudinal clines in sexual selection, sexual size dimorphism and sex-specific genetic dispersal during a poleward range expansion. J Anim Ecol 2021; 91:1104-1118. [PMID: 33759189 DOI: 10.1111/1365-2656.13488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 03/09/2021] [Indexed: 10/21/2022]
Abstract
Range expansions can be shaped by sex differences in behaviours and other phenotypic traits affecting dispersal and reproduction. Here, we investigate sex differences in morphology, behaviour and genomic population differentiation along a climate-mediated range expansion in the common bluetail damselfly (Ischnura elegans) in northern Europe. We sampled 65 sites along a 583-km gradient spanning the I. elegans range in Sweden and quantified latitudinal gradients in site relative abundance, sex ratio and sex-specific shifts in body size and mating status (a measure of sexual selection). Using single nucleotide polymorphism (SNP) data for 426 individuals from 25 sites, we further investigated sex-specific landscape and climatic effects on neutral genetic connectivity and migration patterns. We found evidence for sex differences associated with the I. elegans range expansion, namely (a) increased male body size with latitude, but no latitudinal effect on female body size, resulting in reduced sexual dimorphism towards the range limit, (b) a steeper decline in male genetic similarity with increasing geographic distance than in females, (c) male-biased genetic migration propensity and (d) a latitudinal cline in migration distance (increasing migratory distances towards the range margin), which was stronger in males. Cooler mean annual temperatures towards the range limit were associated with increased resistance to gene flow in both sexes. Sex ratios became increasingly male biased towards the range limit, and there was evidence for a changed sexual selection regime shifting from favouring larger males in the south to favouring smaller males in the north. Our findings suggest sex-specific spatial phenotype sorting at the range limit, where larger males disperse more under higher landscape resistance associated with cooler climates. The combination of latitudinal gradients in sex-biased dispersal, increasing male body size and (reduced) sexual size dimorphism should have emergent consequences for sexual selection dynamics and the mating system at the expanding range front. Our study illustrates the importance of considering sex differences in the study of range expansions driven by ongoing climate change.
Collapse
Affiliation(s)
- Rachael Y Dudaniec
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Alexander R Carey
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia.,Department of Planning, Industry and Environment, Saving our Species Program, New South Wales Government, Sydney, NSW, Australia
| | | | - Bengt Hansson
- Department of Biology, Lund University, Lund, Sweden
| | - Chuan Ji Yong
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Lesley T Lancaster
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
4
|
Carbonell JA, Wang YJ, Stoks R. Evolution of cold tolerance and thermal plasticity in life history, behaviour and physiology during a poleward range expansion. J Anim Ecol 2021; 90:1666-1677. [PMID: 33724470 DOI: 10.1111/1365-2656.13482] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/09/2021] [Indexed: 01/04/2023]
Abstract
Many species that are moving polewards encounter novel thermal regimes to which they have to adapt. Therefore, rapid evolution of thermal tolerance and of thermal plasticity in fitness-related traits in edge populations can be crucial for the success and speed of range expansions. We tested for adaptation in cold tolerance and in life history, behavioural and physiological traits and their thermal plasticity during a poleward range expansion. We reconstructed the thermal performance curves of life history (survival, growth and development rates), behaviour (food intake) and cold tolerance (chill coma recovery time) in the aquatic larval stage of the damselfly Ischnura elegans that is currently showing a poleward range expansion in northern Europe. We studied larvae from three edge and three core populations using a common-garden experiment. Consistent with the colder annual temperatures, larvae at the expansion front evolved an improved cold tolerance. The edge populations showed no overall (across temperatures) evolution of a faster life history that would improve their range-shifting ability. Moreover, consistent with damselfly edge populations from colder latitudes, edge populations evolved at the highest rearing temperature (28°C) a faster development rate, likely to better exploit the rare periods with higher temperatures. This was associated with a higher food intake and a lower metabolic rate. In conclusion, our results suggest that the edge populations rapidly evolved adaptive changes in trait means and thermal plasticity to the novel thermal conditions at the edge front. Our results highlight the importance of considering besides trait plasticity and the evolution of trait means, also the evolution of trait plasticity to improve forecasts of responses to climate change.
Collapse
Affiliation(s)
- José Antonio Carbonell
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium.,Department of Wetland Ecology, Doñana Biological Station (EBD-CSIC), Seville, Spain
| | - Ying-Jie Wang
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium
| | - Robby Stoks
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium
| |
Collapse
|